SlideShare une entreprise Scribd logo
1  sur  96
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 1
Chapt 03 & 04
Frequency Analysis of Signals
and System
& DFT
Digital Signal Processing
PrePrepared by
IRDC India
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 2
Copyright© with Authors. All right reserved
For education purpose.
Commercialization of this material is
strictly not allowed without permission
from author.
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 3
Chapt 3 : Frequency Analysis of Signals &
Systems
Contents:
• Frequency Analysis: CTS and DTS
• Properties of the Fourier Transform for DTS
• Frequency domain characteristics of LTI systems
• LTI system as a frequency selective filter
• Inverse systems and de-convolution
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 4
Frequency Analysis: CTS and DTS
• Analysis tools
• Fourier Series
• Fourier Transform
• DTFS
• DTFT
• DFT
Jean Baptiste Joseph
Fourier (1768 - 1830).
Fourier was a French
mathematician, who was
taught by Lagrange and
Laplace
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 5
e-TECHNote
This PPT is sponsored by
IRDC India
www.irdcindia.com
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 6
Fourier Series
•Continuous time variable t
•Discrete frequency variable k
•Signal to be analyzed has to
be periodic
• Fourier series for continuous-time periodic signal
•
tTp
∑
∞
−∞=
=
k
tkFj
k eCtx 02
)( π
dtetx
T
C tkFj
Tp
k
p
02
)(
1 π−
∫=
Tp-> is the Fundamental Period of Signal
where
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 7
•Continuous time variable t
•Continuous frequency variable F
•Signal to be analyzed is aperiodic
Fourier Transform
• Fourier Transform for continuous-time periodic
signal
t
∫
∞
∞−
= dFeFXtx Ftj π2
)()(
Tp-> is the Fundamental Period of Signal
where
∫
∞
∞−
−
= dtetxFX Ftj π2
)()(
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 8
• Fourier Series Periodic signal
• Fourier Transform Aperiodic signal
When Fourier series is applied to the aperiodic signal by assuming
its period = , then it is called as Fourier transform
Fourier Series & Fourier Transform
Fourier
Series
t
Tp F
Fourier
Series
Tp=∞
∆F=1/Tp
F
∆F=1/Tp=0
∞
)(lim)( txtx T
T ∞→
=
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 9
•Discrete time variable t
•Discrete frequency variable k
•Signal to be analyzed has to
be periodic
DTFS
• Fourier series for discrete-time periodic signal
∑
−
=
=
1
0
2
)(
N
k
k
N
knj
eCnx
π
∑
−
=
−
=
1
0
2
)(
1 N
n
k
N
knj
enx
N
C
π
Tp-> is the Fundamental Period of Signal
where
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 10
•Discrete time variable t
•Continuous frequency variable F
•Signal to be analyzed is aperiodic
DTFT
• Fourier Transform for discrete-time periodic
signal
∫=
π
ω
ωω
π 2
)(
2
1
)( deXnx nj
Tp is the Fundamental Period of Signal
where
∑
∞
−∞=
−
=
n
jwn
enxX )()(ω
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 11
Dirichlet Conditions
• To exist Fourier transform of the signal, it should satisfy
Dirichlet Conditions
1. The signal has finite number of discontinuities
2. It has finite number of maxima and minima
3. The signal should be absolutely integral
i.e.
∞<∫
∞
∞−
dttx )(
∑
∞
−∞=
∞<
n
dtnx )(
or
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 12
Problem(1)
• Obtain exponential Fourier series for the waveform shown in fig
•
0 2Π 4Π ωt
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 13
Solution (1)
dtetx
T
C tjk
T
k
0
0
)(
1
0
ω−
∫=
As per Fourier series
π20 =T ttx 0
2
5
)( ω
π
= for π20 ≤≤ wt
tdwet
T
C tjkw
k 0
2
0
02
5
0
0
1 −
∫=
π
π ω tdwteC tjkw
k 0
2
0
0
0
2
5
2
1
∫
−
=
π
ω
ππ
( )
π
π
2
0
022
1
)()2(
5 0






−−
−
=
−
tjkw
jk
e tjkw
k
jCk
π2
5
=
LLL ++++−−= −− twjtwjtjwtwj
ejejejejtx 0000 2
4
52
2
5
2
5
2
52
4
5
)( ππππ
0
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 14
Problem (2)
Obtain Fourier transform for the gate function ( rectangular pulse)
as shown in fig
0-T/2 T/2 t
,1)( =tf 22
TT
t ≤≤−
=0 otherwise
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 15
Solution (2)
We know
∫
∞
∞−
−
= dtetfwF jwt
)()(
∫−
−
=
2/
2/
.1
T
T
jwt
dte
2/
2/
T
T
jwt
jw
e
−
−
−
= [ ]2/2/1 jwTjwT
ee
jw
−
−
= −
jw
ee jwTjwT 2/2/
−
=
−
w
wT )2/sin(2
=
)2/(sin
2/
)2/sin(
wTcT
wt
wT
T ==
Amplitude
Phase
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 16
Problem (3)
A finite duration sequence of Length L is given as
Determine the N-point DFT of this sequence for N≥L
,1)( =nx 10 −≤≤ Ln
=0 otherwise
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 17
Solution (3)
The Fourier transform (DTFT) is given by
∑
∞
−∞=
−
=
n
jwn
enxX )()(ω
∑
−
=
−
=
1
0
.1
L
n
jwn
e ∑
−
=
−
=
1
0
)(
L
n
njw
e
We know summation formula
∑=
+
−
−
=
n
k
n
k
a
a
a
0
1
1
1
jw
jwL
e
e
X −
−
−
−
=
1
1
)(ω 2/2/2/2/
2/2/2/2/
jwjwjwjw
jwLjwLjwLjwL
eeee
eeee
−−
−−
−
−
=
)(
)(
2/2/2/
2/2/2/
jwjwjw
jwLjwLjwL
eee
eee
−−
−−
−
−
=
)2/sin(
)2/sin(2/)1(
w
wL
e Ljw −−
=
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 18
Contd..
DFT of x(n) can be obtained by sampling X(w) at N
equally spaced frequencies
N
k
wk
π2
=∴ 1,.......1,0 −= Nk
Nkj
NkLj
e
e
kX /2
/2
1
1
)( π
π
−
−
−
−
= 1,.......1,0 −= Nk
,)( LkX = 0=KIf N=L,
0= 1.......2,1 −= LK
•If N>L, computational point of view sequence x(n) is extended by
appending N-L zeroes(zero padding).
• DFT would approach to DTFT as no of points in DFT tends to infinity
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 19
Nyquist Criterion – Sampling Theorem
• Continuous time domain( analog ) signal is converted into discrete time
signal by sampling process. It should be sampled in such a way that the original
signal can be reconstructed from the samples
• Nyquist criterion or sampling theorem suggest the minimum sampling
frequency by which signal should be sampled in order to have proper reconstruction
if required.
Mathematically, sampled signal xs(t) is obtained by multiplying sampling
function gT(t) with original signal x(t)
)1.......().........()()( tgtxtx Ts =
Where gT(t) continuous train of pulse with period T (sampling period)
)(
1
)(
Triodsamplingpe
fequencysamplingfr s =
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 20
Contd..
The Fourier series of periodic signal gT(t) can be given as
dtetg
T
C tnfj
T
T
n
sπ2
2/
2/
)(
1 −
−
∫=
)2........(..........)( 2
∑
∞
−∞=
=
n
tnfj
n
s
eCtg π
Where
gT(t)
x(t)
t
t
Thus, from eq(1) and eq(2), we get
∑
∞
−∞=
=
n
tnfj
ns
s
eCtxtx π2
)()(
)3.........(..........)( 2
∑
∞
−∞=
=
n
tnfj
n
s
etxC π
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 21
Contd..
Taking Fourier transform of xs(t), we get
∫
∞
∞−
−
= dtetxfX ftj
ss
π2
)()(
∫ ∑
∞
∞−
−
∞
−∞=
= dteetxC ftj
n
tnfj
n
s ππ 22
)(
Interchanging the order of integration and summation , we get
∑ ∫
∞
−∞=
−−
∞
∞−
=
n
tnffj
n dtetxC s )(2
)( π
∑
∞
−∞=
−=
n
sns nffXCfX )()(
By definition
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 22
Contd..
Thus, spectrum of sampled signal is the spectrum of x(t) plus the spectrum of
x(t) translated to each harmonic fo the sampling frequency as shown in figure
X(f)
f
-fh fh
-fh fh fs-fh fs+fhfs 2fs-fh 2fs+fh2fs
-2fs-fh -2fs+fh-2fs -fs-fh -fs
-fs+fh
There are three cases when sampling frequency fs is compared with
highest frequency present in original signal
Xs(f)
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 23
Contd..
Case I: fs > 2fh
In this case all spectrums would be isolated from each other . This
leads to proper reconstruction of original signal
Case II: fs = 2fh
-fh fh fs-fh fs+fhfs 2fs-fh 2fs+fh2fs
-2fs-fh -2fs+fh-2fs -fs-fh -fs
-fs+fh
Xs(f)
Case III: fs < 2fh
-fh fh fs 2fs
-2fs -fs
Xs(f)
Overlapping of spectrum causes aliasing effect which distorts in
reconstruction of original signal
N-points in time
domain will give
N-points in DFT
and vice-versa
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 24
DFT
DTFT has continuous frequency domain variable which makes
impossible to store X(w) with digital device. Thus continuous
frequency variable (f or w) from DTFT is sampled to get
discrete frequencies (wk).
DTFT calculated for discrete frequencies (wk) is called as
Discrete Fourier Transform
N
k
wk
π2
=
∑
−
=
−
=
1
0
/2
)()(
N
n
Nknj
enxkX π
1,.......1,0 −= Nk
∑
−
=
=
1
0
/2
)(
1
)(
N
k
Nknj
ekX
N
nx π
1,.......1,0 −= Nn
DFT
Inverse DFT ( IDFT)
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 25
Physical Significance
• Signal to be analyzed is 64 points in length
x(n)
analog discrete
0 10 20 30 40 50 60 70
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0.5
0 10 20 30 40 50 60 70
-0 .5
-0 .4
-0 .3
-0 .2
-0 .1
0
0 .1
0 .2
0 .3
0 .4
0 .5
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 26
k=0
)/2sin()/2cos(
2
NnkjNnke N
nk
j
ππ
π
+=
−
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
SINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
0
0.5
1
COSINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-0. 5
-0. 4
-0. 3
-0. 2
-0. 1
0
0. 1
0. 2
0. 3
0. 4
0. 5
Im{X(0)}
Re{X(0)}
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 27
k=1
)/2sin()/2cos(
2
NnkjNnke N
nk
j
ππ
π
+=
−
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
SINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
COSINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-0. 5
-0. 4
-0. 3
-0. 2
-0. 1
0
0. 1
0. 2
0. 3
0. 4
0. 5
Im{X(1)}
Re{X(1)}
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 28
k=2
)/2sin()/2cos(
2
NnkjNnke N
nk
j
ππ
π
+=
−
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
SINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
COSINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-0. 5
-0. 4
-0. 3
-0. 2
-0. 1
0
0. 1
0. 2
0. 3
0. 4
0. 5
Im{X(2)}
Re{X(2)}
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 29
k=3
)/2sin()/2cos(
2
NnkjNnke N
nk
j
ππ
π
+=
−
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
SINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
COSINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-0. 5
-0. 4
-0. 3
-0. 2
-0. 1
0
0. 1
0. 2
0. 3
0. 4
0. 5
Im{X(3)}
Re{X(3)}
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 30
k=31
)/2sin()/2cos(
2
NnkjNnke N
nk
j
ππ
π
+=
−
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
SINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
COSINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
SINE SEQUENCE
Amplitude
n
0 10 20 30 40 50 60 70
-1
-0.5
0
0.5
1
COSINE SEQUENCE
Amplitude
n
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 31
Relation bet VA and DFT
Vector algebra -2/3D space DFT
No of analysis vectors 2/3 N
No of elements in each
vector
2/3 N
Projection measurement
method
Inner Product Inner Product
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 32
Fourier’s Idea in 1807
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 33
2D Fourier Transform
2D FT basis images for 8x8
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 34
Problem(1)
Find the 6-point DFT of the sequence x(n)= cos(nπ/6)
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 35
Solution(1)
N=6 )]6/5cos(),3/2cos(),2/cos(),3/cos(),6/cos(),0[cos()( πππππ=∴ nx
]86.05.005.086.01[ −−=
We know
∑
−
=
−
=
1
0
/2
)()(
N
n
Nknj
enxkX π
1,.......1,0 −= Nk
For k=0
∑∑ ==
==
5
0
5
0
0
)()()0(
nn
nxenxX
)86.0()5.0(05.086.01 −+−++++=
1=
For k=1
∑=
−
=
5
0
3/
)()1(
n
nj
enxX π
3/53/4
3/23/0
)5()4()3(
)2()1()0(
πππ
ππ
jjj
jj
exexex
exexex
−−−
−−
+++
++=
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 36
Contd..
)86.05.0)(86.0()86.05.0)(5.0()1(
)86.05.0(5.0)86.05.0(86.01
jj
jj
−−+−−−+−+
+−+++=
34.21)1( jX +=
Similarly, calculate X(2)---X(5)
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 37
Problem(2)
Calculate DFT of x(n)= {1 2 2 1}. From calculated DFT of x(n),
determine x(n) again using IDFT. Verify your answer.
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 38
Solution(2)
}2221{)( =nx
We know
∑
−
=
−
=
1
0
/2
)()(
N
n
Nknj
enxkX π
1,.......1,0 −= Nk
For k=0
∑∑ ==
==
3
0
3
0
0
)()()0(
nn
nxenxX
61221 =+++=
For k=1
∑=
−
=
3
0
4/
)()1(
n
nj
enxX π
4/3
2/4/0
)3(
)2()1()0(
π
ππ
j
jj
ex
exexex
−
−−
+
++=
N=4
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 39
Contd..
2/3
2/0
)3(
)2()1()0(
π
ππ
j
jj
ex
exexex
−
−−
+
++=
jj .1)1.(2).(21 +−+−+=
jX −−= 1)1(
Similarly, calculate X(2) & X(3)
Then use IDFT to calculate x(n)
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 40
Twiddle Factors
Twiddle Factor N
j
N eW
π2
=
( ) 1
00 2
==∴ N
j
N eW
π
( ) NN
jj
N eeW
ππ 22 11
==∴
( ) NN
jj
N eeW
ππ 42 22
==∴
So on…….
For N=4
For N=8
W4
0
W4
3
W4
2
W4
1
W8
0
W8
7
W8
6
W8
5
W8
4
W8
3
W8
2
W8
1
( ) N
l
N
jljl
N eeW
ππ 22
==
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 41
Contd..
1
4
)5(4mod
4
5
4 WWW ==
Proof:
( ) 4
10
4
2 55
4
ππ jj
eeW ==∴
πππ 2
1
2
1
.2)2( jjj
eee ==
+
4
1.2
4
2
.1
ππ jj
ee ==
1
4W= N
ljl
N eW
π2
=Q
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 42
Contd..
3
4
6
8 WW =
Proof:
( ) 8
12
8
2 66
8
ππ jj
eeW ==∴ 4
3.2
4
6 ππ jj
ee ==
3
4W= N
ljl
N eW
π2
=Q
2
8
6
8 WW −=
Proof:
( ) 8
12
8
2 66
8
ππ jj
eeW ==∴ 8
4
8
4 )1( π
ππ jjj
eee ==
+
2
8)1( W−= N
ljl
N eW
π2
=Q
2
8W−=
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 43
Matrix Method for DFT calculation
∑
−
=
−
=
1
0
/2
)()(
N
n
Nknj
enxkX π
1,.......1,0 −= Nk
∑
−
=
=∴
1
0
)()(
N
n
kn
NWnxkX 1,.......1,0 −= Nk
We know
N
j
N eW
π2−
=and
In matrix form ]][[][ xWX kn
N=


























