SlideShare une entreprise Scribd logo
1  sur  40
PEMINDAH DAYA RODAGIGI 
Fenomena slip biasa terjadi pada pemindah daya 
sabuk atau tali, dalam pemindahan berupa gerak atau 
daya antara dua poros . 
Pengaruh slip adalah mengurangi perbandingan 
kecepatan dari sistem. Pada mesin-mesin yang presisi, 
perbandingan kecepatan definitif adalah penting (seperti 
mekanisme jam), yang penggerakannya hanya positif 
dengan rodagigi-rodagigi atau roda-roda bergigi. 
Sebuah penggerak rodagigi juga dibutuhkan jika jarak 
antara penggerak dan yang digerakkan sangat kecil.
Roda-roda gesek 
• Gerak dan daya yang ditransmisikan oleh 
rodagigi secara kinematika sama dengan gerak 
dan daya yang transmisikan oleh roda-roda 
atau cakram-cakram.
Keuntungan dan Kerugian 
Keuntungan 
1. memindahkan perbandingan kecepatan secara tepat; 
2. dapat digunakan memindahkan tenaga yang besar; 
3. dapat digunakan untuk jarak poros yang kecil atau pendek; 
4. memliki efisiensi yang tinggi; 
5. memiliki layanan yang layak; 
6. memiliki susunan yang kompak. 
Kerugian 
1. Selama pembuatan rodagigi membutuhkan alat-alat dan 
perlengkapan khusus, maka butuh biaya tinggi daripada 
penggerak lain; 
2. Kesalahan dalam pembuatan gigi dapat menyebabkan 
getaran dan bising selama pengoperasian; 
3. Butuh pelumasan yang sesuai dan metode yang layak dalam 
penerapannya, untuk pengoperasian awal dari penggerakan 
rodagigi.
Klasifikasi Rodagigi 
Berdasar Posisi sumbu poros: 
(a) Parallel, dua poros dihubungkan rodagigi yang disebut rodagigi 
lurus, yang memiliki gigi paralel terhadap poros, atau nama lain 
rodagigi miring karena gigi miring terhadap sumbu, dobel paralel 
(rodagigi herringbone)untuk mengimbangi ujung tumpuan termasuk 
rodagigi miring saat memindahkan beban; 
(b) Interseksi, dua sumbu non paralel tetapi bertemu dan sebidang, 
disebut rodagigi payung dan tersusun sebagai penggerakan sudut, juga 
gigi miring terhadap pemukaan payung dan disebut rodagigi payung 
helik; dan 
(c) Non-interseksi dan non-parallel
2. Berdasar Kecepatan Keliling Rodagigi: 
(a) Rpdagigi Kecepatan Rendah, kurang 3meter/detik; 
(b) (b) Rodagigi Kecepatan Menengah, 3 sampai 15 meter/detik, dan 
(c) (c) Rodagigi Kecepatan Tinggi , lebih dari 15 meter/detik. 
3. Berdasar Jenis Penggerakan: 
(a) Rodagigi Luar, rodagigi dari dua poros bersentuhan luar satu dengan lainnya, 
gerak kedua roda selalu tidak sama; 
(b) Rodagigi Dalam; rodagigi dari dua poros bersentuhan dalam, antar satu 
rodagigi dengan lainnya, gerak kedua roda selalu sama; dan 
(c) Rodagigi Rak dan Pinion, rodagigi secara eksternal atau internal bersentuhan 
pada batang gigi lurus, gerak linear atau lurus ke dalam gerak putar. 
4. Berdasar Letak Gigi pada Permukaan Rodagigi: 
(a) Straight, gigi lurus terhadap permukaan peleg roda; 
(b) Inclined, gigi miring terhadap permukaan peleg roda; dan 
(c) Curved, gigi melengkung terhadap permukaan peleg
Istilah yang Digunakan dalam Rodagigi 
1. Lingkaran jarak bagi (Pitch circle): lingkaran imajiner dengan aksi roling 
murni, memberikan gerak yang sama sebagaimana rodagigi aktual. 
2. Diameter lingkaran jarak bagi (Pitch circle diameter): ukuran rodagigi 
khusus. disebut juga diammeter jarak bagi. 
3. Titik jarak bagi (Pitch point): titik kontak antara dua lingkaran jarak bagi. 
4. Permukaan jaraj bagi (Pitch surface): permukaan cakram roling dari 
rodagigi yang bersentuhan terletak pada lingkaran jarak bagi. 
.
5. Sudut Tekan (Pressure angle, φ): sudut antara garis normal dua gigi pada titik 
kontak dan garis tangen pada titik jarak bagi, dengan standar 14½° dan 20°. 
6. Addendum: jarak radial sebuah gigi dari lingkaran jarak bagi ke puncak gigi. 
7. Dedendum: jarak radia sebuah gigi dari lingkaran jarak bagi ke dasar gigi. . 
8. Lingkaran kepala gigi (Addendum circle): gambaran lingkaran melalui puncak 
gigi dan konssentris dengan lingkaran jarak bagi. 
9. Lingkaran kaki gigi (Dedendum circle atau root circle): gambaran lingkaran 
melalui dasar/lembah gigi. 
Diameter lingkaran kaki = diameter lingkaran jarak bagi × cos φ 
10. Jarak bagi lingkaran (Circular pitch, pc): jarak yang diukur pada keliling 
lingkaran jarak bagi dari titik salah satu gigi ke titik pada gigi berikutnya. 
Jarak bagi lingkaran, , dengan D = diameter lingkaran 
jarak bagi 
T = jumlah gigi pada 
rodagigi 
* Dua rodagigi akan bersentuhan bersama-sama secara teliti, 
jika dua rodagigi memiliki jarak bagi lingkaran yang sama. 
Catatan: Jika D1 and D2 adalah diameter-diameter dua rodagigi berpasangan yang 
memiliki jumlah gigi T1 and T2.
11. Jarak bagi diametral (Diametral pitch) : perbandingan jumlah gigi dengan 
diameter lingkaran jarak bagi, dalam milimeter. 
12. Modul (Module): perbandingan diameter lingkaran jarak bagi dengan jumlah gigi. 
m = D / T 
Catatan: Seri modul yang disarankan dalam Standard Indian adalah 1, 1.25, 1.5, 
2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40 and 50. 
Modul-modul: 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5,5.5, 7, 9, 11, 14, 18, 
22, 28, 36 dan 45 adalah pilihan kedua. 
13. Celah (Clearance): jarak radial dari puncak gigi ke dasar gigi. Sementara, 
lingkaran celah (clearance circle) adalah lingkaran yang melewati puncak 
dari pasangan rodagigi. 
14. Kedalaman total (Total depth) merupakan jarak radial antara tinggi kepala dan 
tinggi kaki dari gigi. 
Lingkaran rodagigi (circle of a gear) sama dengan jumlah kepala gigi dan kaki 
gigi. 
15. Kedalaman Kerja Gigi (Working depth) merupakan jarak dari lingkaran kepala 
gigi ke lingkaran celah gigi yaitu sama dengan jumlah kepala gigi dari dua 
rodagigi berpasangan.
16. Tebal gigi (Tooth thickness) merupakan lebar gigi diukur sepanjang lingkaran 
jarak-bagi . 
17. Ruang gigi merupakan lebar dari ruang antar dua gigi bayangan yang diukur 
sepanjang lingkaran jarak bagi. 
18. Backlash merupakan perbedaan antara ruang gigi dan tebal gigi, seperti yang diukur 
pada lingkaran jarak-bagi. 
19. Muka gigi (Face of the tooth) merupakan permukaan gigi di atas permukaan jarak-bagi. 
20. Landasan atas (Top land) merupakan permukaan atas dari suatu gigi. 
21. Badan gigi (Flank of the tooth) merupakan permukaan gigi di bawah permukaan 
jarak-bagi. 
22. Lebar muka (Face width) merupakan lebar dari gigi rodagigi diukur sejajar terhadap 
sumbunya. 
23. Profil (Profile) merupakan kurva yang dibentuk oleh permukaan dan badan dari 
sebuah gigi. 
24. Jari-jari filet (Fillet radius) merupakan jari-jari yang menghubungkan lingkaran kaki 
dengan profil gigi. 
25. Jalur kontak (Path of contact) merupakan jejak jalur dengan titik kontak dua gigi dari 
awal ke akhir pasangan gigi. 
26. Panjang jalur kontak (Length of the path of contact) merupakan panjang dari 
potongan normal biasa dari lingkaran kepala gigi dari roda yang digerakkan 
dan roda penggeraknya.
27. Lengkung kontak (Arc of contact) merupakan jejak jalur dari titik pada 
lingkaran jarak bagi dari awal dan akhir pasangan pasangan gigi. 
Lengkung kontak terdiri atas dua bagian, yaitu (a) Arc of approach 
merupakan bagian dari jalur kontak dari awal penggerakan ke titik jarak-bagi. 
b) Arc of recess merupakan bagian jalur kontak dari titik jarak-bagi ke akhir dari 
penggerakan suatu pasangan gigi. 
Note : Perbandingan panjang lengkung kontak terhadap jarak-bagi 
lingkaran yang disebut perbandingan kontak yaitu jumlah pasangan gigi dalam 
kontak. 
28.6 Condition for Constant Velocity Ratio of Gears–Law of Gearing 
Consider the portions of the two teeth, one on the wheel 1 (or pinion) 
and the other on the wheel 2, as shown by thick line curves in Fig. 28.7. Let the 
two teeth come in contact at point Q, and the wheels rotate in the directions as 
shown in the figure. 
Let T T be the common tangent and MN be the common normal to the 
curves at point of contact Q. From the centres O1 and O2, draw O1M and O2N 
perpendicular to MN. A little consideration will show that the point Q moves in the 
direction QC, when considered as a point on wheel 1, and in the direction QD when 
considered as a point on wheel 2. 
Let v1 and v2 be the velocities of the point Q on the wheels 1 and 2 
respectively. If the teeth are to remain in contact, then the components of these 
velocities along the common normal MN must be equal.
∴ v1 cos α = v2 cos β
We see that the angular velocity ratio is inversely proportional to the 
ratio of the distance of P from the centres O1 and O2, or the common normal to 
the two surfaces at the point of contact Q intersects the line of centres at point P 
which divides the centre distance inversely as the ratio of angular velocities. 
Therefore, in order to have a constant angular velocity ratio for all 
