SlideShare une entreprise Scribd logo
1  sur  37
Télécharger pour lire hors ligne
www.ciat.cgiar.org Agricultura Eco-Eficiente para Reducir la Pobrezawww.ciat.cgiar.org Agricultura Eco-Eficiente para Reducir la Pobreza
Interpreting yield variation in commercial
production of crops
DAPA
(Decision and Policy Analysis Program)
Farmers’ production
experiences/ commercial
production of crops
Principles of
operational
research
Modern
information
technology
What we
do
Environmental characterization of the production
system
Analysis of the Observations to optimize the system
Kg/Arbol Temperatura Edad
Observations made by farmers according to their
particular circumstances
Interpreting yield variation in commercial production of crops
Distribution of yield
The challenges !
Parametric, non-parametric?.... The reality!
Introduction
23
• Models rely on on assumptions of:
• Normality
• Homogeneity of Variance
• Independence
• Mostly based on linear relationships
• Models do not rely on assumptions
• Linear/ non-linear relationships
The challenges !
Parametric, non-parametric?... depends on distribution of residuals
Introduction
PARAMETRIC
NON- PARAMETRIC
As Sharon quoted:
“La sabiduria del internet”:
I have never come across a situation where a normal test is the right
thing to do.
When the sample size is small, even big departures from normality
are not detected, and when your sample size is large, even the
smallest deviation from normality will lead to a rejected null
http://stackoverflow.com/questions/7781798/seeing-if-data-is-normally-
distributed-in-r :
The challenges !
Parametric, non-parametric?
Introduction
“La sabiduria de”: Nassim Nicholas Taleb a “superhero of the mind”
(The Black Swan, Fooled by Randommess, Antifragile) - Nassim Nicholas Taleb
The statistical regress argument
“We need the data to tells us what the probability distribution is,
and a probability distribution to tell us how much data we need”
The challenges !
Parametric, non-parametric?
Introduction
The challenges !
Parametric, non-parametric?
Introduction
In terms of Big Data
• Approaching “N=All”
• The first is to collect and use a lot of data rather than settle for small amounts
or samples, as researchers have done for well over a century
• We can learn from a large body of information things that we could not
comprehend when we used only smaller amounts
• Sometimes to inform is better than explain – Looking for patterns
Doctors save lives in Canada by knowing that something is likely to occur,
this can be far more important than understanding exactly why
Big Data (Foreign Affairs magazine / McKinsey's High Tech)
What people think it is…
What it actually is…
Was clear for Antoine de Saint-Exupéry
(The little prince )
What people think it is…
What it actually is… Some of our
findings !
The challenges !
Parametric, non-parametric? Not always normal distribution !
Introduction
Analytical approaches
V1 V2 V3 V4 V5 … V60 L 2 L 3 L 4 L 5 … Kg/plot
Obs 1 0.1 18 3 312 0.3 … 89 0 1 0 1 0 … 2.39
Obs 2 0.2 15 4 526 0.1 … 52 1 0 0 0 1 … 30.35
Obs 3 0.6 14 1 489 0.2 … 64 0 1 1 1 1 … 42.25
Obs 4 0.05 19 2 523 0.5 … 13 0 0 0 0 1 … 52.50
Obs 5 0.4 13 3 214 0.6 … 57 1 1 1 1 1 …
Obs 6 0.8 12 4 265 0.4 … 24 1 1 0 1 0 … 82.25
Obs 7 0.2 15 1 236 0.8 … 26 0 0 1 0 0 … 89.28
Obs 8 0.1 17 3 541 0.1 … 35 0 1 1 1 0 … 125.0
Obs9 0.6 16 2 845 0.3 … 51 0 0 1 1 0 … 142.8
Obs10 0.1 18 1 126 0.1 … 43 1 1 0 0 1 … 150.0
… … … … … … … … … … … … … … …