=












)3(
)2(
)1(
)0(
)3(
)2(
)1(
)0(
9
4
6
4
3
4
0
4
6
4
4
4
2
4
0
4
3
4
2
4
1
4
0
4
0
4
0
4
0
4
0
4
x
x
x
x
WWWW
WWWW
WWWW
WWWW
X
X
X
X4-point DFT
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 44
Contd..


























=












)3(
)2(
)1(
)0(
)3(
)2(
)1(
)0(
1
4
2
4
3
4
0
4
2
4
0
4
2
4
0
4
3
4
2
4
1
4
0
4
0
4
0
4
0
4
0
4
x
x
x
x
WWWW
WWWW
WWWW
WWWW
X
X
X
X


























−−
−−
−−
=












)3(
)2(
)1(
)0(
)3(
)2(
)1(
)0(
1
4
0
4
1
4
0
4
0
4
0
4
0
4
0
4
1
4
0
4
1
4
0
4
0
4
0
4
0
4
0
4
x
x
x
x
WWWW
WWWW
WWWW
WWWW
X
X
X
X
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 45
Problems
Calculate DFT of x(n)= {1 2 2 1} & x(n)={ 0 1 2 3 } by using matrix
method.
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 46
Solution(1)
x(n)= {1 2 2 1}


























=












)3(
)2(
)1(
)0(
)3(
)2(
)1(
)0(
1
4
2
4
3
4
0
4
2
4
0
4
2
4
0
4
3
4
2
4
1
4
0
4
0
4
0
4
0
4
0
4
x
x
x
x
WWWW
WWWW
WWWW
WWWW
X
X
X
X
























−−
−−
−−
=












1
2
2
1
11
1111
11
1111
)3(
)2(
)1(
)0(
jj
jj
X
X
X
X
10
4 =W12
4 −=W
jW −=1
4
jW =3
4
jXXjXX +−==−−== 1)3(,0)2(,1)1(,6)0(
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 47
Solution(2)
x(n)={ 0 1 2 3 }


























=












)3(
)2(
)1(
)0(
)3(
)2(
)1(
)0(
1
4
2
4
3
4
0
4
2
4
0
4
2
4
0
4
3
4
2
4
1
4
0
4
0
4
0
4
0
4
0
4
x
x
x
x
WWWW
WWWW
WWWW
WWWW
X
X
X
X
























