SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
Video: https://youtu.be/T0L0JxDaPkc
RSVP Here: https://www.eventbrite.com/e/full-day-workshop-kubeflow-kerastensorflow-20-tf-extended-tfx-kubernetes-pytorch-xgboost-airflow-tickets-63362929227
Description
In this workshop, we build real-world machine learning pipelines using TensorFlow Extended (TFX), KubeFlow, Airflow, and MLflow.
Described in the 2017 paper, TFX is used internally by thousands of Google data scientists and engineers across every major product line within Google.
KubeFlow is a modern, end-to-end pipeline orchestration framework that embraces the latest AI best practices including hyper-parameter tuning, distributed model training, and model tracking.
Airflow is the most-widely used pipeline orchestration framework in machine learning and data engineering.
MLflow is a lightweight experiment-tracking system recently open-sourced by Databricks, the creators of Apache Spark. MLflow supports Python, Java/Scala, and R - and offers native support for TensorFlow, Keras, and Scikit-Learn.
Pre-requisites
Modern browser - and that's it!
Every attendee will receive a cloud instance
Nothing will be installed on your local laptop
Everything can be downloaded at the end of the workshop
Location
Online Workshop
The link will be sent a few hours before the start of the workshop.
Only registered users will receive the link.
If you do not receive the link a few hours before the start of the workshop, please send your Eventbrite registration confirmation to support@pipeline.ai for help.
Agenda
1. Create a Kubernetes cluster
2. Install KubeFlow, Airflow, TFX, and Jupyter
3. Setup ML Training Pipelines with KubeFlow and Airflow
4. Transform Data with TFX Transform
5. Validate Training Data with TFX Data Validation
6. Train Models with Jupyter, Keras/TensorFlow 2.0, PyTorch, XGBoost, and KubeFlow
7. Run a Notebook Directly on Kubernetes Cluster with KubeFlow
8. Analyze Models using TFX Model Analysis and Jupyter
9. Perform Hyper-Parameter Tuning with KubeFlow
10. Select the Best Model using KubeFlow Experiment Tracking
11. Run Multiple Experiments with MLflow Experiment Tracking
12. Reproduce Model Training with TFX Metadata Store
13. Deploy the Model to Production with TensorFlow Serving and Istio
14. Save and Download your Workspace
Key Takeaways
Attendees will gain experience training, analyzing, and serving real-world Keras/TensorFlow 2.0 models in production using model frameworks and open-source tools.
RSVP Here: https://www.eventbrite.com/e/full-day-workshop-kubeflow-kerastensorflow-20-tf-extended-tfx-kubernetes-pytorch-xgboost-airflow-tickets-63362929227
https://youtu.be/T0L0JxDaPkc
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Soyez le premier à commenter