Obs3000 0.04 15 3 235 0.6 … 85 1 1 1 1 0 … 180
70.52
L 1
Supervised models – Parametric and non parametrics
Independent variables/ Inpust/predictors
dependent
/output/
response
(known)
…
11
12
L 1
Unsupervised
models
V1 V2 V3 V4 V5 … V60 L 2 L 3 L 4 L 5
Obs 1 0.1 18 3 312 0.3 … 89 0 1 0 1 0
Obs 2 0.2 15 4 526 0.1 … 52 1 0 0 0 1
Obs 3 0.6 14 1 489 0.2 … 64 0 1 1 1 1
Obs 4 0.05 19 2 523 0.5 … 13 0 0 0 0 1
Obs 5 0.4 13 3 214 0.6 … 57 1 1 1 1 1
Obs 6 0.8 12 4 265 0.4 … 24 1 1 0 1 0
Obs 7 0.2 15 1 236 0.8 … 26 0 0 1 0 0
Obs 8 0.1 17 3 541 0.1 … 35 0 1 1 1 0
Obs9 0.6 16 2 845 0.3 … 51 0 0 1 1 0
Obs10 0.1 18 1 126 0.1 … 43 1 1 0 0 1
… … … … … … … … … … … … …
Obs3000 0.04 15 3 235 0.6 … 85 1 1 1 1 0
L 1
…………
…………
…………
…………
…………
…………
…………
…………
…………
…………
…………
…………
Analytical approaches – Parametric and non
parametrics
Self-organizing Maps (SOM)
Observations close to each other in the
visualization space
-4 -2 0 2 4 6 8
-4
-2
0
2
4
Axis1
Axis2
1st case study- Andean blackberry based on ANNs
Scatter plot displaying MLP predicted yield versus real Andean blackberry yield, using only the
validation dataset1715
R² = 0.892
-0.2
0.3
0.8
1.3
1.8
-0.2 0.3 0.8 1.3 1.8
Predictedyield(kg/plant/week)
Real yield (kg/plant/week)
Predicted
Supervised models - Non-linear regression
Coefficient of determination= 0.89
Histogram displaying yield data distribution of Andean blackberry
(Kg/plant/week)
Numberofobservations
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
EffDepth
TempAvg_1
Na_un_chical
Na_un_cusba
TempAvg_0
TempAvg_2
TempAvg_3
ExtDrain
PrecAcc_1
Trmm_3
Nar-Cal
Cal_riosu_zr
Srtm
Slope
PrecAcc_0
Trmm_2
Na_un_cusal
Trmm_0
PrecAcc_3
TempRang_0
TempRang_2
AB_Thorn_N
Na_un_lajac
PrecAcc_2
Trmm_1
IntDrain
TempRang_3
TempRang_1
12 20 3 5 17 23 26 11 22 16 2 7 8 9 19 15 4 13 28 18 24 1 6 25 14 10 27 21
%Sensitivity
Sensitivity distribution of the model with respect to the inputs/predictors
Jiménez, D., Cock, J., Satizábal, F., Barreto, M., Pérez-Uribe, A., Jarvis, A. and Van Damme, P., 2009. Computers and
Electronics in Agriculture. 69 (2): 198–208
Sensitivity Matrix
Results - Andean blackberry
16
Effective soil depth
Temperature averages
Geographic location
Results - Andean blackberry
(a) Kohonen map displaying the resultant 6 clusters and their labels according to yield values (b)
Component plane of Andean blackberry yield, the scale bar (right) indicates the range value of
productivity in kg/plant/week The upper side exhibits high values of yield, whereas the lower displays
low values
Unsupervised model - Visualization – component planes - SOM
17
Andean blackberry yieldKohonen map – 6 clusters
(a) (b)
Results - Andean blackberry
Component plane of effective soil depth. The scale bar (right) indicates the range value in cm of soil depth:
the upper side of the scale exhibits high values, whereas the lower displays low values
18
Effective soil depth
Unsupervised model - Visualization – component planes - SOM
Results - Andean blackberry
Components planes of the temperature averages. In all figures, the scale bar (right)
indicates the range value in ◦C of temperature. The upper side exhibits high values,
whereas the lower displays low values
19
Unsupervised model - Visualization – component planes - SOM
Results - Andean blackberry
Component planes of the specifics geographic areas Nariño–La Union–Chical alto (left) and Nariño–La
union–Cusillo bajo (right). The highest values indicate presence and the lowest absence as they are