positions of the wheels, P must be the fixed point (called pitch point) for the two 
wheels. In other words, the common normal at the point of contact between a 
pair of teeth must always pass through the pitch point. This is fundamental 
condition which must be satisfied while designing the profiles for the teeth of 
gear wheels. It is also known as law of gearing. 
Notes : 
1. The above condition is fulfilled by teeth of involute form, provided that the 
root circles from which the profiles are generated are tangential to 
the common normal. 
2. If the shape of one tooth profile is arbitrary chosen and another tooth is 
designed to satisfy the above condition, then the second tooth is said to be 
conjugate to the first. The conjugate teeth are not in common use because of 
difficulty in manufacture and cost of production.
3. If D1 and D2 are pitch circle diameters of wheel 1 and 2 having teeth T1 and 
T2 respectively, then velocity ratio, 
Forms of Teeth 
We have discussed in Art. 28.6 (Note 2) that conjugate teeth are not in 
common use. Therefore, in actual practice, following are the two types of teeth 
commonly used. 1. Cycloidal teeth ; and 2. Involute teeth. 
We shall discuss both the above mentioned types of teeth in the 
following articles. Both these forms of teeth satisfy the condition as explained in 
Art. 28.6. 
Cycloidal Teeth 
A cycloid is the curve traced by a point on the circumference of a circle 
which rolls without slipping on a fixed straight line. When a circle rolls without 
slipping on the outside of a fixed circle, the curve traced by a point on the 
circumference of a circle is known as epicycloid. On the other hand, if a circle 
rolls without slipping on the inside of a fixed circle, then the curve traced by a 
point on the circumference of a circle is called hypocycloid.
Involute Teeth 
An involute of a circle is a plane curve generated by a point on a tangent, 
which rolls on the circle without slipping or by a point on a taut string which is 
unwrapped from a reel as shown in Fig. 28.10 (a). In connection with toothed 
wheels, the circle is known as base circle. The involute is traced as follows: 
Let A be the starting point of the involute. The base circle is divided into 
equal number of parts e.g. AP1, P1 P2, P2 P3 etc.The tangents at P1, P2, P3 etc., 
are drawn and the lenghts P1A1, P2A2, P3A3 equal to the arcs AP1, AP2 and AP3 
are set off. Joining the points A, A1, A2, A3 etc., we obtain the involute curve AR. A 
little consideration will show that at any instantA3, the tangent A3T to the involute 
is perpendicular to P3A3 and P3A3 is the normal to the involute. In other words, 
normal at any point of an involute is a tangent to the circle. 
Now, let O1 and O2 be the fixed centres of the two base circles as shown 
in Fig. 28.10(b). Let the corresponding involutes AB and A'B' be in contact at point 
Q. MQ and NQ are normals to the involute at Q and are tangents to base circles. 
Since the normal for an involute at a given point is the tangent drawn from that 
point to the base circle, therefore the common normal MN at Q is also the 
common tangent to the two base circles. 
We see that the common normal MN intersects the line of centres O1O2 
at the fixed point P (called pitch point). Therefore the involute teeth satisfy the 
fundamental condition of constant velocity ratio.
From similar triangles O2 NP and O1 MP, 
which determines the ratio of the radii of the two base circles. The radii of the 
base circles is given by 
where φ is the pressure angle or the angle of obliquity. 
Also the centre distance between the base circles
Systems of Gear Teeth 
Terdapat 4 sistem gigi rodagigi digunakan dalam praktik, yaitu: 
(1) 14 /2° Composite system, digunakan untuk rodagigi tujuan umum, sangat 
kuat tetapi tidak dapat dipertukarkan, bentuk kurva sikloid pada puncak dan 
dasar, serta kurva involut di bagian tengah ; (2) 14 /2° Full depth involute system, 
bentuk yang telah dikembangkan untuk hobs rodagigi pada rodagigi lurus dan 
miring; (3) 20° Full depth involute system, profil gigi yang dipotong oleh hobs, 
sudut tekan menghasilkan gigi yang kuat karena gigi bekerja seperti batang yang 
luas pada bagian dasar; dan (4) 20° Stub involute system, memiliki gigi yang kuat 
untuk menerima beban berat. 
Proporsi Standar dari Sistem Rodagigi 
Proporsi standar pada modul (m) untuk empat sistem gigi rodagigi.
Interference in Involute Gears 
A pinion gearing with a wheel is shown in Fig. 28.11. MN is the common 
tangent to the base circles and KL is the path of contact between the two mating 
teeth. A little consideration will show, that if the radius of the addendum circle of 
pinion is increased to O1N, the point of contact L will move from L to N. When this 
radius is further increased, the point of contact L will be on the inside of base circle 
of wheel and not on the involute profile of tooth on wheel. 
The tip of tooth on the pinion will then undercut the tooth on the wheel 
at the root and remove part of the involute profile of tooth on the wheel. This 
effect is known as interference and occurs when the teeth are being cut. In brief, 
the phenomenon when the tip of a tooth undercuts the root on its mating gear is 
known as interference.
Similarly, if the radius of the addendum circle of the wheel increases 
beyond O2M, then the tip of tooth on wheel will cause interference with the 
tooth on pinion. The points M and N are called interference points. Obviously 
interference may be avoided if the path of contact does not extend beyond 
interference points. The limiting value of the radius of the addendum circle of 
the pinion is O1N and of the wheel is O2M. From the above discussion, we 
conclude that the interference may only be avoided, if the point of contact 
between the two teeth is always on the involute profiles of both the teeth. 
In other words, interference may only be prevented, if the 
addendum circles of the two mating gears cut the common tangent to the 
base circles between the points of tangency. 
Note : In order to avoid interference, the limiting value of the radius of the 
addendum circle of the pinion (O1 N) and of the wheel (O2 M), may be 
obtained as follows 
Minimum Number of Teeth on the Pinion in Order to Avoid Interference 
We have seen in the previous article that the interference may only 
be avoided, if the point of contact between the two teeth is always on the 
involute profiles of both the teeth. The minimum number of teeth on the 
pinion which will mesh with any gear (also rack) without interference are 
given in the following table.
The number of teeth on the pinion (TP) in order to avoid interference 
may be obtained from the following relation : 
AW = Fraction by which the standard addendum for the wheel should be 
multiplied, 
G = Gear ratio or velocity ratio = TG / TP = DG / DP, 
φ = Pressure angle or angle of obliquity.
Gear Materials 
The material used for the manufacture of gears depends upon the 
strength and service conditions like wear, noise etc. The gears may be 
manufactured from metallic or non-metallic materials. The metallic gears with 
cut teeth are commercially obtainable in cast iron, steel and bronze. The 
nonmetallic materials like wood, rawhide, compressed paper and synthetic 
resins like nylon are used for gears, especially for reducing noise. 
The cast iron is widely used for the manufacture of gears due to its 
good wearing properties, excellent machinability and ease of producing 
complicated shapes by casting method. The cast iron gears with cut teeth may be 
employed, where smooth action is not important. The steel is used for high 
strength gears and steel may be plain carbon steel or alloy steel. The steel gears 
are usually heat treated in order to combine properly the toughness and tooth 
hardness. 
The phosphor bronze is widely used for worm gears in order to reduce 
wear of the worms which will be excessive with cast iron or steel. The following 
table shows the properties of commonly used gear materials.
Table 28.3. Properties of commonly used gear materials.
Design Considerations for a Gear Drive 
1. The power to be transmitted. 
2. The speed of the driving gear, 
3. The speed of the driven gear or the velocity ratio, and 
4. The centre distance. 
The following requirements must be met in the design of a gear drive : 
(a) The gear teeth should have sufficient strength so that they will not fail under 
static loading or dynamic loading during normal running conditions. 
(b) The gear teeth should have wear characteristics so that their life is satisfactory. 
(c) The use of space and material should be economical. 
