SlideShare une entreprise Scribd logo
1  sur  27
Key to Problems Week 9
[object Object],[object Object],[object Object],[object Object],What is the pH of a buffer that has [CH 3 COOH] = 0.700 M and [CH 3 COO - ] = 0.600 M? CH 3 COOH  +  H 2 O    CH 3 COO -   +  H 3 O + K a  = 1.8 x 10 -5 Assuming that  x << 0.700 and 0.600 , we can use the Henderson-Hasselbalch Equation 0.700 0.600 0 -x +x +x 0.700 - x 0.600 + x x
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],Preparing a Buffer Which one would you choose?   If you have a 0.100 M concentration of the base, what concentration of the acid would you need?
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Preparing a Buffer
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
The blood of mammals is an aqueous solution that maintains a constant pH. The normal pH of human blood is  7.40 . Carbon dioxide provides the most important blood buffer. In solution,  CO 2 , reacts with water to form  H 2 CO 3 , which ionizes to produce H 3 O +  and HCO 3 -  ions: CO 2 (g) + H 2 O(l)    H 2 CO 3 (aq) H 2 CO 3 (aq) + H 2 O(l)    H 3 O + (aq) + HCO 3 - (aq)  K a = 4.2 x 10 -7 Use this information to determine the concentration ratio [HCO 3 - ]/[H 2 CO 3 ] in blood.
H 2 CO 3 (aq) + H 2 O(l)    H 3 O + (aq) + HCO 3 - (aq)  K a = 4.2 x 10 -7 Use this information to determine the concentration ratio [HCO 3 - ]/[H 2 CO 3 ] in blood (pH = 7.40). pH = pK a  + log [Base]   [Acid] pH = 7.40; pK a  = 6.38 [Base]/[Acid] = ? 7.40 = 6.38 + log [Base] [Acid] 1.02 = log [ HCO 3 - ]    10 1.02  =  [ HCO 3 - ]   [ H 2 CO 3 ]   [ H 2 CO 3 ] [ HCO 3 - ] = 10.5   [ H 2 CO 3 ]
More with Henderson-Hasselbalch pK a (carb. acid) = 2.0 pK a (prot. amine) = 10.5 ,[object Object],[object Object],[object Object]
@pH = 1.0 The acid form (-COOH) is more prevalent.  For the carboxylic acid group: The acid form (-NH 3 + ) is more prevalent.  For the amine group:
C CH 2 O O H H 3 N @pH = 1.0 : : : : + C CH 2 O O H 3 N : : : : + C CH 2 O O H 2 N : : : : @pH = 7.0 @pH = 12.0 pK a (carb. acid) = 2.0 pK a (prot. amine) = 10.5 Key hints: -at low pH’s, the overall molecules will be + or neutral -at high pH’s, the overall charge on the molecules will be neutral or - : - : -
C CH 2 O O H H 3 N @pH = 1.0 : : : : + C CH 2 O O H 3 N : : : : + C CH 2 O O H 2 N : : : : @pH = 7.0 @pH = 12.0 : - : - pH = 1.0 pH = 7.0 pH = 12.0 pK a  = 2.0 -COOH -COO - pK a  = 10.2 -NH 3 + -NH 2 -COO - -NH 3 +
Solubility of Salts Consider:  AgCl(s)    Ag + (aq) + Cl - (aq) In a saturated solution [Ag + ] =1.34    10 -5  M.  What is the concentration of Cl ¯  ions in the system? [Cl - ] = [Ag + ] = 1.34    10 -5  M What is the value of K sp  for this salt? K sp  =[Ag + ][Cl - ] = (1.34    10 -5 ) 2  = 1.80 x 10 -10
Estimate the solubility of the following salt: PbSO 4  (K sp = 1.8    10 -8 ) PbSO 4      Pb 2+  +  SO 4 2-   I solid   0  0 C  -x   +x +x E solid   x  x K sp = [Pb 2+ ][SO 4 2- ] 1.8    10 -8  = [ x ][ x ] solubility = x = 1.3 x 10 -4  M