categorical variables
Visualization – component planes - SOM
20
Nariño - La Union – Chical Alto Nariño - La Union – Cusillo bajo
Drawbacks
20
• Crop management factors not included (only variety)
• Only non-parametric approaches (Based on ANNs)
• Limited spatial variation (Two locations- two departaments)
Advantages
• Predictor-predictor and predictor- response dependencies through Kohonen’s
Maps
• Combination of factors
• Non-linear approach
2nd case study- Lulo
Distribution of R2 obtained with each model
Regression R2
(mean)
Confidence
interval (95%)
Robust (linear) 0.65 0.63 - 0.66
MLP (non-linear) 0.69 0.67 - 0.70
Both models explained more than 60% of
variability in Lulo production
2321
Histogram displaying yield data distribution of lulo
(g/plant/week)
R2
provided by each approach
MLP
Robust regression
0.2877 0.3545 0.4214 0.4883 0.5552 0.6221 0.6889 0.7558 0.8227
0
2
4
6
8
10
12
14
16
18
20
22
24
26
NumberofobservationsNumberofobservations
Numberofobservations
Supervised modelling
Results - Lulo
The Sensitivity Matrix
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
%Sensitivity
Jiménez, D., Cock, J., Jarvis, A., Garcia, J., Satizábal, H.F., Van Damme, Pérez-Uribe, A., and Barreto, M., 2010.
Interpretation of Commercial Production Information: A case study of lulo, an under-researched Andean fruit.
Agricultural Systems. 104 (3): 258-270
22
Sensitivity distribution of the model with respect to the inputs/predictors
Effective soil depth
Temperature averages
Slope
(a) U-matrix displaying the distance among prototypes. The scale bar (right) indicates the values of
distance. The upper side exhibits high distances, whilst the lower displays low distances; (b) Kohonen
map displaying the 3 clusters obtained after using the K-means algorithm and the Davies–Bouldin index
The three most relevant variables were used to train a Kohonen map and identify clusters of
Homogeneous Environmental Conditions (HECs)
Results - Lulo
Unsupervised model - Clustering – component planes - SOM
23
U-Matrix Kohonen map – 3 clusters
Results - Lulo
Clustering – component planes - SOM
A mixed model with the categorical variables of three HECs, location and farmer
explained more than 80% of variation in lulo yield
Parameters Estimate
(g/plant/week)
Standard
Error
%
of total variance
Model including categorical variables of 3 HECs, location and farm
HEC 1.85 2.01 61.2%
Location 0.07 0.20 2.5%
Site-Farm 0.57 0.21 19.0%
Error 0.52 0.04 17.3%
Total 100.0%
Variance components of the mixed model estimations
24
Variable ranges HEC
Slope (degrees) EffDepth (cm) TempAvg_0
(°C)
5-14 21-40 15 -16.5 1
8-15 32-69 15 -18.9 2
13-24 40-67 15.8 -19 3
HEC 3 yielded 41 g/plant/week
more fruit than average
Results - Lulo
-30.00
-20.00
-10.00
0.00
10.00
20.00
30.00
40.00
50.00
1 2 3
Luloyield(g/plant/week)
Effects of clusters of environmental
conditions
25
Results - Lulo
Farm 7 and 9 in HEC 3. Farm 7 produced 68 g/plant/week less than average, whilst
farm 9 produced 51 g/plant/week more than average
-80.00
-60.00
-40.00
-20.00
0.00
20.00
40.00
60.00
1 2 3 4 5 8 17 5 6 8 10 11 12 13 15 16 17 19 20 7 9 14 18 19 20 21
1 2 3
Luloyield(g/plant/week)
Effects of farms across clusters of environmental conditions
1 2 3
26
Jiménez, D., Cock, J., Jarvis, A., Garcia, J., Satizábal, H.F., Van Damme, Pérez-Uribe, A., and Barreto, M., 2010. Interpretation of Commercial Production