(d) The alignment of the gears and deflections of the shafts must be considered 
because they effect on the performance of the gears. 
(e) The lubrication of the gears must be satisfactory.
Beam Strength of Gear Teeth – Lewis Equation 
The beam strength of gear teeth is determined from an equation 
(known as *Lewis equation) and the load carrying ability of the toothed gears as 
determined by this equation gives satisfactory results. In the investigation, Lewis 
assumed that as the load is being transmitted from one gear to another, it is all 
given and taken by one tooth, because it is not always safe to assume that the 
load is distributed among several teeth. 
When contact begins, the load is assumed to be at the end of the 
driven teeth and as contact ceases, it is at the end of the driving teeth. This may 
not be true when the number of teeth in a pair of mating gears is large, because 
the load may be distributed among several teeth. But it is almost certain that at 
some time during the contact of teeth, the proper distribution of load does not 
exist and that one tooth must transmit the full load. In any pair of gears having 
unlike number of teeth, the gear which have the fewer teeth (i.e. pinion) will be 
the weaker, because the tendency toward undercutting of the teeth becomes 
more pronounced in gears as the number of teeth becomes smaller.
Consider each tooth as a cantilever beam loaded by a normal load 
(WN) as shown in Fig. 28.12. It is resolved into two components i.e. tangential 
component (WT) and radial component (WR) acting perpendicular and parallel 
to the centre line of the tooth respectively. The tangential component (WT) 
induces a bending stress which tends to break the tooth. The radial component 
(WR) induces a compressive stress of relatively small magnitude, therefore its 
effect on the tooth may be neglected. Hence, the bending stress is used as the 
basis for design calculations. The critical section or the section of maximum 
bending stress may be obtained by drawing a parabola through A and 
tangential to the tooth curves at B and C. 
This parabola, as shown dotted in Fig. 28.12, outlines a beam of 
uniform strength, i.e. if the teeth are shaped like a parabola, it will have the 
same stress at all the sections. But the tooth is larger than the parabola at 
every section except BC. We therefore, conclude that the section BC is the 
section of maximum stress or the critical section. The maximum value of the 
bending stress (or the permissible working stress), at the section BC is given by 
M = Maximum bending moment at the critical section BC = WT × h, 
WT = Tangential load acting at the tooth, 
h = Length of the tooth, 
y = Half the thickness of the tooth (t) at critical section BC = t/2, 
I = Moment of inertia about the centre line of the tooth = b.t3/12, 
b = Width of gear face.
Masukkan nilai-nilai M, y, dan I ke dalam persamaan(i), diperoleh: 
t dan h adalah variabel-variabel yang bergantung atas ukuran 
gigi yaitu jarak bagi lingkaran dan profil giginya. 
Masukkan x2 / 6k = y, didapat: 
WT = σw . b . pc . y = σw . b . π m . y ...(pc = π m) 
y = faktor bentuk gigi 
WT =beban tangensial, disebut kekuatan batang gigi. 
therefore in order to find the value of y, the quantities t, h and pc may be 
determined analytically or measured from the drawing similar to Fig. 28.12. It 
may be noted that if the gear is enlarged, the distances t, h and pc will each 
increase proportionately. Therefore the value of y will remain unchanged. A little 
consideration will show that the value of y is independent of the size of the tooth 
and depends only on the number of teeth on a gear and the system of teeth. The 
value of y in terms of the number of teeth may be expressed as follows :
Permissible Working Stress for Gear Teeth in the Lewis Equation 
The permissible working stress (σw) in the Lewis equation depends upon 
the material for which an allowable static stress (σo) may be determined. 
The allowable static stress is the stress at the elastic limit of the material. 
It is also called the basic stress. In order to account for the dynamic 
effects which become more severe as the pitch line velocity increases, the 
value of σw is reduced. 
According to the Barth formula, the permissible working stress, 
= tegangan statis ijin 
= faktor kecepatan
Harga faktor kecepatan, : 
Untuk rodagigi ordinary cut yang beroperasi 
pada kecepatan sampai 12.5 m/s. 
Untuk rodagigi carefully cut yang beroperasi 
pada kecepatan sampai 12.5 m/s. 
Untuk rodagigi very accurately cut yang 
beroperasi pada kecepatan sampai 20 m/s. 
Untuk rodagigi precision cut dengan high accuracy 
yang beroperasi pada kecepatan sampai 20 m/s. 
Untuk rodagigi non metallic. 
Dynamic Tooth Load 
In the previous article, the velocity factor was used to make approximate 
allowance for the effect of dynamic loading. The dynamic loads are due to 
the following reasons : 
1. Inaccuracies of tooth spacing, 
2. Irregularities in tooth profiles, and 
3. Deflections of teeth under load. 
A closer approximation to the actual conditions may be made by the use of 
equations based on extensive series of tests, as follows :
Beban gigi dinamis: 
= beban dinamik total 
= beban diam yang bekerja memindahkan momen puntir 
= beban tambahan yang bekerja terhadap gerak dinamik, 
Beban tambahan bergantung atas: 
1. kecepatan lintasan jarak bagi, 
2. keakuratan pemotongan, dan 
3. beban tangensial: 
= beban dinamik total, dalam N 
= beban diam yang dipindahkan, dalam N 
= kecepatan lintasan jarak bagi, dalam m/s 
= lebar permukaan gigi, dalam mm 
= faktor dinamis atau deformasi, dalam N/mm
Faktor deformasi (C) bergantung atas: 
1. kesalahan pada gerak gigi, 
2. tumbukan potong dari gigi, 
3. bentuk gigi, dan 
4. bahan rodagigi. 
, dalam N/mm. 
K = faktor yang bergantung bentuk gigi: 
0,107 untuk sistem rodagigi 14,5 ° full depth involute, 
0,111 untuk sistem rodagigi 20 ° full depth involute, 
0,107 untuk sistem rodagigi 20° stub. 
= modulus Young untuk bahan pinion, dalam N/mm². 
= modulus Young untuk bahan gear, dalam N/mm². 
= gerak kesalahan gigi, dalam mm.
Beban Statis Gigi 
Beban Statis Gigi (kekuatan balok atau kekuatan ketahanan 
dari gigi) didapat dari rumus Lewis dengan memasukkan batas 
ketahanan flexural atau tegangan batas elastis. Beban gigi statis (juga 
disebut kekuatan gelagar atau kekuatan ketahanan gigi). 
he static tooth load (also called beam strength or endurance strength of 
the tooth) is obtained by Lewis formula by substituting flexural 
endurance limit or elastic limit stress (σe) in place of permissible 
working stress (σw). 
∴ Static tooth load or beam strength of the tooth, 
WS = σe.b.pc.y = σe.b.π m.y
Contoh 1. 
Berikut diketahui bagian-bagian dari sebuah rodagigi lurus reduksi 
tunggal: Perbandingan rodagigi = 10 : 1; jarak antar pusat = 660 mm; 
pinion memindahkan 500 kW at 1800 r.p.m.; gigi involut proporsi standar 
(tinggi kepala gigi atau adendum = m) dengan sudut tekan 22,5°; gaya 
tekan normal yang diijinkan antar gigi = 175 N tiap mm lebar gigi. 
Tentukan: 
1. modul standar yang mendekati jika tanpa terjadi interferensi; 
2. Jumlah gigi pada setiap roda; 
3. Lebar gigi pinion yang diperlukan; dan 
4. Beban pada bantalan dari rodagigi-rodagigi yang memindahkan daya. 
Penyelesaian : 
Diketahui: G = TG / TP = DG / DP = 10 ; L = 660 mm; 
P = 500 kW = 500000 W; NP = 1800 r.p.m.; 
φ = 22.5° ; WN = 175 N/mm lebar. 
Ditanyakan: 
풎; 푻푷 ; 푻푮 ; 풃; 풅풂풏 푾푹
1. Modul standar terdekat jika tanpa terjadi interferensi: 
Oleh karena harga modul standar terdekat 8mm, maka diambil: 
m = 8 mm. 
2. Jumlah gigi minimum yang dibutuhkan:
3. Lebar gigi pinion: 
Oleh karena gaya tekan antar gigi adalah 175 N tiap mm lebar gigi, maka 
lebar gigi pinion: 
4. Beban pada bantalan roda:
Contoh Soal 2: Pinion lurus dari bronz berputar pada 600 rpm menggerakkan 
rodagigi besi tuang pada perbandingan transmisi 4:1. Tegangan statis ijin pinion 
bronz dan rodagigi berturut-turut 84 Mpa dan 105 Mpa. Pinion memiliki 16 gigi 
standar full depth involute 20 derajad yang bermodul 8 mm. Lebar permukaan 
kedua gigi 90 mm. Tentukan daya yang dapat dipindahkan berdasar sisi 
kekuatannya! 
Penyelesaian: 
Diketahui: 
푵푷 = ퟔퟎퟎ 풓풑풎; 푽. 푹 = 
푻푮 
푻푷 
= ퟒ; 흈푶푷 = ퟖퟒ 푴푷풂 = ퟖퟒ 
푵 
풎풎ퟐ ; 흈푶푮 = ퟏퟎퟓ 푴푷풂 = 
ퟏퟎퟓ 
푵 
풎풎ퟐ ; 푻푷 = ퟏퟔ; 풎 = ퟖ 풎풎; 풃 = ퟗퟎ 풎풎. 
Ditanyakan: P 
Jawab: 
Untuk kecepatan jarak bagi kurang dari 12,5 m/s, maka faktor keceptan:
Untuk gigi 20 derajad full depth involute, faktor bentuk gigi pinion: 
Selama kurang dari maka pinion yang paling lemah, dan 
digunakan sebagai dasar menghitung .. 
P
Elemen Mesin II - Rodagigi Lurus