Determine the molar solubility of PbCl 2 ? K sp  = 1.7 x 10 -5 PbCl 2      Pb 2+  +  2 Cl -   I solid   0  0 C  -x   +x +2x E solid   x  2x K sp = [Pb 2+ ][Cl - ] 2 1.7    10 -5  = [ x ][ 2x ] 2 solubility = x = 0.016 M
PbI 2 (s)    Pb 2+ (aq) + 2I - (aq) Calculate K sp  for PbI 2  if [Pb 2+  ] = 0.00130 M in a saturated solution. PbI 2      Pb 2+  +  2 I -   I solid   0  0 C  -x   +x +2x E solid   x  2x K sp = [Pb 2+ ][I - ] 2 K sp  = [ 0.00130 ][ 2(0.00130) ] 2 K sp  = 8.79    10 -9
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Consider the following problem: Imagine you mix 500.0 mL of a solution of AgNO 3  1.5 x 10 -5  M with 500.0 mL of a solution of NaCl 1.5 x 10 -5  M. Will AgCl precipitate? AgCl(s)    Ag + (aq) + Cl - (aq)   K sp = 1.8 x 10 -10 Ksp = [Ag + ][Cl - ] First determine actual concentrations. For both: M 1 V 1 =M 2 V 2   M 2  =  (1.5    10 -5  mole/L)(0.500 L)   (1.000 L) Q = (7.5    10 -6 )(7.5    10 -6 ) = 5.6    10 -11 Q < K, therefore AgCl will not precipitate
Consider the case:  Hg 2 Cl 2 (s)    Hg 2 2+ (aq)  +  2 Cl - (aq) K sp   =  1.1 x 10 -18  = [Hg 2 2+ ] [Cl - ] 2 If [Hg 2 2+ ]=0.010 M, what [Cl - ] is required to just begin the precipitation of Hg 2 Cl 2 ? At the K sp , there is no precipitate, but is the threshold for when solid will form. K sp   = [Hg 2 2+ ][Cl - ] 2   1.1 x 10 -18  = [0.010][Cl - ] 2  [Cl - ] = 1.0 x 10 -8  M
Consider a solution containing 0.020 M Cl -  and 0.010 M CrO 4 2-  ions in which Ag +  ions are added slowly.  Which precipitates first, AgCl or Ag 2 CrO 4 ? K sp  for Ag 2 CrO 4  = 9.0 x 10 -12 K sp  for AgCl   = 1.8 x 10 -10 Solve for [Ag + ]    the one with the lower concentration of Ag +  will be the one that precipitates first. K sp  = [ Ag + ] 2 [ CrO 4 2- ] 9.0    10 -12  = [ Ag + ] 2 [ 0.010 ] [Ag + ] = 3.0    10 -5  M K sp  = [ Ag + ][ Cl - ] 1.8    10 -10  = [ Ag + ][ 0.020 ] [Ag + ] = 9.0    10 -9  M AgCl will precipitate first, because a lower concentration of silver is required to create a precipitate with Cl -
0.020 M Cl -  and 0.010 M CrO 4 2-  ions in which Ag +  ions are added  K sp  for Ag 2 CrO 4  = 9.0 x 10 -12 K sp  for AgCl   = 1.8 x 10 -10 Calculate the [Ag + ] when the maximum AgCl is precipitated, but none of the Ag 2 CrO 4  has precipitated. What percent of Cl -  remains in solution? [Ag + ] = 3.0    10 -5  M when Ag 2 CrO 4  will be nearly precipitated. At this point, AgCl will have precipitated, but the Ag 2 CrO 4  will not.
What percent of Cl -  remains in solution? To calculate the [Cl - ] remaining, take the [Ag + ] (at the point where Ag 2 CrO 4  is nearly precipitated) and plug it into the K sp  for AgCl and solve for [Cl - ]. [Cl - ] consumed by Ag + : K sp  = [Ag + ][Cl - ]      1.8 x 10 -10   = [3.0    10 -5 ][Cl - ] [Cl - ] = 6.0    10 -6  M We know the initial [Cl - ] = 0.020 M [Cl-] remaining 0.020 M Cl -  (initially)     6.0    10 -6  M Cl -   (consumed by Ag + ) =  0.01999 moles Cl -  remaining 0.01999     100% = 99.95% Cl -  remaining 0.020
 