Information: A case study of lulo, an under-researched Andean fruit. Agricultural Systems. 104 (3): 258-270
Drawbacks
20
• Crop management factors not included (only variety)
• Compared with the Andean blackberry study, even more limited spatial
Variation (locations within one department)
Advantages
• Iterative procedure (combination of parametric & non parametric /linear & non-
linear)
• Combination of factors
• The study is the first formal research study that evidences the yield gap
between farmers under similar climatic conditions in Colombia...provided the
basis for the site-specific analytical approaches
• Successfully identified farms that have superior management practices for
given environmental conditions
23
Facto Class (Clusters de Clima)
-1.0 -0.5 0.0 0.5 1.0
-1.0-0.50.00.51.0
Variables factor map (PCA)
Dim 1 (44.64%)
Dim2(27.62%)
bio_1
bio_2
bio_3
bio_4
bio_5
bio_6
bio_7
bio_8
bio_9bio_10bio_11
bio_12bio_13
bio_14
bio_15
bio_16
bio_17bio_18
bio_19
-5 0 5 10
-4-20246
Dim 1 (43.43%)
Dim2(29.83%)
Cluster
1
2
3
4
5
6
7
8
3er Estudio de Caso- Plátano
23
PCA
CATPCA (Clusters de Suelo)
3er Estudio de Caso- Plátano
23
C4S5
Cluster de Clima 4
Cluster Suelo 5
3er Estudio de Caso- Plátano
C4S5
3er Estudio de Caso- Plátano
Modelo Linear Generalizado ( MLG)
Log(Yield) = (1.22) + densidad de siembra (0.0008) + E
El modelo - Dependencias entre predictores y la variable de respuesta
Nivel de
significancia al 5%
Log (Y) = B0 + X (B1) + E
Log (Y) = B0 + X (B1) + X(B2) + E
C5S5
Log(Yield) = 0.80 + densidad de siembra (0.00101) + MezcVar (0.324154) + E
Modelo Linear Generalizado ( MLG)
3er Estudio de Caso- Plátano
Nivel de
significancia al 5%
23
log(Yield) = β0+ β1 𝑋1 + β2 𝑋2 + … + ε
𝑒log(𝑌𝑖𝑒𝑙𝑑)
= 𝑒β0+ β1 𝑋1+ β2 𝑋2+ … + ε
(No linear)
𝑌𝑖𝑒𝑙𝑑 = 𝑒β0+ β1 𝑋1+ β2 𝑋2+ … + ε (regresando a unidad inicial Tons/ha)
𝑌𝑖𝑒𝑙𝑑 = 𝑒β0 𝑒β1 𝑋1 𝑒β2 𝑋2 … 𝑒ε (dependencias entre predictores y Tons/ha)
Con el modelo es posible calcular en cuantas veces se aumenta o
disminuye el rendimiento, mediante el cambio de una práctica específica
• Interpretación de los parámetros
3er Estudio de Caso- Plátano
Modelo Linear Generalizado ( MLG)
23
Log(Yield) = (1.22) + densidad de siembra (0.0008) + E
Yield = 𝒆(1.22) 𝒆densidad de siembra (0.0008) 𝒆E
Densidad de siembra = 100  𝑒100 (0.008)
Con un nivel de confianza del 90%, se puede esperar que por cada
100 árboles/ha, el rendimiento anual en tons/ha aumente de un
3.2% a un 14.2%.
C4S5(Densidad de siembra)
• Interpretación de los parámetros
Modelo Linear Generalizado ( MLG)
3er Estudio de Caso- Plátano
23
3rd case study- Plantain
Mezc Var = 𝟎. 𝟎𝟎𝟏𝟎  𝑒presencia (0.0010)
Con un nivel de confianza del 90% se puede esperar que sembrar
variedades mezcladas pueda aumentar la producción en más de 10.46%.
Log(Yield) = 0.80 + densidad de siembra (0.00101) + Mezc Var (0.324154) + E
Yield = 𝒆(0.80) 𝒆 densidad de siembra (0.00101) 𝒆Mezc Var (0.00101) 𝒆E
C5S5 (Mezcla de Variedades)
• Interpretación de los parámetros
Modelo Linear Generalizado ( MLG)
23
C4S5 (densidad de siembra)
Yield = 𝒆(−2.078) 𝒆 densidad de siembra (0.0077) 𝒆dibujo de siembra(0.2079) 𝒆E
Con un nivel de confianza del 90%, se puede esperar que por cada 10
árboles/ha que se aumente en la densidad de siembra, el rendimiento anual
en toneladas por hectárea puede aumentar de un 2.3% a un 13.2 %
Densidad de siembra = 10 𝑒10 (0.0077)
• Interpretación de los parámetros
Modelo Linear Generalizado ( MLG)
4to Estudio de Caso- Aguacate