Contenu connexe

Tendances

Poros present (elemen mesin)
Poros present (elemen mesin)Poros present (elemen mesin)
Poros present (elemen mesin)Khairul Fadli
 
Diklat elemen mesin
Diklat elemen mesinDiklat elemen mesin
Diklat elemen mesinEko Purwanto
 
Elemen mesin 2 andri
Elemen mesin 2 andriElemen mesin 2 andri
Elemen mesin 2 andriAndri Santoso
 
Elemen Mesin Modul 1 - Perencanaan Poros
Elemen Mesin Modul 1 - Perencanaan PorosElemen Mesin Modul 1 - Perencanaan Poros
Elemen Mesin Modul 1 - Perencanaan PorosDewi Izza
 
Elemen Mesin 1 - Keling 2
Elemen Mesin 1 - Keling 2Elemen Mesin 1 - Keling 2
Elemen Mesin 1 - Keling 2Charis Muhammad
 
Tugas ii (dasar perencanaan poros)
Tugas ii (dasar perencanaan poros)Tugas ii (dasar perencanaan poros)
Tugas ii (dasar perencanaan poros)Rinaldi Sihombing
 
Roda gigi dan Proses Perancangan
Roda gigi dan Proses PerancanganRoda gigi dan Proses Perancangan
Roda gigi dan Proses PerancanganNatalino Fonseca
 
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESINMACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESINDwi Ratna
 
Kopling tetap bahan ajar
Kopling tetap bahan ajarKopling tetap bahan ajar
Kopling tetap bahan ajarKhairul Fadli
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanRumah Belajar
 
Dasar perencanaan elemen mesin
Dasar perencanaan elemen mesinDasar perencanaan elemen mesin
Dasar perencanaan elemen mesinRinaldi Sihombing
 
Tugas rancangan elemen mesin 2 (transmisi)
Tugas rancangan elemen mesin 2 (transmisi)Tugas rancangan elemen mesin 2 (transmisi)
Tugas rancangan elemen mesin 2 (transmisi)Swardi Sibarani
 
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)Ali Hasimi Pane
 
Contoh soal getaran bebas tanpa redaman
Contoh soal getaran bebas tanpa redamanContoh soal getaran bebas tanpa redaman
Contoh soal getaran bebas tanpa redamanInstansi
 

Tendances (20)

Poros present (elemen mesin)
Poros present (elemen mesin)Poros present (elemen mesin)
Poros present (elemen mesin)
 
Diklat elemen mesin
Diklat elemen mesinDiklat elemen mesin
Diklat elemen mesin
 
Elemen mesin 2 andri
Elemen mesin 2 andriElemen mesin 2 andri
Elemen mesin 2 andri
 
Elemen Mesin II - Rem
Elemen Mesin II - RemElemen Mesin II - Rem
Elemen Mesin II - Rem
 
Elemen Mesin Modul 1 - Perencanaan Poros
Elemen Mesin Modul 1 - Perencanaan PorosElemen Mesin Modul 1 - Perencanaan Poros
Elemen Mesin Modul 1 - Perencanaan Poros
 
Elemen Mesin 1 - Keling 2
Elemen Mesin 1 - Keling 2Elemen Mesin 1 - Keling 2
Elemen Mesin 1 - Keling 2
 
Rumus perhitungan roda gigi lurus
Rumus perhitungan roda gigi lurusRumus perhitungan roda gigi lurus
Rumus perhitungan roda gigi lurus
 
Poros dan Pasak
Poros dan PasakPoros dan Pasak
Poros dan Pasak
 
2.1,9.14 contoh soal 1
2.1,9.14  contoh soal 12.1,9.14  contoh soal 1
2.1,9.14 contoh soal 1
 
Tugas ii (dasar perencanaan poros)
Tugas ii (dasar perencanaan poros)Tugas ii (dasar perencanaan poros)
Tugas ii (dasar perencanaan poros)
 
Roda gigi dan Proses Perancangan
Roda gigi dan Proses PerancanganRoda gigi dan Proses Perancangan
Roda gigi dan Proses Perancangan
 
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESINMACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
MACAM-MACAM SAMBUNGAN PADA KONSTRUKSI MESIN
 
Kopling tetap bahan ajar
Kopling tetap bahan ajarKopling tetap bahan ajar
Kopling tetap bahan ajar
 
Bab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasanBab 11 bantalan dan sistem pelumasan
Bab 11 bantalan dan sistem pelumasan
 
Dasar perencanaan elemen mesin
Dasar perencanaan elemen mesinDasar perencanaan elemen mesin
Dasar perencanaan elemen mesin
 
Tugas rancangan elemen mesin 2 (transmisi)
Tugas rancangan elemen mesin 2 (transmisi)Tugas rancangan elemen mesin 2 (transmisi)
Tugas rancangan elemen mesin 2 (transmisi)
 
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)
 
Contoh soal getaran bebas tanpa redaman
Contoh soal getaran bebas tanpa redamanContoh soal getaran bebas tanpa redaman
Contoh soal getaran bebas tanpa redaman
 
Diktat getaran mekanik
Diktat getaran mekanikDiktat getaran mekanik
Diktat getaran mekanik
 
Roda gigi umum
Roda gigi umumRoda gigi umum
Roda gigi umum
 

Similaire à Elemen Mesin II - Rodagigi Lurus

spur gear.pptx, type of gear and design of gear
spur gear.pptx, type of gear and design of gearspur gear.pptx, type of gear and design of gear
spur gear.pptx, type of gear and design of gearhaymanot16
 
Design of gears by aliyi umer
Design of gears by aliyi umerDesign of gears by aliyi umer
Design of gears by aliyi umerAliyi Umer
 
design of Spur gear
design of  Spur gear design of  Spur gear
design of Spur gear ashok184924
 
Gears & its Terminology
Gears & its TerminologyGears & its Terminology
Gears & its TerminologyVINOTHRAJA189
 
Gears and gear trains may 2020
Gears and gear trains may 2020Gears and gear trains may 2020
Gears and gear trains may 2020Gaurav Mistry
 
The Analysis of The Effect of System Parameters on the RV Reducer Dynamic Cha...
The Analysis of The Effect of System Parameters on the RV Reducer Dynamic Cha...The Analysis of The Effect of System Parameters on the RV Reducer Dynamic Cha...
The Analysis of The Effect of System Parameters on the RV Reducer Dynamic Cha...IJRESJOURNAL
 
Three new models for evaluation of standard involute spur gear | Mesh Analysis
Three new models for evaluation of standard involute spur gear | Mesh Analysis Three new models for evaluation of standard involute spur gear | Mesh Analysis
Three new models for evaluation of standard involute spur gear | Mesh Analysis AliRaza1767
 
REPORT ON QUALITY CONTROL BY REDUCING REJECTION DUE TO CHIP IMPRESSION
REPORT ON QUALITY CONTROL BY REDUCING REJECTION DUE TO CHIP IMPRESSIONREPORT ON QUALITY CONTROL BY REDUCING REJECTION DUE TO CHIP IMPRESSION
REPORT ON QUALITY CONTROL BY REDUCING REJECTION DUE TO CHIP IMPRESSIONHardik Ramani
 
Machine Elements and Design- Lecture 8.pptx
Machine Elements and Design- Lecture 8.pptxMachine Elements and Design- Lecture 8.pptx
Machine Elements and Design- Lecture 8.pptxJeromeValeska5
 

Similaire à Elemen Mesin II - Rodagigi Lurus (20)

Gears
GearsGears
Gears
 
spur gear.pptx, type of gear and design of gear
spur gear.pptx, type of gear and design of gearspur gear.pptx, type of gear and design of gear
spur gear.pptx, type of gear and design of gear
 
Design of gears by aliyi umer
Design of gears by aliyi umerDesign of gears by aliyi umer
Design of gears by aliyi umer
 
Gear design
Gear designGear design
Gear design
 
Spur gear
Spur gearSpur gear
Spur gear
 
design of Spur gear
design of  Spur gear design of  Spur gear
design of Spur gear
 
Gears
GearsGears
Gears
 
Introduction to gears
Introduction to gearsIntroduction to gears
Introduction to gears
 
Gears & its Terminology
Gears & its TerminologyGears & its Terminology
Gears & its Terminology
 
Gears and gear trains may 2020
Gears and gear trains may 2020Gears and gear trains may 2020
Gears and gear trains may 2020
 
The Analysis of The Effect of System Parameters on the RV Reducer Dynamic Cha...
The Analysis of The Effect of System Parameters on the RV Reducer Dynamic Cha...The Analysis of The Effect of System Parameters on the RV Reducer Dynamic Cha...
The Analysis of The Effect of System Parameters on the RV Reducer Dynamic Cha...
 