−−
−−
−−
=












3
2
1
0
11
1111
11
1111
)3(
)2(
)1(
)0(
jj
jj
X
X
X
X
10
4 =W12
4 −=W
jW −=1
4
jW =3
4
jXXjXX 22)3(,2)2(,22)1(,6)0( −−=−=+−==
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 48
DFT using FFT flow diagram
x(0)
x(1)
0
2W
1
2W
X(0)
X(1)
2-point DFT
x(0)
x(1)
1
1−
X(0)
X(1)
0
2W1
2W
Looks
like
Butterfly
?
x(0)
x(1)
1−
X(0)
X(1)
2
4W
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 49
Contd..
x(0)
x(2)
0
4W
X(0)
X(1)
4-point DFT
0
4W2
4W
1
4W
3
4W
x(1)
x(3)
X(2)
X(3)
0
4W
1
4W
2
4W
3
4W
0
4W
2
4W
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 50
Contd..
x(0)
x(2)
X(0)
X(1)
4-point DFT
10
4 =W12
4 −=W
jW −=1
4
jW =3
4
x(1)
x(3)
X(2)
X(3)
1
j−
1−
j1−
1−
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 51
Problems
Calculate DFT of x(n)= {1 2 2 1} & x(n)={ 0 1 2 3 } by FFT flow diagram
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 52
Solution (1)
x(0)=1
x(2)=2
X(0)=6
X(1)=-1+j
x(1)=2
x(3)=1
X(2)=0
X(3)=-1+j
1
j−
1−
j1−
1−
x(n)= {1 2 2 1}
1+2=3
1-2=-1
2+1=3
2-1=1
3+3=6
-1-j1=-1-j
3-3=0
-1+j1=-1+j
jXXjXX +−==−−== 1)3(,0)2(,1)1(,6)0(
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 53
Solution(2)
x(0)=0
x(2)=2
X(0)=6
X(1)=-2+j2
x(1)=1
x(3)=3
X(2)=-2
X(3)=-2-j2
1
j−
1−
j1−
1−
x(n)= {0 1 2 3 }
0+2=2
0-2=-2
1+3=4
1-3=-2
2+4=6
-2+j2
2-4=-2
-2-j2
jXXjXX 22)3(,2)2(,22)1(,6)0( −−=−=+−==
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 54
Shuffled sequence
The input sequence placement at FFT flow graph is not in order but in
shuffled order.
Perfect shuffling can be obtained by using bit reversal algorithm.
( to be used in FFT implementation)
2 point FFT
0
1
4 point FFT
0
1
2
3
0 2
1 3
0 2 1 3
8 point FFT
0
1
2
3
4
5
6
7
0 4
1 5
2 6
3 7
0 4 2 6
1 5 3 7
0 1 0 4 2 6 1 5 3 7
16-point shuffled sequence ?????
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 55
Bit Reversal Algorithm
2 point FFT 4 point FFT 8 point FFT
0
1
0
1
2
3
00
01
10
11
00
10
01
11
0
2
1
3
0
1
2
3
4
5
6
7
000
001
010
011
100
101
110
111
000
100
010
110
001
101
011
111
0
4
2
6
1
5
3
7
Bit Reversal
Algorithm
Bit Reversal
Algorithm
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 56
8-point FFT flow diagram
4
8W
x(0)
x(4)
0
8W
X(0)
X(1)
x(2)
x(6)
X(2)
X(3)
0
8W
2
8W
4
8W
6
8W
0
8W
4
8W
4
8W
x(1)
x(5)
0
8W
X(4)
X(5)
x(3)
x(7)
X(6)
X(7)
0
8W
2
8W
4
8W
6
8W
0
8W
4
8W
0
8W
1
8W
2
8W
3
8W
4
8W
5
8W
6
8W
7
8W
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 57
Contd..
For N=8
W8
7
W8
6
W8
5
W8
4
W8
3
W8
2
W8
1
W8
0
1=
707.0707.0 j−==−− 707.0707.0 j
j−=
j=
=+− 707.0707.0 j 707.0707.0 j+=
=−1
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 58
Problem
Calculate DFT of x(n)= {1 2 2 1 0 1 2 3 } by FFT flow diagram
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 59
x(n)= {1 2 2 1 0 1 2 3 }
1−
x(0)=1
x(4)=0
x(2)=2
x(6)=2
x(1)=2
x(5)=1
x(3)=1
x(7)=3
1−
1−
1−
1
j−
j
1−
1
j−
j
1−
1
707.0707.0 j−
707.0707.0 j−−
j−
j
707.0707.0 j+−
707.0707.0 j+
1−
1+0=1
1-0=1
2+2=4
2-2=0
2+1=3
2-1=1
1+3=4
1-3=-2
1+4=5
1-0=1
1-4=-3
1+0=1
3+4=7
1+j2
3-4=-1
1-j2
X(0)=5+7=12
X(2)=-3+j
X(4)=5-7=-2
X(6)=-3-j
707.0121.1707.0121.21
)21)(707.0707.0(1)3(
jj
jjX
+−=+−=
−−−+=
707.0121.1707.0121.21
)21)(707.0707.0(1)5(
jj
jjX
−−=−−=
++−+=
707.0121.3707.0121.21
)21)(707.0707.0(1)7(
jj
jjX
−=−+=
−++=
707.0121.3707.0121.21
)21)(707.0707.0(1)1(
jj
jjX
+=++=
+−+=
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 60
Properties of DFT
1) Periodicity
and x[n] is periodic such that x[n+N]=x[n] for all n
If x[n] X(k) ,
Then, X[k+N] = X(k) for all k
i.e. DFT of periodic sequence is also periodic with same period
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 61
2) Linearity
][][
][][
22
11
kXnx
kXnx
DFT
DFT
 →←
 →←If
and
then for any real-valued or complex valued constants a1 and a2 ,
][][][][ 22112211 kXakXanxanxa DFT
+ →←+
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 62
Problem
a) Find the DFT of x1(n)={ 0 1 2 3} and x2(n)= { 1 2 2 1}.
b) Calculate the DFT of x3(n)={ 2 5 6 5} using results obtained
in a) otherwise not.
}1,0,1,6{)(2 jjkX +−−−=
}22,2,22,6{)(1 jjkX −−−+−=
Since x1(n) + 2x2(n)= x3(n) , X3(k)= X1(k) + 2X2(k)
}1,0,1,6{2}22,2,22,6{)(3 jjjjkX +−−−+−−−+−=
}4,2,4,18{)(3 −−−=kX
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 63
3) Circular time shift, x((n-k))N
x(n)={1 2 3 4 }
xp(n)
xp(n)
Circular delay by
1,x((n-1))
Circular advance
by 1 ,x((n+1))
x(0)=1x(2)=3
x(1)=2
x(3)=4
x(1)=2x(3)=4
x(2)=3
x(0)=1
x(n)
x((n+1))4
x(3)=4x(1)=2
x(0)=3
x(2)=3
x((n-1))4
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 64
Contd..
x(2)=3
x(0)=1
x(3)=4
x(1)=2
x((n-2))4
x(2)=3
x(0)=1
x(3)=4
X(1)=2
x((n+2))4 x(3)=4
x(1)=2
x(0)=3
x(2)=1
x((n+3))4
x(1)=2
x(3)=4
x(2)=3
x(0)=1
x((n-3))4
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 65
Contd..
Circular shift property
N
kljDFT
N
DFT
ekXlnx
kXnx
π2
].[))((
][][
−
 →←−
 →←If
then
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 66
Problem
If x(n)= { 1 2 3 4} ,find X(k). Also using this result find the DFT of
h(n)={ 3 4 1 2}.
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 67
Solution
N
kljDFT
N ekXlnx
π2
].[))((
−
 →←−
x(n)= { 1 2 3 4} }22,2,22,10{)( jjkX −−−+−=
Circular shift DFT property
l = 2 4
22
].[))2(()( 4
kjDFT
ekXnxnh
π−
 →←−=
x(n) = h((n-2))4h(n)={ 3 4 1 2}
}1111{)( 4
22
−−==
− kj
ekc
π
}22,2,22,10{)( jjkH +−−=
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 68
4) Time Reversal
)())(()())((
][][
kNXkXnNxnx
kXnx
N
DFT
N
DFT
−=− →←−=−
 →←If
then
i.e. reversing the N-point sequence in time domain is
equivalent to reversing the DFT sequence
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 69
Problem
If x(n)= { 1 2 3 4} ,find X(k). Also using this result find the DFT of
h(n)={ 1 4 3 2}. Verify your answer with DFT calculation
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 70
5) Circular frequency shift
N
DFTj
DFT
lkXenx
kXnx
N
nl
))(()(
][][
2
− →←
 →←
π
If
then
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 71
Problem
If x(n)= { 1 2 3 4} ,find X(k). Also using this result find the DFT of
h(n)={ 1 -2 3 -4}. Verify your answer with DFT calculation
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 72
6) Symmetry properties
)()()()()( njxnjxnxnxnx o
I
e
I
o
R
e
R +++=
)()()()()( kjXkjXkXkXkX o
I
e
I
o
R
e
R +++=
EvenalEvenal DFT
,Re,Re  →←
EvenaginaryEvenaginary DFT
,Im,Im  →←
OddaginaryOddal DFT
,Im,Re  →←
OddalOddaginary DFT
,Re,Im  →←
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 73
Problems
}131312{)() =nxa
Find DFT for followings
}12313212{)() =nxb
}12303210{)() −−−=nxc
}234432{)() jjjjjjjjnxd =
}234432{)() jjjjjjjjnxe −−−=
}1151111{)() −−−−=kXa
}8284.118284.318284.318284.115{)() −−−−−=kXb
}65.9465.1065.1465.90{)() jjjjjjkXc −−−=
}828.33828.13828.1382.321{)() jjjjjjjjkXd −−−−−=
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 74
7)Parseval’s Relation
∑∑
−
=
−
=
=
1
0
2
1
0
2
|)(|
1
|)(|
N
k
N
n
kX
N
nx
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 75
Problem
2) Determine the missing value from following sequence
x(n)= { 1 3 _ 2 } if its DFT is X(k)={ 8 -1-j -2 -1+j}
1) x(n)= {1 2 3 1}. Prove parseval’s relation for this
sequence and its DFT .
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 76
8) Circular Convolution
][][
][][
22
11
kXnx
kXnx
DFT
DFT
 →←
 →←If
and
then
][].[][][ 2121 kXkXnxnx DFT
 →←⊗
where
∑
−
=
−==⊗
1
0
21321 ))(()(][][][
N
k
Nknxkxnxnxnx
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 77
Circular convolution of two sequences
Circular convolution of sequences x1(n)={2 1 2 1} and x2(n)={1 2 3 4 }
x(0)=2x(2)=2
x(1)=1
x(3)=1
x1(n)
x(0)=1x(2)=3
x(1)=2
x(3)=4
x2(n)
x2(0)=1x2(2)=3
x2(3)=4
x2(1)=2
x2((-n)) 26
4
2
x1(n)x2((-n))
x3(0)=2+4+6+2
= 14
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 78
Contd..
x2(1)=2x2(3)=4
x2(0)=1
x2(2)=3
x2((1-n))
48
1
3
x1(n)x2((1-n))
x3(1)=4+1+8+3
= 16
62
2
4
x1(n)x2((2-n))
x3(2)=6+2+2+4
= 14
84
3
1
x1(n)x2((3-n))
x3(3)=8+3+4+1
= 16
x2(2)=3x2(0)=1
x2(1)=2
x2(3)=4
x2((2-n))
x2(3)=4x2(1)=2
x2(2)=3
x2(0)=1
x2((3-n))
16)3(,14)2(,16)1(,14)0( 3333 ==== xxxx
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 79
Problem
Find the circular convolution of sequences x1(n)={2 1 2 1} and
x2(n)={1 2 3 4 } using DFT .
Steps:
1. Find DFT of both sequences
2. Multiply both DFT’s
3. Take inverse DFT of product
( DFT product IDFT )
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 80
Contd..
x1(0)=2
x1(2)=2
X(0)=6
X(1)=0
x1(1)=1
x1(3)=1
X(2)=2
X(3)=0
1
j−
1−
j1−
1−
x1(n)= {2 1 2 1}
2+2=4
2-2=0
1+1=2
1-1=0
4+2=6
0-0=0
4-2=2
0+0=0
0)3(,2)2(,0)1(,6)0( 1111 ==== XXXX
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 81
Contd..
x2(0)=1
x2(2)=3
X(0)=10
X(1)=-2+j2
x2(1)=2
x2(3)=4
X(2)=-2
X(3)=-2-j2
1
j−
1−
j1−
1−
x2(n)= {1 2 3 4}
1+3=4
1-3=-2
2+4=6
2-4=-2
4+6=10
-2+j2
4-6=-2
-2-j2
22)3(,2)2(,22)1(,10)0( 2222 jXXjXX −−=−=+−==
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 82
Contd..
X3(0)=60
X3(2)=-4
x3(0)=14
x3(1)=16
X3(1)=0
X3(3)=0
x3(2)=14
x3(3)=16
1
j
1−
j−1−
1−
X3(k)= X1(k).X2(k)= {60 0 -4 0}=
60-4=56
60+4=64
0+0=0
0-0=0
56+0=56
64-0=64
56-0=56
64+0=64
16)3(,14)2(,16)1(,14)0( 3333 ==== xxxx
IDFT( Twiddle factors in reverse
order and divide by N at the end)
1
--
4
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 83
Linear convolution using Circular convolution
Steps:
1. Append zeros to both sequence such that both sequence
will have same length of N1+N2-1
2. Number of zeros to be appended in each sequence is
addition of length of both sequences minus (one plus
length of respective sequence)
3. As both sequences are of same length equal to the length
of linear convoluted signal, apply circular convolution to
both modified signals using DFT ( DFT product IDFT )
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 84
Problem
Calculate the linear convolution of following signals by using DFT
method only. x(n)={ 1 2 3 2 -2} and h(n)={ 1 2 2 1}
Verify your answer with tabulation method.
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 85
Linear Filtering
If the system has frequency response H(w) and input
signal spectrum is X(w)
H(w)
X(w) Y(w)
Then , out spectrum of the system given by
Y(w)=H(w).X(w)
•In application, convolution would be used to calculate the
output of the system or DFT would be used to calculate the
spectrum of output.
•Even, DFT can be used for convolution
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 86
Contd..
•Instead of taking DFT/convolution for whole input sequence,
DFT/convolution can be applied to smaller blocks of input
sequence. This would yields two advantages
•DFT/convolution size would be smaller and hence
computational complexity
• In online filtering delay can be kept small as only small
number of points will required to store in buffer for
DFT/convolution calculations
•If the input length is very large as compared to impulse
response of the system, then computational complexity of
the DFT/convolution would be more.
•There are two methods to do linear filtering by braking up input
sequence into smaller blocks
• Overlap add method
• Overlap save method
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 87
Overlap-add Method
•In the overlap-add method the input x(n) is broken up into consecutive
non-overlapping blocks xi(n)
•The output yi(n) for each input xi(n) is computed separately by convolving
(non-cyclic/linear) xi(n) with h(n).
•The output blocks yi(n) would be lager than corresponding input blocks
xi(n)
•Hence, the each output block yi(n) will be overlapped with next and
previous blocks to get y(n)
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 88
Contd..
h(n)xi(n)
yi(n)
x(n)
y(n)
Adding overlapped points
Overlapping length=M-1
Length of each block= N
Length of impulse
response = M
Length of
each block=
N+M-1
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 89
Problem
An FIR digital filter has the unit impulse response sequence h(n)={ 2 2 1}.
Determine the output sequence in response to the input sequence x(n)= {3 0
-2 0 2 1 0 -2 -1 0}
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 90
Solution
x(n)= {3 0 -2 0 2 1 0 -2 -1 0} h(n)={ 2 2 1}
x1(n)= {3 0}
x2(n)= {-2 0}
x3(n)= {2 1}
x4(n)= {0 -2}
x5(n)= {-1 0}
x’1(n)= {3 0 0 0}
x’2(n)= {-2 0 0 0}
x’3(n)= {2 1 0 0}
x’4(n)= {0 -2 0 0}
x'5(n)= {-1 0 0 0}
Length of convolution between each block and
impulse response would be 4.
h’(n)={ 2 2 1 0}
X’1(k)= {3 3 3 3}
X’2(k)= {-2 -2 -2 -2}
X’3(k)= {3 2-j 1 2+j}
X’4(k)= {-2 j2 2 -j2}
X'5(k)= {-1 -1 -1 -1}
H’(k)={ 5 1-j2 1 1+j2}h(n)={ 2 2 1}
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 91
Contd..
Y1(k)=X’1(k)H’(k) = {15 3-j6 3 3+j6}
Y2(k)=X’2(k)H’(k) = {-10 -2+j4 -2 -2-j4}
Y3(k)=X’3(k)H’(k) = { 15 -j5 1 j5}
Y4(k)=X’4(k)H’(k) = {-10 4+j2 2 4-j2}
Y5(k)=X’5(k)H’(k) = {-5 -1+j2 -1 -1-j2}
y1(n)= { 6 6 3 0}
y2(n)= {-4 -4 -2 0}
y3(n)= { 4 6 4 1}
y4(n)= {0 -4 -4 -2}
y5(n)= { -2 -2 -1 0}
Overlapping
length= M-1
=3-1=2
y(n)= {6 6 -1 -4 2 6 4 -3 -6 -4 -1 0}
y1(n)= { 6 6 3 0}
y2(n)= {-4 -4 -2 0}
y3(n)= { 4 6 4 1}
y4(n)= {0 -4 -4 -2}
y5(n)= { -2 -2 -1 0}
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 92
Problem
Solve previous problem with 8-point DFT
Overlapping length=M-1
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 93
Overlap-save Method
h(n)xi(n)
yi(n)
x(n)
y(n)
Discard overlapped points
Overlapping length=M-1
Length of each block= N
Length of impulse
response = M
Length of
each block=
N+M-1
M-1 zeros
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 94
Problem
An FIR digital filter has the unit impulse response sequence h(n)={ 2 2 1}.
Determine the output sequence in response to the input sequence x(n)= {3 0
-2 0 2 1 0 -2 -1 0}
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 95
Solution
x(n)= {3 0 -2 0 2 1 0 -2 -1 0} h(n)={ 2 2 1}
x1(n)= {3 0 -2 0}
x2(n)= {2 1 0 -2}
x3(n)= { -1 0 0 0}
x’1(n)= {0 0 3 0 -2 0}
x’2(n)= {-2 0 2 1 0 -2}
x’3(n)= {0 -2 -1 0 0 0}
Length of convolution between modified each block
and impulse response would be 8.
h(n)={ 2 2 1}
y’1(n)= {0 0 6 6 -1 -4 -2 0}
y’2(n)= {-4 -4 2 6 4 -3 -4 -2}
y’3(n)= {0 -4 -6 -4 -1 0 0 0}
y(n) = { 6 6 -1 -4 2 6 4 -3 -6 -4 -1 0 }
10/7/2009
e-TECHNote from IRDC India
info@irdcindia.com 96
End of Chapter 03
Queries ???