23
C2S4 (Dibujo de siembra)
Yield = 𝒆(3.6) 𝒆 densidad de siembra (−0.006) 𝒆variedad (0.434) 𝒆dibujo de siembra (0.7946) 𝒆E
Dibujo de siembra = 10 𝑒presencia (0.7946)
Con un nivel de confianza de 90%, se puede esperar que un productor de esta zona
que siembre en tresbolillo en vez de cuadrado, puede aumentar su producción en
más de 30.21%
4to Estudio de Caso- Aguacate
• Interpretación de los parámetros
Modelo Linear Generalizado ( MLG)
Drawbacks
20
• Not enough crop management factors to applied a hierarchical approach such as
mixed models
• Limited temporal variation
Advantages
• Iterative procedure (combination of parametric and semi-parametric)
• Crop management factors included (Farmer can control them)
• Predictors- response dependencies through GLM
• Large spatial variation
• Soil information included
• Linear & non-linear approach
Gracias !!!
-5 0 5
-4
-2
0
2
4
Factor 1: 3.8369 (48%)
Factor2:2.518(31.5%)
1194
24752476247724782479
248424852486
248724882489
24902491249224932494249724982499250025012502250325042505250625072508
2510
25112513251425152516251725182519
2524
25252526252725282529253025312532
2533
2534253525362537
253825392540301030113012301330143015301630173018301930203021
30223023
3024
302530263027
302830293030303130323033
303530363037303830393040304130423043
3044304530463047
3048304930503051305230533054305730583059
3060
306230633064
30653067
3360
736
13201321132213231324132513261327132813291331133213331335
1355
13591360136113621363
136413651366136713681369137013811382
1386
139013911392139313941395
1399140014011402
1403140414051415
1416
1417141914201421
1422
15501551
159416111612
1616
1624
20642067
206920702077207820792081208420892090209320962099210021012102
21042105
2106
2110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137
21382139214021412142214321442145
2146
2147214821492150
2433
254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572
2573257425752576257725782579
2580
2728
577578579580581582583584585586587588589590592595596597605610613615
619621 624643650
670671672673674675676679680682
687
690691
692
839840842844845
2706270727082709
271127122713
2714
271527162717271827192720
2721272227262727
272927302731
2736
27402741
2742
274327442745
2748
2749275027512752275327542757
2791
3182319832003261326232633264326532663267326832693270
3271
32723273
99809981
99829983
9985
9986
9987
9988
9989
9990
9991
647
869870871872873874875876877878879880893894895896897898899900901904905906907908909
910911912913
914915918919920923924925929938950951
953954955956957958
964965
1983
1984
1985
2012
2014
2386
2390
2465
248024812482
2483
249524962509
2512
2520252125222523
2822
28242825282628282829
2830
2836
284928502851
285528562857285828592860286128632864
2865
286628672868287028722873
287728782879288028812885
303430553056306130663068
3107
31313132
3324
9984bio_7bio_12bio_13
bio_4bio_6bio_15
cons_mths
bio_14
cl1
cl2
cl3
Parametric methods
•Ordinary Least Squares regression (OLS)
•Principal component analysis (PCA)
•Robust linear regressions
•Mixed Models
•Best Linear Unbiased Prediction (BLUP)
•Facto Class (Factor analysis, Ward's method ,
K-means
•Categorical Principal Components Analysis
(CATPCA)
Semi or non-parametric methods
• Generalized linear model (GLM)
• Self Organizing Maps (SOM)
• Multilayer perceptron (MLP)
• Fuzzy logic
Analytical approaches – Data-driven
We adapt a range of methodologies to the analysis of real data … rather than data to some
methodologies.