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
2. What is the maximum mass of calcium fluoride that will dissolve in 500. mL of aqueous solution? K sp  = 1.46 x 10 -10   MW = 78.08 g/mol CaF 2     Ca 2+  + 2 F - Ksp = [Ca 2+ ][F - ] 2 I   0   0 C    +x   +2x E   x   2x 1.46    10 -10  = (x)(2x) 2 x = 3.32    10 -4  = molar solubility of CaF 2 3.32    10 -4   mol CaF 2     0.500 L    78.08  g CaF 2  =   L     mol CaF 2   0.0259 g CaF 2  in 500 mL
3. What is the molar solubility of CaF 2  in a solution of 0.10 M NaF? K sp  = 1.46 x 10 -10     CaF 2     Ca 2+  + 2 F - Ksp = [Ca 2+ ][F - ] 2 I   0   0.10 C    +x   +2x E   x   0.10+2x 1.46    10 -10  = (x)(0.10+2x) 2 1.46    10 -10  = (x)(0.10) 2    (2x will be small) x = 1.46    10 -8  = molar solubility Even though the soln has F-, some CaF2 is expected to dissolve

Contenu connexe

Tendances

Dpp 02 ionic_equilibrium_jh_sir-4170
Dpp 02 ionic_equilibrium_jh_sir-4170Dpp 02 ionic_equilibrium_jh_sir-4170
Dpp 02 ionic_equilibrium_jh_sir-4170NEETRICKSJEE
 
กรดเบส
กรดเบสกรดเบส
กรดเบส0875773416
 
Tang 02 b equilibrium & water 2
Tang 02 b   equilibrium & water 2Tang 02 b   equilibrium & water 2
Tang 02 b equilibrium & water 2mrtangextrahelp
 
Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011docott
 
CM4106 Review of Lesson 4
CM4106 Review of Lesson 4CM4106 Review of Lesson 4
CM4106 Review of Lesson 4Yong Yao Tan
 
Ch14 z5e acid base
Ch14 z5e acid baseCh14 z5e acid base
Ch14 z5e acid baseblachman
 
IB Chemistry on Nucleophilic Substitution, SN1, SN2 and protic solvent
IB Chemistry on Nucleophilic Substitution, SN1, SN2 and protic solventIB Chemistry on Nucleophilic Substitution, SN1, SN2 and protic solvent
IB Chemistry on Nucleophilic Substitution, SN1, SN2 and protic solventLawrence kok
 
Tang 05 calculations given keq 2
Tang 05   calculations given keq 2Tang 05   calculations given keq 2
Tang 05 calculations given keq 2mrtangextrahelp
 
AcidbaseequilibriumPDF
AcidbaseequilibriumPDFAcidbaseequilibriumPDF
AcidbaseequilibriumPDFmgci
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesLawrence kok
 
P h calculations
P h calculationsP h calculations
P h calculationschemjagan
 
Acid-Base Systems
Acid-Base SystemsAcid-Base Systems
Acid-Base Systemsaqion
 
Chemical Reactions: pH Equilibria
Chemical Reactions: pH EquilibriaChemical Reactions: pH Equilibria
Chemical Reactions: pH Equilibriaulcerd
 
Equivalence Points
Equivalence PointsEquivalence Points
Equivalence Pointsaqion
 
Tabla de Ka y pKa
Tabla de Ka y pKa Tabla de Ka y pKa
Tabla de Ka y pKa Mabis Hoppe
 
Acids and bases
Acids and basesAcids and bases
Acids and basesHoshi94
 
Dpp 01 ionic_equilibrium_jh_sir-4169
Dpp 01 ionic_equilibrium_jh_sir-4169Dpp 01 ionic_equilibrium_jh_sir-4169
Dpp 01 ionic_equilibrium_jh_sir-4169NEETRICKSJEE
 

Tendances (20)

Dpp 02 ionic_equilibrium_jh_sir-4170
Dpp 02 ionic_equilibrium_jh_sir-4170Dpp 02 ionic_equilibrium_jh_sir-4170
Dpp 02 ionic_equilibrium_jh_sir-4170
 
กรดเบส
กรดเบสกรดเบส
กรดเบส
 
Tang 02 b equilibrium & water 2
Tang 02 b   equilibrium & water 2Tang 02 b   equilibrium & water 2
Tang 02 b equilibrium & water 2
 
Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011Equilibrium slideshare. WN.2011
Equilibrium slideshare. WN.2011
 
CM4106 Review of Lesson 4
CM4106 Review of Lesson 4CM4106 Review of Lesson 4
CM4106 Review of Lesson 4
 