Contenu connexe

Tendances

Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier TransformWaqas Afzal
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFTtaha25
 
Chapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier TransformChapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier TransformAttaporn Ninsuwan
 
5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals 5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals MdFazleRabbi18
 
Fir filter design using windows
Fir filter design using windowsFir filter design using windows
Fir filter design using windowsSarang Joshi
 
Nyquist criterion for zero ISI
Nyquist criterion for zero ISINyquist criterion for zero ISI
Nyquist criterion for zero ISIGunasekara Reddy
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transformMOHAMMAD AKRAM
 
Overview of sampling
Overview of samplingOverview of sampling
Overview of samplingSagar Kumar
 
Circular Convolution
Circular ConvolutionCircular Convolution
Circular ConvolutionSarang Joshi
 
Introduction to signals and systems
Introduction to signals and systemsIntroduction to signals and systems
Introduction to signals and systemssudarmani rajagopal
 
Classification of signal
Classification of signalClassification of signal
Classification of signalVARUN KUMAR
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transformskalung0313
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesAmr E. Mohamed
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsAmr E. Mohamed
 

Tendances (20)

Discrete Time Fourier Transform
Discrete Time Fourier TransformDiscrete Time Fourier Transform
Discrete Time Fourier Transform
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Sampling Theorem
Sampling TheoremSampling Theorem
Sampling Theorem
 
Chapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier TransformChapter5 - The Discrete-Time Fourier Transform
Chapter5 - The Discrete-Time Fourier Transform
 
5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals 5. convolution and correlation of discrete time signals
5. convolution and correlation of discrete time signals
 
Fir filter design using windows
Fir filter design using windowsFir filter design using windows
Fir filter design using windows
 
Nyquist criterion for zero ISI
Nyquist criterion for zero ISINyquist criterion for zero ISI
Nyquist criterion for zero ISI
 
Sampling
SamplingSampling
Sampling
 
Discrete fourier transform
Discrete fourier transformDiscrete fourier transform
Discrete fourier transform
 
Dft,fft,windowing
Dft,fft,windowingDft,fft,windowing
Dft,fft,windowing
 
Overview of sampling
Overview of samplingOverview of sampling
Overview of sampling
 
Circular Convolution
Circular ConvolutionCircular Convolution
Circular Convolution
 
Introduction to signals and systems
Introduction to signals and systemsIntroduction to signals and systems
Introduction to signals and systems
 
Classification of signal
Classification of signalClassification of signal
Classification of signal
 
Fourier transforms
Fourier transformsFourier transforms
Fourier transforms
 
Introduction to Adaptive filters
Introduction to Adaptive filtersIntroduction to Adaptive filters
Introduction to Adaptive filters
 
DSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course OutlinesDSP_2018_FOEHU - Lec 0 - Course Outlines
DSP_2018_FOEHU - Lec 0 - Course Outlines
 
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and SystemsDSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
 
Lecture13
Lecture13Lecture13
Lecture13
 
Lti system
Lti systemLti system
Lti system
 

En vedette

Digital Signal Processing Tutorial:Chapt 1 signal and systems
Digital Signal Processing Tutorial:Chapt 1 signal and systemsDigital Signal Processing Tutorial:Chapt 1 signal and systems
Digital Signal Processing Tutorial:Chapt 1 signal and systemsChandrashekhar Padole
 
Digital Signal Processing Tutorial: Chapt 4 design of digital filters (FIR)
Digital Signal Processing Tutorial: Chapt 4 design of digital filters (FIR) Digital Signal Processing Tutorial: Chapt 4 design of digital filters (FIR)
Digital Signal Processing Tutorial: Chapt 4 design of digital filters (FIR) Chandrashekhar Padole
 
Digital Signal Processing Tutorial:Chapt 2 z transform
Digital Signal Processing Tutorial:Chapt 2 z transformDigital Signal Processing Tutorial:Chapt 2 z transform
Digital Signal Processing Tutorial:Chapt 2 z transformChandrashekhar Padole
 
Sound and hearing by mairasadiq
Sound and hearing by mairasadiqSound and hearing by mairasadiq
Sound and hearing by mairasadiqmairasadiq
 
Making the Right Logistical Move
Making the Right Logistical MoveMaking the Right Logistical Move
Making the Right Logistical MoveCognizant
 
Commercio Elettrico giugno-luglio 2013
Commercio Elettrico giugno-luglio 2013Commercio Elettrico giugno-luglio 2013
Commercio Elettrico giugno-luglio 2013CommercioElettrico
 
Ruta corta pedales_de_hierro_2016
Ruta corta pedales_de_hierro_2016Ruta corta pedales_de_hierro_2016
Ruta corta pedales_de_hierro_2016AIRE NORTE
 
Dc Bar Social Media Twitter Shaun Dakin Dc Bar Presentation
Dc Bar Social Media Twitter Shaun Dakin Dc Bar PresentationDc Bar Social Media Twitter Shaun Dakin Dc Bar Presentation
Dc Bar Social Media Twitter Shaun Dakin Dc Bar PresentationSuzanne Turner
 
Cynthia Perez Resume 2016
Cynthia Perez Resume 2016Cynthia Perez Resume 2016
Cynthia Perez Resume 2016Cynthia Perez
 
Invents 3 eso - el telèfon
Invents   3 eso - el telèfonInvents   3 eso - el telèfon
Invents 3 eso - el telèfonTecnoGadea
 
Contratto standard listbroking.es
Contratto standard listbroking.esContratto standard listbroking.es
Contratto standard listbroking.esmls marco merlo
 
1983 Niles West versus HP Homecoming
1983 Niles West versus HP Homecoming1983 Niles West versus HP Homecoming
1983 Niles West versus HP HomecomingDave Levine
 

En vedette (20)

Digital Signal Processing Tutorial:Chapt 1 signal and systems
Digital Signal Processing Tutorial:Chapt 1 signal and systemsDigital Signal Processing Tutorial:Chapt 1 signal and systems
Digital Signal Processing Tutorial:Chapt 1 signal and systems
 