Contenu connexe

Similaire à Interpreting yield variation in commercial production of crops / Como interpretar la variación de la productividad a partir de información comercial de cultivos

Statistic process control
Statistic process controlStatistic process control
Statistic process control
arif silaban
 
Risk management
Risk managementRisk management
Risk management
Sunam Pal
 
Basic method of measurement.pptx
Basic method of measurement.pptxBasic method of measurement.pptx
Basic method of measurement.pptx
SivaGovind2
 
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
Bibhuti Prasad Nanda
 
Risk management Report
Risk management ReportRisk management Report
Risk management Report
NewGate India
 
Handling displacement effects in on-body sensor-based activity recognition
Handling displacement effects in on-body sensor-based activity recognitionHandling displacement effects in on-body sensor-based activity recognition
Handling displacement effects in on-body sensor-based activity recognition
Oresti Banos
 
Ppt On S.Q.C.
Ppt On S.Q.C.Ppt On S.Q.C.
Ppt On S.Q.C.
dvietians
 

Similaire à Interpreting yield variation in commercial production of crops / Como interpretar la variación de la productividad a partir de información comercial de cultivos (20)

Statistic process control
Statistic process controlStatistic process control
Statistic process control
 
Risk management
Risk managementRisk management
Risk management
 
HMI Best Practices
HMI Best PracticesHMI Best Practices
HMI Best Practices
 
Qualitycontrol
QualitycontrolQualitycontrol
Qualitycontrol
 
Basic method of measurement.pptx
Basic method of measurement.pptxBasic method of measurement.pptx
Basic method of measurement.pptx
 
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
6Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
 
Advanced Statistics And Probability (MSC 615
Advanced Statistics And Probability (MSC 615Advanced Statistics And Probability (MSC 615
Advanced Statistics And Probability (MSC 615
 
Qualitycontrol
QualitycontrolQualitycontrol
Qualitycontrol
 
Risk management Report
Risk management ReportRisk management Report
Risk management Report
 
03 chapter 3 application .pptx
03 chapter 3 application .pptx03 chapter 3 application .pptx
03 chapter 3 application .pptx
 
Ch04
Ch04Ch04
Ch04
 
14. Statistical Process Control.pptx
14. Statistical Process Control.pptx14. Statistical Process Control.pptx
14. Statistical Process Control.pptx
 
Control Charts in Lab and Trend Analysis
Control Charts in Lab and Trend AnalysisControl Charts in Lab and Trend Analysis
Control Charts in Lab and Trend Analysis
 
5. spc control charts
5. spc   control charts5. spc   control charts
5. spc control charts
 
FREL uncertainties estimates
FREL uncertainties estimatesFREL uncertainties estimates
FREL uncertainties estimates
 
Statistical Process Control Presentation.pdf
Statistical Process Control Presentation.pdfStatistical Process Control Presentation.pdf
Statistical Process Control Presentation.pdf
 
Handling displacement effects in on-body sensor-based activity recognition
Handling displacement effects in on-body sensor-based activity recognitionHandling displacement effects in on-body sensor-based activity recognition
Handling displacement effects in on-body sensor-based activity recognition
 
Ppt On S.Q.C.
Ppt On S.Q.C.Ppt On S.Q.C.
Ppt On S.Q.C.
 
Statistical process control ppt @ doms
Statistical process control ppt @ doms Statistical process control ppt @ doms
Statistical process control ppt @ doms
 
Online Detection of Shutdown Periods in Chemical Plants: A Case Study
Online Detection of Shutdown Periods in Chemical Plants: A Case StudyOnline Detection of Shutdown Periods in Chemical Plants: A Case Study
Online Detection of Shutdown Periods in Chemical Plants: A Case Study
 

Plus de Decision and Policy Analysis Program

Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Decision and Policy Analysis Program
 

Plus de Decision and Policy Analysis Program (20)

Propuesta Servicios Climáticos región del SICA CAC/CIAT
Propuesta Servicios Climáticos región del SICA CAC/CIATPropuesta Servicios Climáticos región del SICA CAC/CIAT
Propuesta Servicios Climáticos región del SICA CAC/CIAT
 
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
Logros alcanzados en servicios climáticos en el sector agropecuario de la reg...
 
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
Servicios Integrados Participativos de Clima para la Agricultura (PICSA)
 
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
Potencialidades y desafíos en el corredor seco Centroamericano frente al camb...
 
Servicios Climaticos para la Agricultura (FIMA)
Servicios Climaticos para la Agricultura (FIMA)Servicios Climaticos para la Agricultura (FIMA)
Servicios Climaticos para la Agricultura (FIMA)
 
Servicios Climaticos para la Agricultura (FAO-PLACA)
Servicios Climaticos para la Agricultura (FAO-PLACA)Servicios Climaticos para la Agricultura (FAO-PLACA)
Servicios Climaticos para la Agricultura (FAO-PLACA)
 
Modelación de impactos de cambio climático en agricultura
Modelación de impactos de cambio climático en agriculturaModelación de impactos de cambio climático en agricultura
Modelación de impactos de cambio climático en agricultura
 
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
Modelación de Cultivos para generar Servicios Agroclimáticos (Aquacrop V6.0)
 