Acidos monoproticos y poliproticos
Acidos monoproticos y poliproticosAcidos monoproticos y poliproticos
Acidos monoproticos y poliproticos
 
asam dan basa
asam dan basa asam dan basa
asam dan basa
 
Tang 03 ph & poh 2
Tang 03   ph & poh 2Tang 03   ph & poh 2
Tang 03 ph & poh 2
 
Ch14 z5e acid base
Ch14 z5e acid baseCh14 z5e acid base
Ch14 z5e acid base
 
IB Chemistry on Nucleophilic Substitution, SN1, SN2 and protic solvent
IB Chemistry on Nucleophilic Substitution, SN1, SN2 and protic solventIB Chemistry on Nucleophilic Substitution, SN1, SN2 and protic solvent
IB Chemistry on Nucleophilic Substitution, SN1, SN2 and protic solvent
 
Tang 05 calculations given keq 2
Tang 05   calculations given keq 2Tang 05   calculations given keq 2
Tang 05 calculations given keq 2
 
AcidbaseequilibriumPDF
AcidbaseequilibriumPDFAcidbaseequilibriumPDF
AcidbaseequilibriumPDF
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
 
P h calculations
P h calculationsP h calculations
P h calculations
 
Acid-Base Systems
Acid-Base SystemsAcid-Base Systems
Acid-Base Systems
 
Chemical Reactions: pH Equilibria
Chemical Reactions: pH EquilibriaChemical Reactions: pH Equilibria
Chemical Reactions: pH Equilibria
 
Equivalence Points
Equivalence PointsEquivalence Points
Equivalence Points
 
Tabla de Ka y pKa
Tabla de Ka y pKa Tabla de Ka y pKa
Tabla de Ka y pKa
 
Acids and bases
Acids and basesAcids and bases
Acids and bases
 
Dpp 01 ionic_equilibrium_jh_sir-4169
Dpp 01 ionic_equilibrium_jh_sir-4169Dpp 01 ionic_equilibrium_jh_sir-4169
Dpp 01 ionic_equilibrium_jh_sir-4169
 

Similaire à Lect w9 buffers_exercises

Chemistry Equilibrium
Chemistry EquilibriumChemistry Equilibrium
Chemistry EquilibriumColin Quinton
 
Lect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_algLect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_algchelss
 
TOPIC 18 : ACIDS AND BASES
TOPIC 18 : ACIDS AND BASES TOPIC 18 : ACIDS AND BASES
TOPIC 18 : ACIDS AND BASES ALIAH RUBAEE
 
Pendekatan Stewart Asam Basa
Pendekatan Stewart Asam BasaPendekatan Stewart Asam Basa
Pendekatan Stewart Asam BasaIsman Firdaus
 
The solubility product is a kind of equilibrium constant and its value depend...
The solubility product is a kind of equilibrium constant and its value depend...The solubility product is a kind of equilibrium constant and its value depend...
The solubility product is a kind of equilibrium constant and its value depend...RidhaTOUATI1
 
Tang 08 equilibrium and solubility
Tang 08   equilibrium and solubilityTang 08   equilibrium and solubility
Tang 08 equilibrium and solubilitymrtangextrahelp
 
1 Precipitation-titrations.ppt
1 Precipitation-titrations.ppt1 Precipitation-titrations.ppt
1 Precipitation-titrations.pptAhmadHashlamon
 
Gravimetric method of analysis
Gravimetric method of analysis Gravimetric method of analysis
Gravimetric method of analysis Sajjad Ullah
 
Tang 06 assumptions with equilibrium 2
Tang 06   assumptions with equilibrium 2Tang 06   assumptions with equilibrium 2
Tang 06 assumptions with equilibrium 2mrtangextrahelp
 
Acid-Base Geochemistry.ppt
Acid-Base Geochemistry.pptAcid-Base Geochemistry.ppt
Acid-Base Geochemistry.pptPlutoP3
 
Asam Basa Air Laut_Pertemuan 6
Asam Basa Air Laut_Pertemuan 6Asam Basa Air Laut_Pertemuan 6
Asam Basa Air Laut_Pertemuan 6Eko Efendi
 
Mod2 3. Acid Base Equilibria.pptx
Mod2 3. Acid Base Equilibria.pptxMod2 3. Acid Base Equilibria.pptx
Mod2 3. Acid Base Equilibria.pptxUncleTravis
 