Three new models for evaluation of standard involute spur gear | Mesh Analysis
Three new models for evaluation of standard involute spur gear | Mesh Analysis Three new models for evaluation of standard involute spur gear | Mesh Analysis
Three new models for evaluation of standard involute spur gear | Mesh Analysis
 
Kom gears
Kom gearsKom gears
Kom gears
 
REPORT ON QUALITY CONTROL BY REDUCING REJECTION DUE TO CHIP IMPRESSION
REPORT ON QUALITY CONTROL BY REDUCING REJECTION DUE TO CHIP IMPRESSIONREPORT ON QUALITY CONTROL BY REDUCING REJECTION DUE TO CHIP IMPRESSION
REPORT ON QUALITY CONTROL BY REDUCING REJECTION DUE TO CHIP IMPRESSION
 
7-Gear Measurement-P1.pdf
7-Gear Measurement-P1.pdf7-Gear Measurement-P1.pdf
7-Gear Measurement-P1.pdf
 
Helical and spur gears.pptx
Helical and spur gears.pptxHelical and spur gears.pptx
Helical and spur gears.pptx
 
Machine Elements and Design- Lecture 8.pptx
Machine Elements and Design- Lecture 8.pptxMachine Elements and Design- Lecture 8.pptx
Machine Elements and Design- Lecture 8.pptx
 
Unit i
Unit   iUnit   i
Unit i
 
Gear Tooth Nomenclature.pptx
Gear Tooth Nomenclature.pptxGear Tooth Nomenclature.pptx
Gear Tooth Nomenclature.pptx
 
GEAR AND GEAR TRAIN
GEAR AND GEAR TRAINGEAR AND GEAR TRAIN
GEAR AND GEAR TRAIN
 

Plus de Charis Muhammad

Jobsheet Memperbaiki Gangguan-Gangguan Sistem Bahan Bakar Diesel
Jobsheet Memperbaiki Gangguan-Gangguan Sistem Bahan Bakar DieselJobsheet Memperbaiki Gangguan-Gangguan Sistem Bahan Bakar Diesel
Jobsheet Memperbaiki Gangguan-Gangguan Sistem Bahan Bakar DieselCharis Muhammad
 
Jobsheet Overhaul Motor Starter
Jobsheet Overhaul Motor StarterJobsheet Overhaul Motor Starter
Jobsheet Overhaul Motor StarterCharis Muhammad
 
Jobsheet Pemeriksaan Sistem Starter Pada Kendaraan
Jobsheet Pemeriksaan Sistem Starter Pada KendaraanJobsheet Pemeriksaan Sistem Starter Pada Kendaraan
Jobsheet Pemeriksaan Sistem Starter Pada KendaraanCharis Muhammad
 
Jobsheet Overhaul Alternator Dan Regulator
Jobsheet Overhaul Alternator Dan RegulatorJobsheet Overhaul Alternator Dan Regulator
Jobsheet Overhaul Alternator Dan RegulatorCharis Muhammad
 
Jobsheet Pemeriksaan Sistem Pengisian Pada Kendaraan
Jobsheet Pemeriksaan Sistem Pengisian Pada KendaraanJobsheet Pemeriksaan Sistem Pengisian Pada Kendaraan
Jobsheet Pemeriksaan Sistem Pengisian Pada KendaraanCharis Muhammad
 
Jobsheet Overhaul Karburator
Jobsheet Overhaul KarburatorJobsheet Overhaul Karburator
Jobsheet Overhaul KarburatorCharis Muhammad
 
Jobsheet Memeriksa Pompa Bahan Bakar
Jobsheet Memeriksa Pompa Bahan BakarJobsheet Memeriksa Pompa Bahan Bakar
Jobsheet Memeriksa Pompa Bahan BakarCharis Muhammad
 
Jobsheet Pemeriksaan Dan Penyetelan Karburator
Jobsheet Pemeriksaan Dan Penyetelan KarburatorJobsheet Pemeriksaan Dan Penyetelan Karburator
Jobsheet Pemeriksaan Dan Penyetelan KarburatorCharis Muhammad
 
Jobsheet Overhaul Distributor
Jobsheet Overhaul DistributorJobsheet Overhaul Distributor
Jobsheet Overhaul DistributorCharis Muhammad
 
Jobsheet Pemeriksaan Sistem Pengapian Pada Kendaraan
Jobsheet Pemeriksaan Sistem Pengapian Pada KendaraanJobsheet Pemeriksaan Sistem Pengapian Pada Kendaraan
Jobsheet Pemeriksaan Sistem Pengapian Pada KendaraanCharis Muhammad
 
Jobsheet Overhaule Motor Starter Mobil
Jobsheet Overhaule Motor Starter MobilJobsheet Overhaule Motor Starter Mobil
Jobsheet Overhaule Motor Starter MobilCharis Muhammad
 
Keuntungan dan Kerugian Diesel Dibanding Bensin
Keuntungan dan Kerugian Diesel Dibanding BensinKeuntungan dan Kerugian Diesel Dibanding Bensin
Keuntungan dan Kerugian Diesel Dibanding BensinCharis Muhammad
 
Mesin Konversi Energi - Motor Bensin
Mesin Konversi Energi - Motor BensinMesin Konversi Energi - Motor Bensin
Mesin Konversi Energi - Motor BensinCharis Muhammad
 
Diagnosis Sistem Starter
Diagnosis Sistem StarterDiagnosis Sistem Starter
Diagnosis Sistem StarterCharis Muhammad
 
Elemen Mesin 1 - Keling 1
Elemen Mesin 1 - Keling 1Elemen Mesin 1 - Keling 1
Elemen Mesin 1 - Keling 1Charis Muhammad
 
Peralatan Pengecatan Otomotif
Peralatan Pengecatan OtomotifPeralatan Pengecatan Otomotif
Peralatan Pengecatan OtomotifCharis Muhammad
 
Pengetahuan Bahan Teknik : Plastik
Pengetahuan Bahan Teknik : PlastikPengetahuan Bahan Teknik : Plastik
Pengetahuan Bahan Teknik : PlastikCharis Muhammad
 

Plus de Charis Muhammad (20)

Jobsheet Memperbaiki Gangguan-Gangguan Sistem Bahan Bakar Diesel
Jobsheet Memperbaiki Gangguan-Gangguan Sistem Bahan Bakar DieselJobsheet Memperbaiki Gangguan-Gangguan Sistem Bahan Bakar Diesel
Jobsheet Memperbaiki Gangguan-Gangguan Sistem Bahan Bakar Diesel
 
Jobsheet Overhaul Motor Starter
Jobsheet Overhaul Motor StarterJobsheet Overhaul Motor Starter
Jobsheet Overhaul Motor Starter
 
Jobsheet Pemeriksaan Sistem Starter Pada Kendaraan
Jobsheet Pemeriksaan Sistem Starter Pada KendaraanJobsheet Pemeriksaan Sistem Starter Pada Kendaraan
Jobsheet Pemeriksaan Sistem Starter Pada Kendaraan
 
Jobsheet Overhaul Alternator Dan Regulator
Jobsheet Overhaul Alternator Dan RegulatorJobsheet Overhaul Alternator Dan Regulator
Jobsheet Overhaul Alternator Dan Regulator
 
Jobsheet Pemeriksaan Sistem Pengisian Pada Kendaraan
Jobsheet Pemeriksaan Sistem Pengisian Pada KendaraanJobsheet Pemeriksaan Sistem Pengisian Pada Kendaraan
Jobsheet Pemeriksaan Sistem Pengisian Pada Kendaraan
 
Jobsheet Overhaul Karburator
Jobsheet Overhaul KarburatorJobsheet Overhaul Karburator
Jobsheet Overhaul Karburator
 
Jobsheet Memeriksa Pompa Bahan Bakar
Jobsheet Memeriksa Pompa Bahan BakarJobsheet Memeriksa Pompa Bahan Bakar
Jobsheet Memeriksa Pompa Bahan Bakar
 
Jobsheet Pemeriksaan Dan Penyetelan Karburator
Jobsheet Pemeriksaan Dan Penyetelan KarburatorJobsheet Pemeriksaan Dan Penyetelan Karburator
Jobsheet Pemeriksaan Dan Penyetelan Karburator
 
Jobsheet Overhaul Distributor
Jobsheet Overhaul DistributorJobsheet Overhaul Distributor
Jobsheet Overhaul Distributor
 
Jobsheet Pemeriksaan Sistem Pengapian Pada Kendaraan
Jobsheet Pemeriksaan Sistem Pengapian Pada KendaraanJobsheet Pemeriksaan Sistem Pengapian Pada Kendaraan
Jobsheet Pemeriksaan Sistem Pengapian Pada Kendaraan
 
Jobsheet Overhaule Motor Starter Mobil
Jobsheet Overhaule Motor Starter MobilJobsheet Overhaule Motor Starter Mobil
Jobsheet Overhaule Motor Starter Mobil
 
Elemen Mesin II - Rem
Elemen Mesin II - RemElemen Mesin II - Rem
Elemen Mesin II - Rem
 
Keuntungan dan Kerugian Diesel Dibanding Bensin
Keuntungan dan Kerugian Diesel Dibanding BensinKeuntungan dan Kerugian Diesel Dibanding Bensin
Keuntungan dan Kerugian Diesel Dibanding Bensin
 
Mesin Konversi Energi - Motor Bensin
Mesin Konversi Energi - Motor BensinMesin Konversi Energi - Motor Bensin
Mesin Konversi Energi - Motor Bensin
 