Servicios Climáticos para la Agricultura (ANSC-Guatemala)
Servicios Climáticos para la Agricultura (ANSC-Guatemala)Servicios Climáticos para la Agricultura (ANSC-Guatemala)
Servicios Climáticos para la Agricultura (ANSC-Guatemala)
 
Modelación climática; Cambio climático y agricultura
Modelación climática; Cambio climático y agriculturaModelación climática; Cambio climático y agricultura
Modelación climática; Cambio climático y agricultura
 
Vulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climáticoVulnerabilidad de los productores ante la variabilidad y el cambio climático
Vulnerabilidad de los productores ante la variabilidad y el cambio climático
 
Modelacion de cultivos para generar servicios agroclimaticos
Modelacion de cultivos para generar servicios agroclimaticosModelacion de cultivos para generar servicios agroclimaticos
Modelacion de cultivos para generar servicios agroclimaticos
 
Introducción a los servicios climáticos
Introducción a los servicios climáticosIntroducción a los servicios climáticos
Introducción a los servicios climáticos
 
Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...Introducción a la problemática del cambio climático global y observación de c...
Introducción a la problemática del cambio climático global y observación de c...
 
Servicios climáticos para la agricultura en América Latina
Servicios climáticos para la agricultura en América LatinaServicios climáticos para la agricultura en América Latina
Servicios climáticos para la agricultura en América Latina
 
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
Importancia de los pronósticos aplicados al sector agrícola durante la crisis...
 
Mesas Técnicas Agroclimáticas en Centro América
Mesas Técnicas Agroclimáticas en Centro AméricaMesas Técnicas Agroclimáticas en Centro América
Mesas Técnicas Agroclimáticas en Centro América
 
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
Training on Participatory Integrated Climate Services for Agriculture (PICSA)...
 
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
Perspectivas y escenario futuros de la producción de frijol ante el cambio cl...
 
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
Apoyo en la toma de decisiones en agricultura a través de las Mesas Técnicas ...
 

Dernier

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Dernier (20)

Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 

Interpreting yield variation in commercial production of crops / Como interpretar la variación de la productividad a partir de información comercial de cultivos