Lect w13 152_electrochemistry_key
Lect w13 152_electrochemistry_keyLect w13 152_electrochemistry_key
Lect w13 152_electrochemistry_keychelss
 
Tang 07 equilibrium and solubility 2
Tang 07   equilibrium and solubility 2Tang 07   equilibrium and solubility 2
Tang 07 equilibrium and solubility 2mrtangextrahelp
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Ahmad Al-Dallal
 
AP Chemistry Chapter 16 Outline
AP Chemistry Chapter 16 OutlineAP Chemistry Chapter 16 Outline
AP Chemistry Chapter 16 OutlineJane Hamze
 

Similaire à Lect w9 buffers_exercises (20)

Chemistry Equilibrium
Chemistry EquilibriumChemistry Equilibrium
Chemistry Equilibrium
 
Lect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_algLect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_alg
 
TOPIC 18 : ACIDS AND BASES
TOPIC 18 : ACIDS AND BASES TOPIC 18 : ACIDS AND BASES
TOPIC 18 : ACIDS AND BASES
 
Pendekatan Stewart Asam Basa
Pendekatan Stewart Asam BasaPendekatan Stewart Asam Basa
Pendekatan Stewart Asam Basa
 
#25 Key
#25 Key#25 Key
#25 Key
 
The solubility product is a kind of equilibrium constant and its value depend...
The solubility product is a kind of equilibrium constant and its value depend...The solubility product is a kind of equilibrium constant and its value depend...
The solubility product is a kind of equilibrium constant and its value depend...
 
Tang 08 equilibrium and solubility
Tang 08   equilibrium and solubilityTang 08   equilibrium and solubility
Tang 08 equilibrium and solubility
 
Matter2
Matter2Matter2
Matter2
 
1 Precipitation-titrations.ppt
1 Precipitation-titrations.ppt1 Precipitation-titrations.ppt
1 Precipitation-titrations.ppt
 
Gravimetric method of analysis
Gravimetric method of analysis Gravimetric method of analysis
Gravimetric method of analysis
 
Tang 06 assumptions with equilibrium 2
Tang 06   assumptions with equilibrium 2Tang 06   assumptions with equilibrium 2
Tang 06 assumptions with equilibrium 2
 
Equilibrio de solubilidad (kps)
Equilibrio de solubilidad (kps)Equilibrio de solubilidad (kps)
Equilibrio de solubilidad (kps)
 
Acid-Base Geochemistry.ppt
Acid-Base Geochemistry.pptAcid-Base Geochemistry.ppt
Acid-Base Geochemistry.ppt
 
Asam Basa Air Laut_Pertemuan 6
Asam Basa Air Laut_Pertemuan 6Asam Basa Air Laut_Pertemuan 6
Asam Basa Air Laut_Pertemuan 6
 
Mod2 3. Acid Base Equilibria.pptx
Mod2 3. Acid Base Equilibria.pptxMod2 3. Acid Base Equilibria.pptx
Mod2 3. Acid Base Equilibria.pptx
 
Lect w13 152_electrochemistry_key
Lect w13 152_electrochemistry_keyLect w13 152_electrochemistry_key
Lect w13 152_electrochemistry_key
 
Tang 07 equilibrium and solubility 2
Tang 07   equilibrium and solubility 2Tang 07   equilibrium and solubility 2
Tang 07 equilibrium and solubility 2
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10
 
AP Chemistry Chapter 16 Outline
AP Chemistry Chapter 16 OutlineAP Chemistry Chapter 16 Outline
AP Chemistry Chapter 16 Outline
 
#13 Key
#13 Key#13 Key
#13 Key
 

Plus de chelss

Lect w2 152 - rate laws_alg
Lect w2 152 - rate laws_algLect w2 152 - rate laws_alg
Lect w2 152 - rate laws_algchelss
 
Lect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevLect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevchelss
 
Lect w11 152 - entropy and free energy_alg
Lect w11 152 - entropy and free energy_algLect w11 152 - entropy and free energy_alg
Lect w11 152 - entropy and free energy_algchelss
 
Lect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_algLect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_algchelss
 
Lect w8 152 - ka and kb calculations_summary exercises_alg
Lect w8 152 - ka and kb calculations_summary exercises_algLect w8 152 - ka and kb calculations_summary exercises_alg
Lect w8 152 - ka and kb calculations_summary exercises_algchelss
 