Diagnosis Sistem Starter
Diagnosis Sistem StarterDiagnosis Sistem Starter
Diagnosis Sistem Starter
 
Elemen Mesin 1 - Keling 1
Elemen Mesin 1 - Keling 1Elemen Mesin 1 - Keling 1
Elemen Mesin 1 - Keling 1
 
Motor Bensin 2 TAKT
Motor Bensin 2 TAKTMotor Bensin 2 TAKT
Motor Bensin 2 TAKT
 
Manajemen Bengkel
Manajemen BengkelManajemen Bengkel
Manajemen Bengkel
 
Peralatan Pengecatan Otomotif
Peralatan Pengecatan OtomotifPeralatan Pengecatan Otomotif
Peralatan Pengecatan Otomotif
 
Pengetahuan Bahan Teknik : Plastik
Pengetahuan Bahan Teknik : PlastikPengetahuan Bahan Teknik : Plastik
Pengetahuan Bahan Teknik : Plastik
 

Dernier

Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEselvakumar948
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxNadaHaitham1
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 

Dernier (20)

Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 

Elemen Mesin II - Rodagigi Lurus

  • 1. PEMINDAH DAYA RODAGIGI Fenomena slip biasa terjadi pada pemindah daya sabuk atau tali, dalam pemindahan berupa gerak atau daya antara dua poros . Pengaruh slip adalah mengurangi perbandingan kecepatan dari sistem. Pada mesin-mesin yang presisi, perbandingan kecepatan definitif adalah penting (seperti mekanisme jam), yang penggerakannya hanya positif dengan rodagigi-rodagigi atau roda-roda bergigi. Sebuah penggerak rodagigi juga dibutuhkan jika jarak antara penggerak dan yang digerakkan sangat kecil.
  • 2. Roda-roda gesek • Gerak dan daya yang ditransmisikan oleh rodagigi secara kinematika sama dengan gerak dan daya yang transmisikan oleh roda-roda atau cakram-cakram.
  • 3. Keuntungan dan Kerugian Keuntungan 1. memindahkan perbandingan kecepatan secara tepat; 2. dapat digunakan memindahkan tenaga yang besar; 3. dapat digunakan untuk jarak poros yang kecil atau pendek; 4. memliki efisiensi yang tinggi; 5. memiliki layanan yang layak; 6. memiliki susunan yang kompak. Kerugian 1. Selama pembuatan rodagigi membutuhkan alat-alat dan perlengkapan khusus, maka butuh biaya tinggi daripada penggerak lain; 2. Kesalahan dalam pembuatan gigi dapat menyebabkan getaran dan bising selama pengoperasian; 3. Butuh pelumasan yang sesuai dan metode yang layak dalam penerapannya, untuk pengoperasian awal dari penggerakan rodagigi.
  • 4. Klasifikasi Rodagigi Berdasar Posisi sumbu poros: (a) Parallel, dua poros dihubungkan rodagigi yang disebut rodagigi lurus, yang memiliki gigi paralel terhadap poros, atau nama lain rodagigi miring karena gigi miring terhadap sumbu, dobel paralel (rodagigi herringbone)untuk mengimbangi ujung tumpuan termasuk rodagigi miring saat memindahkan beban; (b) Interseksi, dua sumbu non paralel tetapi bertemu dan sebidang, disebut rodagigi payung dan tersusun sebagai penggerakan sudut, juga gigi miring terhadap pemukaan payung dan disebut rodagigi payung helik; dan (c) Non-interseksi dan non-parallel
  • 5. 2. Berdasar Kecepatan Keliling Rodagigi: (a) Rpdagigi Kecepatan Rendah, kurang 3meter/detik; (b) (b) Rodagigi Kecepatan Menengah, 3 sampai 15 meter/detik, dan (c) (c) Rodagigi Kecepatan Tinggi , lebih dari 15 meter/detik. 3. Berdasar Jenis Penggerakan: (a) Rodagigi Luar, rodagigi dari dua poros bersentuhan luar satu dengan lainnya, gerak kedua roda selalu tidak sama; (b) Rodagigi Dalam; rodagigi dari dua poros bersentuhan dalam, antar satu rodagigi dengan lainnya, gerak kedua roda selalu sama; dan (c) Rodagigi Rak dan Pinion, rodagigi secara eksternal atau internal bersentuhan pada batang gigi lurus, gerak linear atau lurus ke dalam gerak putar. 4. Berdasar Letak Gigi pada Permukaan Rodagigi: (a) Straight, gigi lurus terhadap permukaan peleg roda; (b) Inclined, gigi miring terhadap permukaan peleg roda; dan (c) Curved, gigi melengkung terhadap permukaan peleg
  • 6. Istilah yang Digunakan dalam Rodagigi 1. Lingkaran jarak bagi (Pitch circle): lingkaran imajiner dengan aksi roling murni, memberikan gerak yang sama sebagaimana rodagigi aktual. 2. Diameter lingkaran jarak bagi (Pitch circle diameter): ukuran rodagigi khusus. disebut juga diammeter jarak bagi. 3. Titik jarak bagi (Pitch point): titik kontak antara dua lingkaran jarak bagi. 4. Permukaan jaraj bagi (Pitch surface): permukaan cakram roling dari rodagigi yang bersentuhan terletak pada lingkaran jarak bagi. .
  • 7. 5. Sudut Tekan (Pressure angle, φ): sudut antara garis normal dua gigi pada titik kontak dan garis tangen pada titik jarak bagi, dengan standar 14½° dan 20°. 6. Addendum: jarak radial sebuah gigi dari lingkaran jarak bagi ke puncak gigi. 7. Dedendum: jarak radia sebuah gigi dari lingkaran jarak bagi ke dasar gigi. . 8. Lingkaran kepala gigi (Addendum circle): gambaran lingkaran melalui puncak gigi dan konssentris dengan lingkaran jarak bagi. 9. Lingkaran kaki gigi (Dedendum circle atau root circle): gambaran lingkaran melalui dasar/lembah gigi. Diameter lingkaran kaki = diameter lingkaran jarak bagi × cos φ 10. Jarak bagi lingkaran (Circular pitch, pc): jarak yang diukur pada keliling lingkaran jarak bagi dari titik salah satu gigi ke titik pada gigi berikutnya. Jarak bagi lingkaran, , dengan D = diameter lingkaran jarak bagi T = jumlah gigi pada rodagigi * Dua rodagigi akan bersentuhan bersama-sama secara teliti, jika dua rodagigi memiliki jarak bagi lingkaran yang sama. Catatan: Jika D1 and D2 adalah diameter-diameter dua rodagigi berpasangan yang memiliki jumlah gigi T1 and T2.
  • 8. 11. Jarak bagi diametral (Diametral pitch) : perbandingan jumlah gigi dengan diameter lingkaran jarak bagi, dalam milimeter. 12. Modul (Module): perbandingan diameter lingkaran jarak bagi dengan jumlah gigi. m = D / T Catatan: Seri modul yang disarankan dalam Standard Indian adalah 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 16, 20, 25, 32, 40 and 50. Modul-modul: 1.125, 1.375, 1.75, 2.25, 2.75, 3.5, 4.5,5.5, 7, 9, 11, 14, 18, 22, 28, 36 dan 45 adalah pilihan kedua. 13. Celah (Clearance): jarak radial dari puncak gigi ke dasar gigi. Sementara, lingkaran celah (clearance circle) adalah lingkaran yang melewati puncak dari pasangan rodagigi. 14. Kedalaman total (Total depth) merupakan jarak radial antara tinggi kepala dan tinggi kaki dari gigi. Lingkaran rodagigi (circle of a gear) sama dengan jumlah kepala gigi dan kaki gigi. 15. Kedalaman Kerja Gigi (Working depth) merupakan jarak dari lingkaran kepala gigi ke lingkaran celah gigi yaitu sama dengan jumlah kepala gigi dari dua rodagigi berpasangan.
  • 9. 16. Tebal gigi (Tooth thickness) merupakan lebar gigi diukur sepanjang lingkaran jarak-bagi . 17. Ruang gigi merupakan lebar dari ruang antar dua gigi bayangan yang diukur sepanjang lingkaran jarak bagi. 18. Backlash merupakan perbedaan antara ruang gigi dan tebal gigi, seperti yang diukur pada lingkaran jarak-bagi. 19. Muka gigi (Face of the tooth) merupakan permukaan gigi di atas permukaan jarak-bagi. 20. Landasan atas (Top land) merupakan permukaan atas dari suatu gigi. 21. Badan gigi (Flank of the tooth) merupakan permukaan gigi di bawah permukaan jarak-bagi. 22. Lebar muka (Face width) merupakan lebar dari gigi rodagigi diukur sejajar terhadap sumbunya. 23. Profil (Profile) merupakan kurva yang dibentuk oleh permukaan dan badan dari sebuah gigi. 24. Jari-jari filet (Fillet radius) merupakan jari-jari yang menghubungkan lingkaran kaki dengan profil gigi. 25. Jalur kontak (Path of contact) merupakan jejak jalur dengan titik kontak dua gigi dari awal ke akhir pasangan gigi. 26. Panjang jalur kontak (Length of the path of contact) merupakan panjang dari potongan normal biasa dari lingkaran kepala gigi dari roda yang digerakkan dan roda penggeraknya.
  • 10. 27. Lengkung kontak (Arc of contact) merupakan jejak jalur dari titik pada lingkaran jarak bagi dari awal dan akhir pasangan pasangan gigi. Lengkung kontak terdiri atas dua bagian, yaitu (a) Arc of approach merupakan bagian dari jalur kontak dari awal penggerakan ke titik jarak-bagi. b) Arc of recess merupakan bagian jalur kontak dari titik jarak-bagi ke akhir dari penggerakan suatu pasangan gigi. Note : Perbandingan panjang lengkung kontak terhadap jarak-bagi lingkaran yang disebut perbandingan kontak yaitu jumlah pasangan gigi dalam kontak. 28.6 Condition for Constant Velocity Ratio of Gears–Law of Gearing Consider the portions of the two teeth, one on the wheel 1 (or pinion) and the other on the wheel 2, as shown by thick line curves in Fig. 28.7. Let the two teeth come in contact at point Q, and the wheels rotate in the directions as shown in the figure. Let T T be the common tangent and MN be the common normal to the curves at point of contact Q. From the centres O1 and O2, draw O1M and O2N perpendicular to MN. A little consideration will show that the point Q moves in the direction QC, when considered as a point on wheel 1, and in the direction QD when considered as a point on wheel 2. Let v1 and v2 be the velocities of the point Q on the wheels 1 and 2 respectively. If the teeth are to remain in contact, then the components of these velocities along the common normal MN must be equal.