Time frequency analysis_journey
Time frequency analysis_journeyTime frequency analysis_journey
Time frequency analysis_journey
 
Digital Signal Processing Tutorial: Chapt 4 design of digital filters (FIR)
Digital Signal Processing Tutorial: Chapt 4 design of digital filters (FIR) Digital Signal Processing Tutorial: Chapt 4 design of digital filters (FIR)
Digital Signal Processing Tutorial: Chapt 4 design of digital filters (FIR)
 
Digital Signal Processing Tutorial:Chapt 2 z transform
Digital Signal Processing Tutorial:Chapt 2 z transformDigital Signal Processing Tutorial:Chapt 2 z transform
Digital Signal Processing Tutorial:Chapt 2 z transform
 
Sound and hearing by mairasadiq
Sound and hearing by mairasadiqSound and hearing by mairasadiq
Sound and hearing by mairasadiq
 
Making the Right Logistical Move
Making the Right Logistical MoveMaking the Right Logistical Move
Making the Right Logistical Move
 
Dp vdl g2_d_03_1111_3
Dp vdl g2_d_03_1111_3Dp vdl g2_d_03_1111_3
Dp vdl g2_d_03_1111_3
 
Commercio Elettrico giugno-luglio 2013
Commercio Elettrico giugno-luglio 2013Commercio Elettrico giugno-luglio 2013
Commercio Elettrico giugno-luglio 2013
 
Deine eigene App von appkind
Deine eigene App von appkindDeine eigene App von appkind
Deine eigene App von appkind
 
Programa electoral 26-J: UPyD
Programa electoral 26-J: UPyDPrograma electoral 26-J: UPyD
Programa electoral 26-J: UPyD
 
Ruta corta pedales_de_hierro_2016
Ruta corta pedales_de_hierro_2016Ruta corta pedales_de_hierro_2016
Ruta corta pedales_de_hierro_2016
 
Infografía
InfografíaInfografía
Infografía
 
Dc Bar Social Media Twitter Shaun Dakin Dc Bar Presentation
Dc Bar Social Media Twitter Shaun Dakin Dc Bar PresentationDc Bar Social Media Twitter Shaun Dakin Dc Bar Presentation
Dc Bar Social Media Twitter Shaun Dakin Dc Bar Presentation
 
Cynthia Perez Resume 2016
Cynthia Perez Resume 2016Cynthia Perez Resume 2016
Cynthia Perez Resume 2016
 
Invents 3 eso - el telèfon
Invents   3 eso - el telèfonInvents   3 eso - el telèfon
Invents 3 eso - el telèfon
 
Contratto standard listbroking.es
Contratto standard listbroking.esContratto standard listbroking.es
Contratto standard listbroking.es
 
Alex Aperte
Alex AperteAlex Aperte
Alex Aperte
 
Guesss introduction pres
Guesss introduction presGuesss introduction pres
Guesss introduction pres
 
1983 Niles West versus HP Homecoming
1983 Niles West versus HP Homecoming1983 Niles West versus HP Homecoming
1983 Niles West versus HP Homecoming
 
Using Yola To Create Adsense Ready Blog
Using Yola To Create Adsense Ready BlogUsing Yola To Create Adsense Ready Blog
Using Yola To Create Adsense Ready Blog
 

Similaire à Digital Signal Processing Tutorial:Chapt 3 frequency analysis

1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processingSolo Hermelin
 
DSP, Differences between Fourier series ,Fourier Transform and Z transform
DSP, Differences between  Fourier series ,Fourier Transform and Z transform DSP, Differences between  Fourier series ,Fourier Transform and Z transform
DSP, Differences between Fourier series ,Fourier Transform and Z transform Naresh Biloniya
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformSandilya Sridhara
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkJaewook. Kang
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfShreeDevi42
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfHariPrasad314745
 
Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Rimple Mahey
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
 
PERFORMANCE EVALUATIONS OF GRIORYAN FFT AND COOLEY-TUKEY FFT ONTO XILINX VIRT...
PERFORMANCE EVALUATIONS OF GRIORYAN FFT AND COOLEY-TUKEY FFT ONTO XILINX VIRT...PERFORMANCE EVALUATIONS OF GRIORYAN FFT AND COOLEY-TUKEY FFT ONTO XILINX VIRT...
PERFORMANCE EVALUATIONS OF GRIORYAN FFT AND COOLEY-TUKEY FFT ONTO XILINX VIRT...cscpconf
 
Performance evaluations of grioryan fft and cooley tukey fft onto xilinx virt...
Performance evaluations of grioryan fft and cooley tukey fft onto xilinx virt...Performance evaluations of grioryan fft and cooley tukey fft onto xilinx virt...
Performance evaluations of grioryan fft and cooley tukey fft onto xilinx virt...csandit
 
Note and assignment mis3 5.3
Note and assignment mis3 5.3Note and assignment mis3 5.3
Note and assignment mis3 5.3RoshanTushar1
 
Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxHamzaJaved306957
 
Ff tand matlab-wanjun huang
Ff tand matlab-wanjun huangFf tand matlab-wanjun huang
Ff tand matlab-wanjun huangjhonce
 

Similaire à Digital Signal Processing Tutorial:Chapt 3 frequency analysis (20)

1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
 
DSP, Differences between Fourier series ,Fourier Transform and Z transform
DSP, Differences between  Fourier series ,Fourier Transform and Z transform DSP, Differences between  Fourier series ,Fourier Transform and Z transform
DSP, Differences between Fourier series ,Fourier Transform and Z transform
 
13486500-FFT.ppt
13486500-FFT.ppt13486500-FFT.ppt
13486500-FFT.ppt
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
A Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB SimulinkA Simple Communication System Design Lab #3 with MATLAB Simulink
A Simple Communication System Design Lab #3 with MATLAB Simulink
 
lec_3.pdf
lec_3.pdflec_3.pdf
lec_3.pdf
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdf
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdf
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01Solvedproblems 120406031331-phpapp01
Solvedproblems 120406031331-phpapp01
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
PERFORMANCE EVALUATIONS OF GRIORYAN FFT AND COOLEY-TUKEY FFT ONTO XILINX VIRT...
PERFORMANCE EVALUATIONS OF GRIORYAN FFT AND COOLEY-TUKEY FFT ONTO XILINX VIRT...PERFORMANCE EVALUATIONS OF GRIORYAN FFT AND COOLEY-TUKEY FFT ONTO XILINX VIRT...
PERFORMANCE EVALUATIONS OF GRIORYAN FFT AND COOLEY-TUKEY FFT ONTO XILINX VIRT...
 
Performance evaluations of grioryan fft and cooley tukey fft onto xilinx virt...
Performance evaluations of grioryan fft and cooley tukey fft onto xilinx virt...Performance evaluations of grioryan fft and cooley tukey fft onto xilinx virt...
Performance evaluations of grioryan fft and cooley tukey fft onto xilinx virt...
 
ch3-2
ch3-2ch3-2
ch3-2
 
Signal & system
Signal & systemSignal & system
Signal & system
 
Note and assignment mis3 5.3
Note and assignment mis3 5.3Note and assignment mis3 5.3
Note and assignment mis3 5.3
 
Sampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptxSampling and Reconstruction (Online Learning).pptx
Sampling and Reconstruction (Online Learning).pptx
 
Nss fourier
Nss fourierNss fourier
Nss fourier
 
Ff tand matlab-wanjun huang
Ff tand matlab-wanjun huangFf tand matlab-wanjun huang
Ff tand matlab-wanjun huang
 

Dernier

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 

Dernier (20)