Intro to equilibrium abbrev alg
Intro to equilibrium abbrev algIntro to equilibrium abbrev alg
Intro to equilibrium abbrev algchelss
 
Lect w7 152_abbrev_ intro to acids and bases_alg
Lect w7 152_abbrev_ intro to acids and bases_algLect w7 152_abbrev_ intro to acids and bases_alg
Lect w7 152_abbrev_ intro to acids and bases_algchelss
 
D08 abbrev arrhenius and catalysts_alg
D08 abbrev arrhenius and catalysts_algD08 abbrev arrhenius and catalysts_alg
D08 abbrev arrhenius and catalysts_algchelss
 
D07 abbrev arrhenius and catalysts_alg
D07 abbrev arrhenius and catalysts_algD07 abbrev arrhenius and catalysts_alg
D07 abbrev arrhenius and catalysts_algchelss
 
Lect w3 152_d2 - arrhenius and catalysts_alg (1)
Lect w3 152_d2 - arrhenius and catalysts_alg (1)Lect w3 152_d2 - arrhenius and catalysts_alg (1)
Lect w3 152_d2 - arrhenius and catalysts_alg (1)chelss
 
Lect w4 152 - rate and mechanisms_alg (1)
Lect w4 152 - rate and mechanisms_alg (1)Lect w4 152 - rate and mechanisms_alg (1)
Lect w4 152 - rate and mechanisms_alg (1)chelss
 
Lect w6 152_abbrev_ le chatelier and calculations_1_alg
Lect w6 152_abbrev_ le chatelier and calculations_1_algLect w6 152_abbrev_ le chatelier and calculations_1_alg
Lect w6 152_abbrev_ le chatelier and calculations_1_algchelss
 

Plus de chelss (12)

Lect w2 152 - rate laws_alg
Lect w2 152 - rate laws_algLect w2 152 - rate laws_alg
Lect w2 152 - rate laws_alg
 
Lect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevLect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrev
 
Lect w11 152 - entropy and free energy_alg
Lect w11 152 - entropy and free energy_algLect w11 152 - entropy and free energy_alg
Lect w11 152 - entropy and free energy_alg
 
Lect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_algLect w10 abbrev_ thermochemistry_alg
Lect w10 abbrev_ thermochemistry_alg
 
Lect w8 152 - ka and kb calculations_summary exercises_alg
Lect w8 152 - ka and kb calculations_summary exercises_algLect w8 152 - ka and kb calculations_summary exercises_alg
Lect w8 152 - ka and kb calculations_summary exercises_alg
 
Intro to equilibrium abbrev alg
Intro to equilibrium abbrev algIntro to equilibrium abbrev alg
Intro to equilibrium abbrev alg
 
Lect w7 152_abbrev_ intro to acids and bases_alg
Lect w7 152_abbrev_ intro to acids and bases_algLect w7 152_abbrev_ intro to acids and bases_alg
Lect w7 152_abbrev_ intro to acids and bases_alg
 
D08 abbrev arrhenius and catalysts_alg
D08 abbrev arrhenius and catalysts_algD08 abbrev arrhenius and catalysts_alg
D08 abbrev arrhenius and catalysts_alg
 
D07 abbrev arrhenius and catalysts_alg
D07 abbrev arrhenius and catalysts_algD07 abbrev arrhenius and catalysts_alg
D07 abbrev arrhenius and catalysts_alg
 
Lect w3 152_d2 - arrhenius and catalysts_alg (1)
Lect w3 152_d2 - arrhenius and catalysts_alg (1)Lect w3 152_d2 - arrhenius and catalysts_alg (1)
Lect w3 152_d2 - arrhenius and catalysts_alg (1)
 
Lect w4 152 - rate and mechanisms_alg (1)
Lect w4 152 - rate and mechanisms_alg (1)Lect w4 152 - rate and mechanisms_alg (1)
Lect w4 152 - rate and mechanisms_alg (1)
 
Lect w6 152_abbrev_ le chatelier and calculations_1_alg
Lect w6 152_abbrev_ le chatelier and calculations_1_algLect w6 152_abbrev_ le chatelier and calculations_1_alg
Lect w6 152_abbrev_ le chatelier and calculations_1_alg
 