  • 11. ∴ v1 cos α = v2 cos β
  • 12. We see that the angular velocity ratio is inversely proportional to the ratio of the distance of P from the centres O1 and O2, or the common normal to the two surfaces at the point of contact Q intersects the line of centres at point P which divides the centre distance inversely as the ratio of angular velocities. Therefore, in order to have a constant angular velocity ratio for all positions of the wheels, P must be the fixed point (called pitch point) for the two wheels. In other words, the common normal at the point of contact between a pair of teeth must always pass through the pitch point. This is fundamental condition which must be satisfied while designing the profiles for the teeth of gear wheels. It is also known as law of gearing. Notes : 1. The above condition is fulfilled by teeth of involute form, provided that the root circles from which the profiles are generated are tangential to the common normal. 2. If the shape of one tooth profile is arbitrary chosen and another tooth is designed to satisfy the above condition, then the second tooth is said to be conjugate to the first. The conjugate teeth are not in common use because of difficulty in manufacture and cost of production.
  • 13. 3. If D1 and D2 are pitch circle diameters of wheel 1 and 2 having teeth T1 and T2 respectively, then velocity ratio, Forms of Teeth We have discussed in Art. 28.6 (Note 2) that conjugate teeth are not in common use. Therefore, in actual practice, following are the two types of teeth commonly used. 1. Cycloidal teeth ; and 2. Involute teeth. We shall discuss both the above mentioned types of teeth in the following articles. Both these forms of teeth satisfy the condition as explained in Art. 28.6. Cycloidal Teeth A cycloid is the curve traced by a point on the circumference of a circle which rolls without slipping on a fixed straight line. When a circle rolls without slipping on the outside of a fixed circle, the curve traced by a point on the circumference of a circle is known as epicycloid. On the other hand, if a circle rolls without slipping on the inside of a fixed circle, then the curve traced by a point on the circumference of a circle is called hypocycloid.
  • 14.
  • 15. Involute Teeth An involute of a circle is a plane curve generated by a point on a tangent, which rolls on the circle without slipping or by a point on a taut string which is unwrapped from a reel as shown in Fig. 28.10 (a). In connection with toothed wheels, the circle is known as base circle. The involute is traced as follows: Let A be the starting point of the involute. The base circle is divided into equal number of parts e.g. AP1, P1 P2, P2 P3 etc.The tangents at P1, P2, P3 etc., are drawn and the lenghts P1A1, P2A2, P3A3 equal to the arcs AP1, AP2 and AP3 are set off. Joining the points A, A1, A2, A3 etc., we obtain the involute curve AR. A little consideration will show that at any instantA3, the tangent A3T to the involute is perpendicular to P3A3 and P3A3 is the normal to the involute. In other words, normal at any point of an involute is a tangent to the circle. Now, let O1 and O2 be the fixed centres of the two base circles as shown in Fig. 28.10(b). Let the corresponding involutes AB and A'B' be in contact at point Q. MQ and NQ are normals to the involute at Q and are tangents to base circles. Since the normal for an involute at a given point is the tangent drawn from that point to the base circle, therefore the common normal MN at Q is also the common tangent to the two base circles. We see that the common normal MN intersects the line of centres O1O2 at the fixed point P (called pitch point). Therefore the involute teeth satisfy the fundamental condition of constant velocity ratio.
  • 16. From similar triangles O2 NP and O1 MP, which determines the ratio of the radii of the two base circles. The radii of the base circles is given by where φ is the pressure angle or the angle of obliquity. Also the centre distance between the base circles
  • 17. Systems of Gear Teeth Terdapat 4 sistem gigi rodagigi digunakan dalam praktik, yaitu: (1) 14 /2° Composite system, digunakan untuk rodagigi tujuan umum, sangat kuat tetapi tidak dapat dipertukarkan, bentuk kurva sikloid pada puncak dan dasar, serta kurva involut di bagian tengah ; (2) 14 /2° Full depth involute system, bentuk yang telah dikembangkan untuk hobs rodagigi pada rodagigi lurus dan miring; (3) 20° Full depth involute system, profil gigi yang dipotong oleh hobs, sudut tekan menghasilkan gigi yang kuat karena gigi bekerja seperti batang yang luas pada bagian dasar; dan (4) 20° Stub involute system, memiliki gigi yang kuat untuk menerima beban berat. Proporsi Standar dari Sistem Rodagigi Proporsi standar pada modul (m) untuk empat sistem gigi rodagigi.
  • 18. Interference in Involute Gears A pinion gearing with a wheel is shown in Fig. 28.11. MN is the common tangent to the base circles and KL is the path of contact between the two mating teeth. A little consideration will show, that if the radius of the addendum circle of pinion is increased to O1N, the point of contact L will move from L to N. When this radius is further increased, the point of contact L will be on the inside of base circle of wheel and not on the involute profile of tooth on wheel. The tip of tooth on the pinion will then undercut the tooth on the wheel at the root and remove part of the involute profile of tooth on the wheel. This effect is known as interference and occurs when the teeth are being cut. In brief, the phenomenon when the tip of a tooth undercuts the root on its mating gear is known as interference.
  • 19. Similarly, if the radius of the addendum circle of the wheel increases beyond O2M, then the tip of tooth on wheel will cause interference with the tooth on pinion. The points M and N are called interference points. Obviously interference may be avoided if the path of contact does not extend beyond interference points. The limiting value of the radius of the addendum circle of the pinion is O1N and of the wheel is O2M. From the above discussion, we conclude that the interference may only be avoided, if the point of contact between the two teeth is always on the involute profiles of both the teeth. In other words, interference may only be prevented, if the addendum circles of the two mating gears cut the common tangent to the base circles between the points of tangency. Note : In order to avoid interference, the limiting value of the radius of the addendum circle of the pinion (O1 N) and of the wheel (O2 M), may be obtained as follows Minimum Number of Teeth on the Pinion in Order to Avoid Interference We have seen in the previous article that the interference may only be avoided, if the point of contact between the two teeth is always on the involute profiles of both the teeth. The minimum number of teeth on the pinion which will mesh with any gear (also rack) without interference are given in the following table.
  • 20. The number of teeth on the pinion (TP) in order to avoid interference may be obtained from the following relation : AW = Fraction by which the standard addendum for the wheel should be multiplied, G = Gear ratio or velocity ratio = TG / TP = DG / DP, φ = Pressure angle or angle of obliquity.
  • 21. Gear Materials The material used for the manufacture of gears depends upon the strength and service conditions like wear, noise etc. The gears may be manufactured from metallic or non-metallic materials. The metallic gears with cut teeth are commercially obtainable in cast iron, steel and bronze. The nonmetallic materials like wood, rawhide, compressed paper and synthetic resins like nylon are used for gears, especially for reducing noise. The cast iron is widely used for the manufacture of gears due to its good wearing properties, excellent machinability and ease of producing complicated shapes by casting method. The cast iron gears with cut teeth may be employed, where smooth action is not important. The steel is used for high strength gears and steel may be plain carbon steel or alloy steel. The steel gears are usually heat treated in order to combine properly the toughness and tooth hardness. The phosphor bronze is widely used for worm gears in order to reduce wear of the worms which will be excessive with cast iron or steel. The following table shows the properties of commonly used gear materials.
  • 22. Table 28.3. Properties of commonly used gear materials.
  • 23.