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 

Digital Signal Processing Tutorial:Chapt 3 frequency analysis

  • 1. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 1 Chapt 03 & 04 Frequency Analysis of Signals and System & DFT Digital Signal Processing PrePrepared by IRDC India
  • 2. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 2 Copyright© with Authors. All right reserved For education purpose. Commercialization of this material is strictly not allowed without permission from author.
  • 3. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 3 Chapt 3 : Frequency Analysis of Signals & Systems Contents: • Frequency Analysis: CTS and DTS • Properties of the Fourier Transform for DTS • Frequency domain characteristics of LTI systems • LTI system as a frequency selective filter • Inverse systems and de-convolution
  • 4. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 4 Frequency Analysis: CTS and DTS • Analysis tools • Fourier Series • Fourier Transform • DTFS • DTFT • DFT Jean Baptiste Joseph Fourier (1768 - 1830). Fourier was a French mathematician, who was taught by Lagrange and Laplace
  • 5. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 5 e-TECHNote This PPT is sponsored by IRDC India www.irdcindia.com
  • 6. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 6 Fourier Series •Continuous time variable t •Discrete frequency variable k •Signal to be analyzed has to be periodic • Fourier series for continuous-time periodic signal • tTp ∑ ∞ −∞= = k tkFj k eCtx 02 )( π dtetx T C tkFj Tp k p 02 )( 1 π− ∫= Tp-> is the Fundamental Period of Signal where
  • 7. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 7 •Continuous time variable t •Continuous frequency variable F •Signal to be analyzed is aperiodic Fourier Transform • Fourier Transform for continuous-time periodic signal t ∫ ∞ ∞− = dFeFXtx Ftj π2 )()( Tp-> is the Fundamental Period of Signal where ∫ ∞ ∞− − = dtetxFX Ftj π2 )()(
  • 8. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 8 • Fourier Series Periodic signal • Fourier Transform Aperiodic signal When Fourier series is applied to the aperiodic signal by assuming its period = , then it is called as Fourier transform Fourier Series & Fourier Transform Fourier Series t Tp F Fourier Series Tp=∞ ∆F=1/Tp F ∆F=1/Tp=0 ∞ )(lim)( txtx T T ∞→ =
  • 9. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 9 •Discrete time variable t •Discrete frequency variable k •Signal to be analyzed has to be periodic DTFS • Fourier series for discrete-time periodic signal ∑ − = = 1 0 2 )( N k k N knj eCnx π ∑ − = − = 1 0 2 )( 1 N n k N knj enx N C π Tp-> is the Fundamental Period of Signal where
  • 10. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 10 •Discrete time variable t •Continuous frequency variable F •Signal to be analyzed is aperiodic DTFT • Fourier Transform for discrete-time periodic signal ∫= π ω ωω π 2 )( 2 1 )( deXnx nj Tp is the Fundamental Period of Signal where ∑ ∞ −∞= − = n jwn enxX )()(ω
  • 11. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 11 Dirichlet Conditions • To exist Fourier transform of the signal, it should satisfy Dirichlet Conditions 1. The signal has finite number of discontinuities 2. It has finite number of maxima and minima 3. The signal should be absolutely integral i.e. ∞<∫ ∞ ∞− dttx )( ∑ ∞ −∞= ∞< n dtnx )( or
  • 12. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 12 Problem(1) • Obtain exponential Fourier series for the waveform shown in fig • 0 2Π 4Π ωt
  • 13. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 13 Solution (1) dtetx T C tjk T k 0 0 )( 1 0 ω− ∫= As per Fourier series π20 =T ttx 0 2 5 )( ω π = for π20 ≤≤ wt tdwet T C tjkw k 0 2 0 02 5 0 0 1 − ∫= π π ω tdwteC tjkw k 0 2 0 0 0 2 5 2 1 ∫ − = π ω ππ ( ) π π 2 0 022 1 )()2( 5 0       −− − = − tjkw jk e tjkw k jCk π2 5 = LLL ++++−−= −− twjtwjtjwtwj ejejejejtx 0000 2 4 52 2 5 2 5 2 52 4 5 )( ππππ 0
  • 14. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 14 Problem (2) Obtain Fourier transform for the gate function ( rectangular pulse) as shown in fig 0-T/2 T/2 t ,1)( =tf 22 TT t ≤≤− =0 otherwise
  • 15. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 15 Solution (2) We know ∫ ∞ ∞− − = dtetfwF jwt )()( ∫− − = 2/ 2/ .1 T T jwt dte 2/ 2/ T T jwt jw e − − − = [ ]2/2/1 jwTjwT ee jw − − = − jw ee jwTjwT 2/2/ − = − w wT )2/sin(2 = )2/(sin 2/ )2/sin( wTcT wt wT T == Amplitude Phase
  • 16. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 16 Problem (3) A finite duration sequence of Length L is given as Determine the N-point DFT of this sequence for N≥L ,1)( =nx 10 −≤≤ Ln =0 otherwise
  • 17. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 17 Solution (3) The Fourier transform (DTFT) is given by ∑ ∞ −∞= − = n jwn enxX )()(ω ∑ − = − = 1 0 .1 L n jwn e ∑ − = − = 1 0 )( L n njw e We know summation formula ∑= + − − = n k n k a a a 0 1 1 1 jw jwL e e X − − − − = 1 1 )(ω 2/2/2/2/ 2/2/2/2/ jwjwjwjw jwLjwLjwLjwL eeee eeee −− −− − − = )( )( 2/2/2/ 2/2/2/ jwjwjw jwLjwLjwL eee eee −− −− − − = )2/sin( )2/sin(2/)1( w wL e Ljw −− =
  • 18. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 18 Contd.. DFT of x(n) can be obtained by sampling X(w) at N equally spaced frequencies N k wk π2 =∴ 1,.......1,0 −= Nk Nkj NkLj e e kX /2 /2 1 1 )( π π − − − − = 1,.......1,0 −= Nk ,)( LkX = 0=KIf N=L, 0= 1.......2,1 −= LK •If N>L, computational point of view sequence x(n) is extended by appending N-L zeroes(zero padding). • DFT would approach to DTFT as no of points in DFT tends to infinity
  • 19. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 19 Nyquist Criterion – Sampling Theorem • Continuous time domain( analog ) signal is converted into discrete time signal by sampling process. It should be sampled in such a way that the original signal can be reconstructed from the samples • Nyquist criterion or sampling theorem suggest the minimum sampling frequency by which signal should be sampled in order to have proper reconstruction if required. Mathematically, sampled signal xs(t) is obtained by multiplying sampling function gT(t) with original signal x(t) )1.......().........()()( tgtxtx Ts = Where gT(t) continuous train of pulse with period T (sampling period) )( 1 )( Triodsamplingpe fequencysamplingfr s =
  • 20. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 20 Contd.. The Fourier series of periodic signal gT(t) can be given as dtetg T C tnfj T T n sπ2 2/ 2/ )( 1 − − ∫= )2........(..........)( 2 ∑ ∞ −∞= = n tnfj n s eCtg π Where gT(t) x(t) t t Thus, from eq(1) and eq(2), we get ∑ ∞ −∞= = n tnfj ns s eCtxtx π2 )()( )3.........(..........)( 2 ∑ ∞ −∞= = n tnfj n s etxC π
  • 21. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 21 Contd.. Taking Fourier transform of xs(t), we get ∫ ∞ ∞− − = dtetxfX ftj ss π2 )()( ∫ ∑ ∞ ∞− − ∞ −∞= = dteetxC ftj n tnfj n s ππ 22 )( Interchanging the order of integration and summation , we get ∑ ∫ ∞ −∞= −− ∞ ∞− = n tnffj n dtetxC s )(2 )( π ∑ ∞ −∞= −= n sns nffXCfX )()( By definition
  • 22. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 22 Contd.. Thus, spectrum of sampled signal is the spectrum of x(t) plus the spectrum of x(t) translated to each harmonic fo the sampling frequency as shown in figure X(f) f -fh fh -fh fh fs-fh fs+fhfs 2fs-fh 2fs+fh2fs -2fs-fh -2fs+fh-2fs -fs-fh -fs -fs+fh There are three cases when sampling frequency fs is compared with highest frequency present in original signal Xs(f)
  • 23. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 23 Contd.. Case I: fs > 2fh In this case all spectrums would be isolated from each other . This leads to proper reconstruction of original signal Case II: fs = 2fh -fh fh fs-fh fs+fhfs 2fs-fh 2fs+fh2fs -2fs-fh -2fs+fh-2fs -fs-fh -fs -fs+fh Xs(f) Case III: fs < 2fh -fh fh fs 2fs -2fs -fs Xs(f) Overlapping of spectrum causes aliasing effect which distorts in reconstruction of original signal
  • 24. N-points in time domain will give N-points in DFT and vice-versa 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 24 DFT DTFT has continuous frequency domain variable which makes impossible to store X(w) with digital device. Thus continuous frequency variable (f or w) from DTFT is sampled to get discrete frequencies (wk). DTFT calculated for discrete frequencies (wk) is called as Discrete Fourier Transform N k wk π2 = ∑ − = − = 1 0 /2 )()( N n Nknj enxkX π 1,.......1,0 −= Nk ∑ − = = 1 0 /2 )( 1 )( N k Nknj ekX N nx π 1,.......1,0 −= Nn DFT Inverse DFT ( IDFT)
  • 25. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 25 Physical Significance • Signal to be analyzed is 64 points in length x(n) analog discrete 0 10 20 30 40 50 60 70 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0 10 20 30 40 50 60 70 -0 .5 -0 .4 -0 .3 -0 .2 -0 .1 0 0 .1 0 .2 0 .3 0 .4 0 .5
  • 26. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 26 k=0 )/2sin()/2cos( 2 NnkjNnke N nk j ππ π += − 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 SINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 0 0.5 1 COSINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0 0. 1 0. 2 0. 3 0. 4 0. 5 Im{X(0)} Re{X(0)}
  • 27. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 27 k=1 )/2sin()/2cos( 2 NnkjNnke N nk j ππ π += − 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 SINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 COSINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0 0. 1 0. 2 0. 3 0. 4 0. 5 Im{X(1)} Re{X(1)}
  • 28. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 28 k=2 )/2sin()/2cos( 2 NnkjNnke N nk j ππ π += − 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 SINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 COSINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0 0. 1 0. 2 0. 3 0. 4 0. 5 Im{X(2)} Re{X(2)}