Lect w9 buffers_exercises

  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7. The blood of mammals is an aqueous solution that maintains a constant pH. The normal pH of human blood is 7.40 . Carbon dioxide provides the most important blood buffer. In solution, CO 2 , reacts with water to form H 2 CO 3 , which ionizes to produce H 3 O + and HCO 3 - ions: CO 2 (g) + H 2 O(l)  H 2 CO 3 (aq) H 2 CO 3 (aq) + H 2 O(l)  H 3 O + (aq) + HCO 3 - (aq) K a = 4.2 x 10 -7 Use this information to determine the concentration ratio [HCO 3 - ]/[H 2 CO 3 ] in blood.
  • 8. H 2 CO 3 (aq) + H 2 O(l)  H 3 O + (aq) + HCO 3 - (aq) K a = 4.2 x 10 -7 Use this information to determine the concentration ratio [HCO 3 - ]/[H 2 CO 3 ] in blood (pH = 7.40). pH = pK a + log [Base] [Acid] pH = 7.40; pK a = 6.38 [Base]/[Acid] = ? 7.40 = 6.38 + log [Base] [Acid] 1.02 = log [ HCO 3 - ]  10 1.02 = [ HCO 3 - ] [ H 2 CO 3 ] [ H 2 CO 3 ] [ HCO 3 - ] = 10.5 [ H 2 CO 3 ]
  • 9.
  • 10. @pH = 1.0 The acid form (-COOH) is more prevalent. For the carboxylic acid group: The acid form (-NH 3 + ) is more prevalent. For the amine group:
  • 11. C CH 2 O O H H 3 N @pH = 1.0 : : : : + C CH 2 O O H 3 N : : : : + C CH 2 O O H 2 N : : : : @pH = 7.0 @pH = 12.0 pK a (carb. acid) = 2.0 pK a (prot. amine) = 10.5 Key hints: -at low pH’s, the overall molecules will be + or neutral -at high pH’s, the overall charge on the molecules will be neutral or - : - : -
  • 12. C CH 2 O O H H 3 N @pH = 1.0 : : : : + C CH 2 O O H 3 N : : : : + C CH 2 O O H 2 N : : : : @pH = 7.0 @pH = 12.0 : - : - pH = 1.0 pH = 7.0 pH = 12.0 pK a = 2.0 -COOH -COO - pK a = 10.2 -NH 3 + -NH 2 -COO - -NH 3 +
  • 13. Solubility of Salts Consider: AgCl(s)  Ag + (aq) + Cl - (aq) In a saturated solution [Ag + ] =1.34  10 -5 M. What is the concentration of Cl ¯ ions in the system? [Cl - ] = [Ag + ] = 1.34  10 -5 M What is the value of K sp for this salt? K sp =[Ag + ][Cl - ] = (1.34  10 -5 ) 2 = 1.80 x 10 -10
  • 14. Estimate the solubility of the following salt: PbSO 4 (K sp = 1.8  10 -8 ) PbSO 4  Pb 2+ + SO 4 2- I solid 0 0 C -x +x +x E solid x x K sp = [Pb 2+ ][SO 4 2- ] 1.8  10 -8 = [ x ][ x ] solubility = x = 1.3 x 10 -4 M
  • 15. Determine the molar solubility of PbCl 2 ? K sp = 1.7 x 10 -5 PbCl 2  Pb 2+ + 2 Cl - I solid 0 0 C -x +x +2x E solid x 2x K sp = [Pb 2+ ][Cl - ] 2 1.7  10 -5 = [ x ][ 2x ] 2 solubility = x = 0.016 M
  • 16. PbI 2 (s)  Pb 2+ (aq) + 2I - (aq) Calculate K sp for PbI 2 if [Pb 2+ ] = 0.00130 M in a saturated solution. PbI 2  Pb 2+ + 2 I - I solid 0 0 C -x +x +2x E solid x 2x K sp = [Pb 2+ ][I - ] 2 K sp = [ 0.00130 ][ 2(0.00130) ] 2 K sp = 8.79  10 -9
  • 17.
  • 18.
  • 19. Consider the following problem: Imagine you mix 500.0 mL of a solution of AgNO 3 1.5 x 10 -5 M with 500.0 mL of a solution of NaCl 1.5 x 10 -5 M. Will AgCl precipitate? AgCl(s)  Ag + (aq) + Cl - (aq) K sp = 1.8 x 10 -10 Ksp = [Ag + ][Cl - ] First determine actual concentrations. For both: M 1 V 1 =M 2 V 2 M 2 = (1.5  10 -5 mole/L)(0.500 L) (1.000 L) Q = (7.5  10 -6 )(7.5  10 -6 ) = 5.6  10 -11 Q < K, therefore AgCl will not precipitate