  • 24. Design Considerations for a Gear Drive 1. The power to be transmitted. 2. The speed of the driving gear, 3. The speed of the driven gear or the velocity ratio, and 4. The centre distance. The following requirements must be met in the design of a gear drive : (a) The gear teeth should have sufficient strength so that they will not fail under static loading or dynamic loading during normal running conditions. (b) The gear teeth should have wear characteristics so that their life is satisfactory. (c) The use of space and material should be economical. (d) The alignment of the gears and deflections of the shafts must be considered because they effect on the performance of the gears. (e) The lubrication of the gears must be satisfactory.
  • 25. Beam Strength of Gear Teeth – Lewis Equation The beam strength of gear teeth is determined from an equation (known as *Lewis equation) and the load carrying ability of the toothed gears as determined by this equation gives satisfactory results. In the investigation, Lewis assumed that as the load is being transmitted from one gear to another, it is all given and taken by one tooth, because it is not always safe to assume that the load is distributed among several teeth. When contact begins, the load is assumed to be at the end of the driven teeth and as contact ceases, it is at the end of the driving teeth. This may not be true when the number of teeth in a pair of mating gears is large, because the load may be distributed among several teeth. But it is almost certain that at some time during the contact of teeth, the proper distribution of load does not exist and that one tooth must transmit the full load. In any pair of gears having unlike number of teeth, the gear which have the fewer teeth (i.e. pinion) will be the weaker, because the tendency toward undercutting of the teeth becomes more pronounced in gears as the number of teeth becomes smaller.
  • 26. Consider each tooth as a cantilever beam loaded by a normal load (WN) as shown in Fig. 28.12. It is resolved into two components i.e. tangential component (WT) and radial component (WR) acting perpendicular and parallel to the centre line of the tooth respectively. The tangential component (WT) induces a bending stress which tends to break the tooth. The radial component (WR) induces a compressive stress of relatively small magnitude, therefore its effect on the tooth may be neglected. Hence, the bending stress is used as the basis for design calculations. The critical section or the section of maximum bending stress may be obtained by drawing a parabola through A and tangential to the tooth curves at B and C. This parabola, as shown dotted in Fig. 28.12, outlines a beam of uniform strength, i.e. if the teeth are shaped like a parabola, it will have the same stress at all the sections. But the tooth is larger than the parabola at every section except BC. We therefore, conclude that the section BC is the section of maximum stress or the critical section. The maximum value of the bending stress (or the permissible working stress), at the section BC is given by M = Maximum bending moment at the critical section BC = WT × h, WT = Tangential load acting at the tooth, h = Length of the tooth, y = Half the thickness of the tooth (t) at critical section BC = t/2, I = Moment of inertia about the centre line of the tooth = b.t3/12, b = Width of gear face.
  • 27. Masukkan nilai-nilai M, y, dan I ke dalam persamaan(i), diperoleh: t dan h adalah variabel-variabel yang bergantung atas ukuran gigi yaitu jarak bagi lingkaran dan profil giginya. Masukkan x2 / 6k = y, didapat: WT = σw . b . pc . y = σw . b . π m . y ...(pc = π m) y = faktor bentuk gigi WT =beban tangensial, disebut kekuatan batang gigi. therefore in order to find the value of y, the quantities t, h and pc may be determined analytically or measured from the drawing similar to Fig. 28.12. It may be noted that if the gear is enlarged, the distances t, h and pc will each increase proportionately. Therefore the value of y will remain unchanged. A little consideration will show that the value of y is independent of the size of the tooth and depends only on the number of teeth on a gear and the system of teeth. The value of y in terms of the number of teeth may be expressed as follows :
  • 28. Permissible Working Stress for Gear Teeth in the Lewis Equation The permissible working stress (σw) in the Lewis equation depends upon the material for which an allowable static stress (σo) may be determined. The allowable static stress is the stress at the elastic limit of the material. It is also called the basic stress. In order to account for the dynamic effects which become more severe as the pitch line velocity increases, the value of σw is reduced. According to the Barth formula, the permissible working stress, = tegangan statis ijin = faktor kecepatan
  • 29. Harga faktor kecepatan, : Untuk rodagigi ordinary cut yang beroperasi pada kecepatan sampai 12.5 m/s. Untuk rodagigi carefully cut yang beroperasi pada kecepatan sampai 12.5 m/s. Untuk rodagigi very accurately cut yang beroperasi pada kecepatan sampai 20 m/s. Untuk rodagigi precision cut dengan high accuracy yang beroperasi pada kecepatan sampai 20 m/s. Untuk rodagigi non metallic. Dynamic Tooth Load In the previous article, the velocity factor was used to make approximate allowance for the effect of dynamic loading. The dynamic loads are due to the following reasons : 1. Inaccuracies of tooth spacing, 2. Irregularities in tooth profiles, and 3. Deflections of teeth under load. A closer approximation to the actual conditions may be made by the use of equations based on extensive series of tests, as follows :
  • 30. Beban gigi dinamis: = beban dinamik total = beban diam yang bekerja memindahkan momen puntir = beban tambahan yang bekerja terhadap gerak dinamik, Beban tambahan bergantung atas: 1. kecepatan lintasan jarak bagi, 2. keakuratan pemotongan, dan 3. beban tangensial: = beban dinamik total, dalam N = beban diam yang dipindahkan, dalam N = kecepatan lintasan jarak bagi, dalam m/s = lebar permukaan gigi, dalam mm = faktor dinamis atau deformasi, dalam N/mm
  • 31. Faktor deformasi (C) bergantung atas: 1. kesalahan pada gerak gigi, 2. tumbukan potong dari gigi, 3. bentuk gigi, dan 4. bahan rodagigi. , dalam N/mm. K = faktor yang bergantung bentuk gigi: 0,107 untuk sistem rodagigi 14,5 ° full depth involute, 0,111 untuk sistem rodagigi 20 ° full depth involute, 0,107 untuk sistem rodagigi 20° stub. = modulus Young untuk bahan pinion, dalam N/mm². = modulus Young untuk bahan gear, dalam N/mm². = gerak kesalahan gigi, dalam mm.
  • 32.
  • 33.
  • 34. Beban Statis Gigi Beban Statis Gigi (kekuatan balok atau kekuatan ketahanan dari gigi) didapat dari rumus Lewis dengan memasukkan batas ketahanan flexural atau tegangan batas elastis. Beban gigi statis (juga disebut kekuatan gelagar atau kekuatan ketahanan gigi). he static tooth load (also called beam strength or endurance strength of the tooth) is obtained by Lewis formula by substituting flexural endurance limit or elastic limit stress (σe) in place of permissible working stress (σw). ∴ Static tooth load or beam strength of the tooth, WS = σe.b.pc.y = σe.b.π m.y
  • 35. Contoh 1. Berikut diketahui bagian-bagian dari sebuah rodagigi lurus reduksi tunggal: Perbandingan rodagigi = 10 : 1; jarak antar pusat = 660 mm; pinion memindahkan 500 kW at 1800 r.p.m.; gigi involut proporsi standar (tinggi kepala gigi atau adendum = m) dengan sudut tekan 22,5°; gaya tekan normal yang diijinkan antar gigi = 175 N tiap mm lebar gigi. Tentukan: 1. modul standar yang mendekati jika tanpa terjadi interferensi; 2. Jumlah gigi pada setiap roda; 3. Lebar gigi pinion yang diperlukan; dan 4. Beban pada bantalan dari rodagigi-rodagigi yang memindahkan daya. Penyelesaian : Diketahui: G = TG / TP = DG / DP = 10 ; L = 660 mm; P = 500 kW = 500000 W; NP = 1800 r.p.m.; φ = 22.5° ; WN = 175 N/mm lebar. Ditanyakan: 풎; 푻푷 ; 푻푮 ; 풃; 풅풂풏 푾푹
  • 36. 1. Modul standar terdekat jika tanpa terjadi interferensi: Oleh karena harga modul standar terdekat 8mm, maka diambil: m = 8 mm. 2. Jumlah gigi minimum yang dibutuhkan:
  • 37. 3. Lebar gigi pinion: Oleh karena gaya tekan antar gigi adalah 175 N tiap mm lebar gigi, maka lebar gigi pinion: 4. Beban pada bantalan roda:
  • 38. Contoh Soal 2: Pinion lurus dari bronz berputar pada 600 rpm menggerakkan rodagigi besi tuang pada perbandingan transmisi 4:1. Tegangan statis ijin pinion bronz dan rodagigi berturut-turut 84 Mpa dan 105 Mpa. Pinion memiliki 16 gigi standar full depth involute 20 derajad yang bermodul 8 mm. Lebar permukaan kedua gigi 90 mm. Tentukan daya yang dapat dipindahkan berdasar sisi kekuatannya! Penyelesaian: Diketahui: 푵푷 = ퟔퟎퟎ 풓풑풎; 푽. 푹 = 푻푮 푻푷 = ퟒ; 흈푶푷 = ퟖퟒ 푴푷풂 = ퟖퟒ 푵 풎풎ퟐ ; 흈푶푮 = ퟏퟎퟓ 푴푷풂 = ퟏퟎퟓ 푵 풎풎ퟐ ; 푻푷 = ퟏퟔ; 풎 = ퟖ 풎풎; 풃 = ퟗퟎ 풎풎. Ditanyakan: P Jawab: Untuk kecepatan jarak bagi kurang dari 12,5 m/s, maka faktor keceptan:
  • 39. Untuk gigi 20 derajad full depth involute, faktor bentuk gigi pinion: Selama kurang dari maka pinion yang paling lemah, dan digunakan sebagai dasar menghitung .. P