  • 29. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 29 k=3 )/2sin()/2cos( 2 NnkjNnke N nk j ππ π += − 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 SINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 COSINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0 0. 1 0. 2 0. 3 0. 4 0. 5 Im{X(3)} Re{X(3)}
  • 30. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 30 k=31 )/2sin()/2cos( 2 NnkjNnke N nk j ππ π += − 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 SINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 COSINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 SINE SEQUENCE Amplitude n 0 10 20 30 40 50 60 70 -1 -0.5 0 0.5 1 COSINE SEQUENCE Amplitude n
  • 31. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 31 Relation bet VA and DFT Vector algebra -2/3D space DFT No of analysis vectors 2/3 N No of elements in each vector 2/3 N Projection measurement method Inner Product Inner Product
  • 32. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 32 Fourier’s Idea in 1807
  • 33. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 33 2D Fourier Transform 2D FT basis images for 8x8
  • 34. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 34 Problem(1) Find the 6-point DFT of the sequence x(n)= cos(nπ/6)
  • 35. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 35 Solution(1) N=6 )]6/5cos(),3/2cos(),2/cos(),3/cos(),6/cos(),0[cos()( πππππ=∴ nx ]86.05.005.086.01[ −−= We know ∑ − = − = 1 0 /2 )()( N n Nknj enxkX π 1,.......1,0 −= Nk For k=0 ∑∑ == == 5 0 5 0 0 )()()0( nn nxenxX )86.0()5.0(05.086.01 −+−++++= 1= For k=1 ∑= − = 5 0 3/ )()1( n nj enxX π 3/53/4 3/23/0 )5()4()3( )2()1()0( πππ ππ jjj jj exexex exexex −−− −− +++ ++=
  • 36. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 36 Contd.. )86.05.0)(86.0()86.05.0)(5.0()1( )86.05.0(5.0)86.05.0(86.01 jj jj −−+−−−+−+ +−+++= 34.21)1( jX += Similarly, calculate X(2)---X(5)
  • 37. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 37 Problem(2) Calculate DFT of x(n)= {1 2 2 1}. From calculated DFT of x(n), determine x(n) again using IDFT. Verify your answer.
  • 38. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 38 Solution(2) }2221{)( =nx We know ∑ − = − = 1 0 /2 )()( N n Nknj enxkX π 1,.......1,0 −= Nk For k=0 ∑∑ == == 3 0 3 0 0 )()()0( nn nxenxX 61221 =+++= For k=1 ∑= − = 3 0 4/ )()1( n nj enxX π 4/3 2/4/0 )3( )2()1()0( π ππ j jj ex exexex − −− + ++= N=4
  • 39. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 39 Contd.. 2/3 2/0 )3( )2()1()0( π ππ j jj ex exexex − −− + ++= jj .1)1.(2).(21 +−+−+= jX −−= 1)1( Similarly, calculate X(2) & X(3) Then use IDFT to calculate x(n)
  • 40. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 40 Twiddle Factors Twiddle Factor N j N eW π2 = ( ) 1 00 2 ==∴ N j N eW π ( ) NN jj N eeW ππ 22 11 ==∴ ( ) NN jj N eeW ππ 42 22 ==∴ So on……. For N=4 For N=8 W4 0 W4 3 W4 2 W4 1 W8 0 W8 7 W8 6 W8 5 W8 4 W8 3 W8 2 W8 1 ( ) N l N jljl N eeW ππ 22 ==
  • 41. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 41 Contd.. 1 4 )5(4mod 4 5 4 WWW == Proof: ( ) 4 10 4 2 55 4 ππ jj eeW ==∴ πππ 2 1 2 1 .2)2( jjj eee == + 4 1.2 4 2 .1 ππ jj ee == 1 4W= N ljl N eW π2 =Q
  • 42. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 42 Contd.. 3 4 6 8 WW = Proof: ( ) 8 12 8 2 66 8 ππ jj eeW ==∴ 4 3.2 4 6 ππ jj ee == 3 4W= N ljl N eW π2 =Q 2 8 6 8 WW −= Proof: ( ) 8 12 8 2 66 8 ππ jj eeW ==∴ 8 4 8 4 )1( π ππ jjj eee == + 2 8)1( W−= N ljl N eW π2 =Q 2 8W−=
  • 43. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 43 Matrix Method for DFT calculation ∑ − = − = 1 0 /2 )()( N n Nknj enxkX π 1,.......1,0 −= Nk ∑ − = =∴ 1 0 )()( N n kn NWnxkX 1,.......1,0 −= Nk We know N j N eW π2− =and In matrix form ]][[][ xWX kn N=                           =             )3( )2( )1( )0( )3( )2( )1( )0( 9 4 6 4 3 4 0 4 6 4 4 4 2 4 0 4 3 4 2 4 1 4 0 4 0 4 0 4 0 4 0 4 x x x x WWWW WWWW WWWW WWWW X X X X4-point DFT
  • 44. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 44 Contd..                           =             )3( )2( )1( )0( )3( )2( )1( )0( 1 4 2 4 3 4 0 4 2 4 0 4 2 4 0 4 3 4 2 4 1 4 0 4 0 4 0 4 0 4 0 4 x x x x WWWW WWWW WWWW WWWW X X X X                           −− −− −− =             )3( )2( )1( )0( )3( )2( )1( )0( 1 4 0 4 1 4 0 4 0 4 0 4 0 4 0 4 1 4 0 4 1 4 0 4 0 4 0 4 0 4 0 4 x x x x WWWW WWWW WWWW WWWW X X X X
  • 45. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 45 Problems Calculate DFT of x(n)= {1 2 2 1} & x(n)={ 0 1 2 3 } by using matrix method.
  • 46. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 46 Solution(1) x(n)= {1 2 2 1}                           =             )3( )2( )1( )0( )3( )2( )1( )0( 1 4 2 4 3 4 0 4 2 4 0 4 2 4 0 4 3 4 2 4 1 4 0 4 0 4 0 4 0 4 0 4 x x x x WWWW WWWW WWWW WWWW X X X X                         −− −− −− =             1 2 2 1 11 1111 11 1111 )3( )2( )1( )0( jj jj X X X X 10 4 =W12 4 −=W jW −=1 4 jW =3 4 jXXjXX +−==−−== 1)3(,0)2(,1)1(,6)0(
  • 47. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 47 Solution(2) x(n)={ 0 1 2 3 }                           =             )3( )2( )1( )0( )3( )2( )1( )0( 1 4 2 4 3 4 0 4 2 4 0 4 2 4 0 4 3 4 2 4 1 4 0 4 0 4 0 4 0 4 0 4 x x x x WWWW WWWW WWWW WWWW X X X X                         −− −− −− =             3 2 1 0 11 1111 11 1111 )3( )2( )1( )0( jj jj X X X X 10 4 =W12 4 −=W jW −=1 4 jW =3 4 jXXjXX 22)3(,2)2(,22)1(,6)0( −−=−=+−==
  • 48. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 48 DFT using FFT flow diagram x(0) x(1) 0 2W 1 2W X(0) X(1) 2-point DFT x(0) x(1) 1 1− X(0) X(1) 0 2W1 2W Looks like Butterfly ? x(0) x(1) 1− X(0) X(1)
  • 49. 2 4W 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 49 Contd.. x(0) x(2) 0 4W X(0) X(1) 4-point DFT 0 4W2 4W 1 4W 3 4W x(1) x(3) X(2) X(3) 0 4W 1 4W 2 4W 3 4W 0 4W 2 4W
  • 50. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 50 Contd.. x(0) x(2) X(0) X(1) 4-point DFT 10 4 =W12 4 −=W jW −=1 4 jW =3 4 x(1) x(3) X(2) X(3) 1 j− 1− j1− 1−
  • 51. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 51 Problems Calculate DFT of x(n)= {1 2 2 1} & x(n)={ 0 1 2 3 } by FFT flow diagram
  • 52. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 52 Solution (1) x(0)=1 x(2)=2 X(0)=6 X(1)=-1+j x(1)=2 x(3)=1 X(2)=0 X(3)=-1+j 1 j− 1− j1− 1− x(n)= {1 2 2 1} 1+2=3 1-2=-1 2+1=3 2-1=1 3+3=6 -1-j1=-1-j 3-3=0 -1+j1=-1+j jXXjXX +−==−−== 1)3(,0)2(,1)1(,6)0(
  • 53. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 53 Solution(2) x(0)=0 x(2)=2 X(0)=6 X(1)=-2+j2 x(1)=1 x(3)=3 X(2)=-2 X(3)=-2-j2 1 j− 1− j1− 1− x(n)= {0 1 2 3 } 0+2=2 0-2=-2 1+3=4 1-3=-2 2+4=6 -2+j2 2-4=-2 -2-j2 jXXjXX 22)3(,2)2(,22)1(,6)0( −−=−=+−==
  • 54. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 54 Shuffled sequence The input sequence placement at FFT flow graph is not in order but in shuffled order. Perfect shuffling can be obtained by using bit reversal algorithm. ( to be used in FFT implementation) 2 point FFT 0 1 4 point FFT 0 1 2 3 0 2 1 3 0 2 1 3 8 point FFT 0 1 2 3 4 5 6 7 0 4 1 5 2 6 3 7 0 4 2 6 1 5 3 7 0 1 0 4 2 6 1 5 3 7 16-point shuffled sequence ?????
  • 55. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 55 Bit Reversal Algorithm 2 point FFT 4 point FFT 8 point FFT 0 1 0 1 2 3 00 01 10 11 00 10 01 11 0 2 1 3 0 1 2 3 4 5 6 7 000 001 010 011 100 101 110 111 000 100 010 110 001 101 011 111 0 4 2 6 1 5 3 7 Bit Reversal Algorithm Bit Reversal Algorithm
  • 56. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 56 8-point FFT flow diagram 4 8W x(0) x(4) 0 8W X(0) X(1) x(2) x(6) X(2) X(3) 0 8W 2 8W 4 8W 6 8W 0 8W 4 8W 4 8W x(1) x(5) 0 8W X(4) X(5) x(3) x(7) X(6) X(7) 0 8W 2 8W 4 8W 6 8W 0 8W 4 8W 0 8W 1 8W 2 8W 3 8W 4 8W 5 8W 6 8W 7 8W
  • 57. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 57 Contd.. For N=8 W8 7 W8 6 W8 5 W8 4 W8 3 W8 2 W8 1 W8 0 1= 707.0707.0 j−==−− 707.0707.0 j j−= j= =+− 707.0707.0 j 707.0707.0 j+= =−1
  • 58. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 58 Problem Calculate DFT of x(n)= {1 2 2 1 0 1 2 3 } by FFT flow diagram
  • 59. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 59 x(n)= {1 2 2 1 0 1 2 3 } 1− x(0)=1 x(4)=0 x(2)=2 x(6)=2 x(1)=2 x(5)=1 x(3)=1 x(7)=3 1− 1− 1− 1 j− j 1− 1 j− j 1− 1 707.0707.0 j− 707.0707.0 j−− j− j 707.0707.0 j+− 707.0707.0 j+ 1− 1+0=1 1-0=1 2+2=4 2-2=0 2+1=3 2-1=1 1+3=4 1-3=-2 1+4=5 1-0=1 1-4=-3 1+0=1 3+4=7 1+j2 3-4=-1 1-j2 X(0)=5+7=12 X(2)=-3+j X(4)=5-7=-2 X(6)=-3-j 707.0121.1707.0121.21 )21)(707.0707.0(1)3( jj jjX +−=+−= −−−+= 707.0121.1707.0121.21 )21)(707.0707.0(1)5( jj jjX −−=−−= ++−+= 707.0121.3707.0121.21 )21)(707.0707.0(1)7( jj jjX −=−+= −++= 707.0121.3707.0121.21 )21)(707.0707.0(1)1( jj jjX +=++= +−+=
  • 60. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 60 Properties of DFT 1) Periodicity and x[n] is periodic such that x[n+N]=x[n] for all n If x[n] X(k) , Then, X[k+N] = X(k) for all k i.e. DFT of periodic sequence is also periodic with same period
  • 61. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 61 2) Linearity ][][ ][][ 22 11 kXnx kXnx DFT DFT  →←  →←If and then for any real-valued or complex valued constants a1 and a2 , ][][][][ 22112211 kXakXanxanxa DFT + →←+
  • 62. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 62 Problem a) Find the DFT of x1(n)={ 0 1 2 3} and x2(n)= { 1 2 2 1}. b) Calculate the DFT of x3(n)={ 2 5 6 5} using results obtained in a) otherwise not. }1,0,1,6{)(2 jjkX +−−−= }22,2,22,6{)(1 jjkX −−−+−= Since x1(n) + 2x2(n)= x3(n) , X3(k)= X1(k) + 2X2(k) }1,0,1,6{2}22,2,22,6{)(3 jjjjkX +−−−+−−−+−= }4,2,4,18{)(3 −−−=kX
  • 63. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 63 3) Circular time shift, x((n-k))N x(n)={1 2 3 4 } xp(n) xp(n) Circular delay by 1,x((n-1)) Circular advance by 1 ,x((n+1)) x(0)=1x(2)=3 x(1)=2 x(3)=4 x(1)=2x(3)=4 x(2)=3 x(0)=1 x(n) x((n+1))4 x(3)=4x(1)=2 x(0)=3 x(2)=3 x((n-1))4