  • 20. Consider the case: Hg 2 Cl 2 (s)  Hg 2 2+ (aq) + 2 Cl - (aq) K sp = 1.1 x 10 -18 = [Hg 2 2+ ] [Cl - ] 2 If [Hg 2 2+ ]=0.010 M, what [Cl - ] is required to just begin the precipitation of Hg 2 Cl 2 ? At the K sp , there is no precipitate, but is the threshold for when solid will form. K sp = [Hg 2 2+ ][Cl - ] 2 1.1 x 10 -18 = [0.010][Cl - ] 2 [Cl - ] = 1.0 x 10 -8 M
  • 21. Consider a solution containing 0.020 M Cl - and 0.010 M CrO 4 2- ions in which Ag + ions are added slowly. Which precipitates first, AgCl or Ag 2 CrO 4 ? K sp for Ag 2 CrO 4 = 9.0 x 10 -12 K sp for AgCl = 1.8 x 10 -10 Solve for [Ag + ]  the one with the lower concentration of Ag + will be the one that precipitates first. K sp = [ Ag + ] 2 [ CrO 4 2- ] 9.0  10 -12 = [ Ag + ] 2 [ 0.010 ] [Ag + ] = 3.0  10 -5 M K sp = [ Ag + ][ Cl - ] 1.8  10 -10 = [ Ag + ][ 0.020 ] [Ag + ] = 9.0  10 -9 M AgCl will precipitate first, because a lower concentration of silver is required to create a precipitate with Cl -
  • 22. 0.020 M Cl - and 0.010 M CrO 4 2- ions in which Ag + ions are added K sp for Ag 2 CrO 4 = 9.0 x 10 -12 K sp for AgCl = 1.8 x 10 -10 Calculate the [Ag + ] when the maximum AgCl is precipitated, but none of the Ag 2 CrO 4 has precipitated. What percent of Cl - remains in solution? [Ag + ] = 3.0  10 -5 M when Ag 2 CrO 4 will be nearly precipitated. At this point, AgCl will have precipitated, but the Ag 2 CrO 4 will not.
  • 23. What percent of Cl - remains in solution? To calculate the [Cl - ] remaining, take the [Ag + ] (at the point where Ag 2 CrO 4 is nearly precipitated) and plug it into the K sp for AgCl and solve for [Cl - ]. [Cl - ] consumed by Ag + : K sp = [Ag + ][Cl - ]  1.8 x 10 -10 = [3.0  10 -5 ][Cl - ] [Cl - ] = 6.0  10 -6 M We know the initial [Cl - ] = 0.020 M [Cl-] remaining 0.020 M Cl - (initially)  6.0  10 -6 M Cl - (consumed by Ag + ) = 0.01999 moles Cl - remaining 0.01999  100% = 99.95% Cl - remaining 0.020
  • 24.  
  • 25.
  • 26. 2. What is the maximum mass of calcium fluoride that will dissolve in 500. mL of aqueous solution? K sp = 1.46 x 10 -10 MW = 78.08 g/mol CaF 2  Ca 2+ + 2 F - Ksp = [Ca 2+ ][F - ] 2 I 0 0 C +x +2x E x 2x 1.46  10 -10 = (x)(2x) 2 x = 3.32  10 -4 = molar solubility of CaF 2 3.32  10 -4 mol CaF 2  0.500 L  78.08 g CaF 2 = L mol CaF 2 0.0259 g CaF 2 in 500 mL
  • 27. 3. What is the molar solubility of CaF 2 in a solution of 0.10 M NaF? K sp = 1.46 x 10 -10 CaF 2  Ca 2+ + 2 F - Ksp = [Ca 2+ ][F - ] 2 I 0 0.10 C +x +2x E x 0.10+2x 1.46  10 -10 = (x)(0.10+2x) 2 1.46  10 -10 = (x)(0.10) 2 (2x will be small) x = 1.46  10 -8 = molar solubility Even though the soln has F-, some CaF2 is expected to dissolve

Notes de l'éditeur

  1. Tier 1
  2. Tier 1
  3. Tier 1
  4. Tier 2
  5. Tier 2
  6. Tier 2