  • 64. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 64 Contd.. x(2)=3 x(0)=1 x(3)=4 x(1)=2 x((n-2))4 x(2)=3 x(0)=1 x(3)=4 X(1)=2 x((n+2))4 x(3)=4 x(1)=2 x(0)=3 x(2)=1 x((n+3))4 x(1)=2 x(3)=4 x(2)=3 x(0)=1 x((n-3))4
  • 65. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 65 Contd.. Circular shift property N kljDFT N DFT ekXlnx kXnx π2 ].[))(( ][][ −  →←−  →←If then
  • 66. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 66 Problem If x(n)= { 1 2 3 4} ,find X(k). Also using this result find the DFT of h(n)={ 3 4 1 2}.
  • 67. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 67 Solution N kljDFT N ekXlnx π2 ].[))(( −  →←− x(n)= { 1 2 3 4} }22,2,22,10{)( jjkX −−−+−= Circular shift DFT property l = 2 4 22 ].[))2(()( 4 kjDFT ekXnxnh π−  →←−= x(n) = h((n-2))4h(n)={ 3 4 1 2} }1111{)( 4 22 −−== − kj ekc π }22,2,22,10{)( jjkH +−−=
  • 68. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 68 4) Time Reversal )())(()())(( ][][ kNXkXnNxnx kXnx N DFT N DFT −=− →←−=−  →←If then i.e. reversing the N-point sequence in time domain is equivalent to reversing the DFT sequence
  • 69. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 69 Problem If x(n)= { 1 2 3 4} ,find X(k). Also using this result find the DFT of h(n)={ 1 4 3 2}. Verify your answer with DFT calculation
  • 70. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 70 5) Circular frequency shift N DFTj DFT lkXenx kXnx N nl ))(()( ][][ 2 − →←  →← π If then
  • 71. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 71 Problem If x(n)= { 1 2 3 4} ,find X(k). Also using this result find the DFT of h(n)={ 1 -2 3 -4}. Verify your answer with DFT calculation
  • 72. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 72 6) Symmetry properties )()()()()( njxnjxnxnxnx o I e I o R e R +++= )()()()()( kjXkjXkXkXkX o I e I o R e R +++= EvenalEvenal DFT ,Re,Re  →← EvenaginaryEvenaginary DFT ,Im,Im  →← OddaginaryOddal DFT ,Im,Re  →← OddalOddaginary DFT ,Re,Im  →←
  • 73. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 73 Problems }131312{)() =nxa Find DFT for followings }12313212{)() =nxb }12303210{)() −−−=nxc }234432{)() jjjjjjjjnxd = }234432{)() jjjjjjjjnxe −−−= }1151111{)() −−−−=kXa }8284.118284.318284.318284.115{)() −−−−−=kXb }65.9465.1065.1465.90{)() jjjjjjkXc −−−= }828.33828.13828.1382.321{)() jjjjjjjjkXd −−−−−=
  • 74. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 74 7)Parseval’s Relation ∑∑ − = − = = 1 0 2 1 0 2 |)(| 1 |)(| N k N n kX N nx
  • 75. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 75 Problem 2) Determine the missing value from following sequence x(n)= { 1 3 _ 2 } if its DFT is X(k)={ 8 -1-j -2 -1+j} 1) x(n)= {1 2 3 1}. Prove parseval’s relation for this sequence and its DFT .
  • 76. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 76 8) Circular Convolution ][][ ][][ 22 11 kXnx kXnx DFT DFT  →←  →←If and then ][].[][][ 2121 kXkXnxnx DFT  →←⊗ where ∑ − = −==⊗ 1 0 21321 ))(()(][][][ N k Nknxkxnxnxnx
  • 77. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 77 Circular convolution of two sequences Circular convolution of sequences x1(n)={2 1 2 1} and x2(n)={1 2 3 4 } x(0)=2x(2)=2 x(1)=1 x(3)=1 x1(n) x(0)=1x(2)=3 x(1)=2 x(3)=4 x2(n) x2(0)=1x2(2)=3 x2(3)=4 x2(1)=2 x2((-n)) 26 4 2 x1(n)x2((-n)) x3(0)=2+4+6+2 = 14
  • 78. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 78 Contd.. x2(1)=2x2(3)=4 x2(0)=1 x2(2)=3 x2((1-n)) 48 1 3 x1(n)x2((1-n)) x3(1)=4+1+8+3 = 16 62 2 4 x1(n)x2((2-n)) x3(2)=6+2+2+4 = 14 84 3 1 x1(n)x2((3-n)) x3(3)=8+3+4+1 = 16 x2(2)=3x2(0)=1 x2(1)=2 x2(3)=4 x2((2-n)) x2(3)=4x2(1)=2 x2(2)=3 x2(0)=1 x2((3-n)) 16)3(,14)2(,16)1(,14)0( 3333 ==== xxxx
  • 79. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 79 Problem Find the circular convolution of sequences x1(n)={2 1 2 1} and x2(n)={1 2 3 4 } using DFT . Steps: 1. Find DFT of both sequences 2. Multiply both DFT’s 3. Take inverse DFT of product ( DFT product IDFT )
  • 80. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 80 Contd.. x1(0)=2 x1(2)=2 X(0)=6 X(1)=0 x1(1)=1 x1(3)=1 X(2)=2 X(3)=0 1 j− 1− j1− 1− x1(n)= {2 1 2 1} 2+2=4 2-2=0 1+1=2 1-1=0 4+2=6 0-0=0 4-2=2 0+0=0 0)3(,2)2(,0)1(,6)0( 1111 ==== XXXX
  • 81. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 81 Contd.. x2(0)=1 x2(2)=3 X(0)=10 X(1)=-2+j2 x2(1)=2 x2(3)=4 X(2)=-2 X(3)=-2-j2 1 j− 1− j1− 1− x2(n)= {1 2 3 4} 1+3=4 1-3=-2 2+4=6 2-4=-2 4+6=10 -2+j2 4-6=-2 -2-j2 22)3(,2)2(,22)1(,10)0( 2222 jXXjXX −−=−=+−==
  • 82. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 82 Contd.. X3(0)=60 X3(2)=-4 x3(0)=14 x3(1)=16 X3(1)=0 X3(3)=0 x3(2)=14 x3(3)=16 1 j 1− j−1− 1− X3(k)= X1(k).X2(k)= {60 0 -4 0}= 60-4=56 60+4=64 0+0=0 0-0=0 56+0=56 64-0=64 56-0=56 64+0=64 16)3(,14)2(,16)1(,14)0( 3333 ==== xxxx IDFT( Twiddle factors in reverse order and divide by N at the end) 1 -- 4
  • 83. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 83 Linear convolution using Circular convolution Steps: 1. Append zeros to both sequence such that both sequence will have same length of N1+N2-1 2. Number of zeros to be appended in each sequence is addition of length of both sequences minus (one plus length of respective sequence) 3. As both sequences are of same length equal to the length of linear convoluted signal, apply circular convolution to both modified signals using DFT ( DFT product IDFT )
  • 84. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 84 Problem Calculate the linear convolution of following signals by using DFT method only. x(n)={ 1 2 3 2 -2} and h(n)={ 1 2 2 1} Verify your answer with tabulation method.
  • 85. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 85 Linear Filtering If the system has frequency response H(w) and input signal spectrum is X(w) H(w) X(w) Y(w) Then , out spectrum of the system given by Y(w)=H(w).X(w) •In application, convolution would be used to calculate the output of the system or DFT would be used to calculate the spectrum of output. •Even, DFT can be used for convolution
  • 86. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 86 Contd.. •Instead of taking DFT/convolution for whole input sequence, DFT/convolution can be applied to smaller blocks of input sequence. This would yields two advantages •DFT/convolution size would be smaller and hence computational complexity • In online filtering delay can be kept small as only small number of points will required to store in buffer for DFT/convolution calculations •If the input length is very large as compared to impulse response of the system, then computational complexity of the DFT/convolution would be more. •There are two methods to do linear filtering by braking up input sequence into smaller blocks • Overlap add method • Overlap save method
  • 87. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 87 Overlap-add Method •In the overlap-add method the input x(n) is broken up into consecutive non-overlapping blocks xi(n) •The output yi(n) for each input xi(n) is computed separately by convolving (non-cyclic/linear) xi(n) with h(n). •The output blocks yi(n) would be lager than corresponding input blocks xi(n) •Hence, the each output block yi(n) will be overlapped with next and previous blocks to get y(n)
  • 88. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 88 Contd.. h(n)xi(n) yi(n) x(n) y(n) Adding overlapped points Overlapping length=M-1 Length of each block= N Length of impulse response = M Length of each block= N+M-1
  • 89. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 89 Problem An FIR digital filter has the unit impulse response sequence h(n)={ 2 2 1}. Determine the output sequence in response to the input sequence x(n)= {3 0 -2 0 2 1 0 -2 -1 0}
  • 90. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 90 Solution x(n)= {3 0 -2 0 2 1 0 -2 -1 0} h(n)={ 2 2 1} x1(n)= {3 0} x2(n)= {-2 0} x3(n)= {2 1} x4(n)= {0 -2} x5(n)= {-1 0} x’1(n)= {3 0 0 0} x’2(n)= {-2 0 0 0} x’3(n)= {2 1 0 0} x’4(n)= {0 -2 0 0} x'5(n)= {-1 0 0 0} Length of convolution between each block and impulse response would be 4. h’(n)={ 2 2 1 0} X’1(k)= {3 3 3 3} X’2(k)= {-2 -2 -2 -2} X’3(k)= {3 2-j 1 2+j} X’4(k)= {-2 j2 2 -j2} X'5(k)= {-1 -1 -1 -1} H’(k)={ 5 1-j2 1 1+j2}h(n)={ 2 2 1}
  • 91. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 91 Contd.. Y1(k)=X’1(k)H’(k) = {15 3-j6 3 3+j6} Y2(k)=X’2(k)H’(k) = {-10 -2+j4 -2 -2-j4} Y3(k)=X’3(k)H’(k) = { 15 -j5 1 j5} Y4(k)=X’4(k)H’(k) = {-10 4+j2 2 4-j2} Y5(k)=X’5(k)H’(k) = {-5 -1+j2 -1 -1-j2} y1(n)= { 6 6 3 0} y2(n)= {-4 -4 -2 0} y3(n)= { 4 6 4 1} y4(n)= {0 -4 -4 -2} y5(n)= { -2 -2 -1 0} Overlapping length= M-1 =3-1=2 y(n)= {6 6 -1 -4 2 6 4 -3 -6 -4 -1 0} y1(n)= { 6 6 3 0} y2(n)= {-4 -4 -2 0} y3(n)= { 4 6 4 1} y4(n)= {0 -4 -4 -2} y5(n)= { -2 -2 -1 0}
  • 92. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 92 Problem Solve previous problem with 8-point DFT
  • 93. Overlapping length=M-1 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 93 Overlap-save Method h(n)xi(n) yi(n) x(n) y(n) Discard overlapped points Overlapping length=M-1 Length of each block= N Length of impulse response = M Length of each block= N+M-1 M-1 zeros
  • 94. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 94 Problem An FIR digital filter has the unit impulse response sequence h(n)={ 2 2 1}. Determine the output sequence in response to the input sequence x(n)= {3 0 -2 0 2 1 0 -2 -1 0}
  • 95. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 95 Solution x(n)= {3 0 -2 0 2 1 0 -2 -1 0} h(n)={ 2 2 1} x1(n)= {3 0 -2 0} x2(n)= {2 1 0 -2} x3(n)= { -1 0 0 0} x’1(n)= {0 0 3 0 -2 0} x’2(n)= {-2 0 2 1 0 -2} x’3(n)= {0 -2 -1 0 0 0} Length of convolution between modified each block and impulse response would be 8. h(n)={ 2 2 1} y’1(n)= {0 0 6 6 -1 -4 -2 0} y’2(n)= {-4 -4 2 6 4 -3 -4 -2} y’3(n)= {0 -4 -6 -4 -1 0 0 0} y(n) = { 6 6 -1 -4 2 6 4 -3 -6 -4 -1 0 }
  • 96. 10/7/2009 e-TECHNote from IRDC India info@irdcindia.com 96 End of Chapter 03 Queries ???