  • 1. www.ciat.cgiar.org Agricultura Eco-Eficiente para Reducir la Pobrezawww.ciat.cgiar.org Agricultura Eco-Eficiente para Reducir la Pobreza Interpreting yield variation in commercial production of crops DAPA (Decision and Policy Analysis Program)
  • 2. Farmers’ production experiences/ commercial production of crops Principles of operational research Modern information technology What we do Environmental characterization of the production system Analysis of the Observations to optimize the system Kg/Arbol Temperatura Edad Observations made by farmers according to their particular circumstances Interpreting yield variation in commercial production of crops
  • 3. Distribution of yield The challenges ! Parametric, non-parametric?.... The reality! Introduction
  • 4. 23 • Models rely on on assumptions of: • Normality • Homogeneity of Variance • Independence • Mostly based on linear relationships • Models do not rely on assumptions • Linear/ non-linear relationships The challenges ! Parametric, non-parametric?... depends on distribution of residuals Introduction PARAMETRIC NON- PARAMETRIC
  • 5. As Sharon quoted: “La sabiduria del internet”: I have never come across a situation where a normal test is the right thing to do. When the sample size is small, even big departures from normality are not detected, and when your sample size is large, even the smallest deviation from normality will lead to a rejected null http://stackoverflow.com/questions/7781798/seeing-if-data-is-normally- distributed-in-r : The challenges ! Parametric, non-parametric? Introduction
  • 6. “La sabiduria de”: Nassim Nicholas Taleb a “superhero of the mind” (The Black Swan, Fooled by Randommess, Antifragile) - Nassim Nicholas Taleb The statistical regress argument “We need the data to tells us what the probability distribution is, and a probability distribution to tell us how much data we need” The challenges ! Parametric, non-parametric? Introduction
  • 7. The challenges ! Parametric, non-parametric? Introduction In terms of Big Data • Approaching “N=All” • The first is to collect and use a lot of data rather than settle for small amounts or samples, as researchers have done for well over a century • We can learn from a large body of information things that we could not comprehend when we used only smaller amounts • Sometimes to inform is better than explain – Looking for patterns Doctors save lives in Canada by knowing that something is likely to occur, this can be far more important than understanding exactly why Big Data (Foreign Affairs magazine / McKinsey's High Tech)
  • 8. What people think it is… What it actually is… Was clear for Antoine de Saint-Exupéry (The little prince ) What people think it is… What it actually is… Some of our findings ! The challenges ! Parametric, non-parametric? Not always normal distribution ! Introduction
  • 9. Analytical approaches V1 V2 V3 V4 V5 … V60 L 2 L 3 L 4 L 5 … Kg/plot Obs 1 0.1 18 3 312 0.3 … 89 0 1 0 1 0 … 2.39 Obs 2 0.2 15 4 526 0.1 … 52 1 0 0 0 1 … 30.35 Obs 3 0.6 14 1 489 0.2 … 64 0 1 1 1 1 … 42.25 Obs 4 0.05 19 2 523 0.5 … 13 0 0 0 0 1 … 52.50 Obs 5 0.4 13 3 214 0.6 … 57 1 1 1 1 1 … Obs 6 0.8 12 4 265 0.4 … 24 1 1 0 1 0 … 82.25 Obs 7 0.2 15 1 236 0.8 … 26 0 0 1 0 0 … 89.28 Obs 8 0.1 17 3 541 0.1 … 35 0 1 1 1 0 … 125.0 Obs9 0.6 16 2 845 0.3 … 51 0 0 1 1 0 … 142.8 Obs10 0.1 18 1 126 0.1 … 43 1 1 0 0 1 … 150.0 … … … … … … … … … … … … … … … Obs3000 0.04 15 3 235 0.6 … 85 1 1 1 1 0 … 180 70.52 L 1 Supervised models – Parametric and non parametrics Independent variables/ Inpust/predictors dependent /output/ response (known) … 11
  • 10. 12 L 1 Unsupervised models V1 V2 V3 V4 V5 … V60 L 2 L 3 L 4 L 5 Obs 1 0.1 18 3 312 0.3 … 89 0 1 0 1 0 Obs 2 0.2 15 4 526 0.1 … 52 1 0 0 0 1 Obs 3 0.6 14 1 489 0.2 … 64 0 1 1 1 1 Obs 4 0.05 19 2 523 0.5 … 13 0 0 0 0 1 Obs 5 0.4 13 3 214 0.6 … 57 1 1 1 1 1 Obs 6 0.8 12 4 265 0.4 … 24 1 1 0 1 0 Obs 7 0.2 15 1 236 0.8 … 26 0 0 1 0 0 Obs 8 0.1 17 3 541 0.1 … 35 0 1 1 1 0 Obs9 0.6 16 2 845 0.3 … 51 0 0 1 1 0 Obs10 0.1 18 1 126 0.1 … 43 1 1 0 0 1 … … … … … … … … … … … … … Obs3000 0.04 15 3 235 0.6 … 85 1 1 1 1 0 L 1 ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… ………… Analytical approaches – Parametric and non parametrics Self-organizing Maps (SOM) Observations close to each other in the visualization space -4 -2 0 2 4 6 8 -4 -2 0 2 4 Axis1 Axis2
  • 11. 1st case study- Andean blackberry based on ANNs Scatter plot displaying MLP predicted yield versus real Andean blackberry yield, using only the validation dataset1715 R² = 0.892 -0.2 0.3 0.8 1.3 1.8 -0.2 0.3 0.8 1.3 1.8 Predictedyield(kg/plant/week) Real yield (kg/plant/week) Predicted Supervised models - Non-linear regression Coefficient of determination= 0.89 Histogram displaying yield data distribution of Andean blackberry (Kg/plant/week) Numberofobservations
  • 12. 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 EffDepth TempAvg_1 Na_un_chical Na_un_cusba TempAvg_0 TempAvg_2 TempAvg_3 ExtDrain PrecAcc_1 Trmm_3 Nar-Cal Cal_riosu_zr Srtm Slope PrecAcc_0 Trmm_2 Na_un_cusal Trmm_0 PrecAcc_3 TempRang_0 TempRang_2 AB_Thorn_N Na_un_lajac PrecAcc_2 Trmm_1 IntDrain TempRang_3 TempRang_1 12 20 3 5 17 23 26 11 22 16 2 7 8 9 19 15 4 13 28 18 24 1 6 25 14 10 27 21 %Sensitivity Sensitivity distribution of the model with respect to the inputs/predictors Jiménez, D., Cock, J., Satizábal, F., Barreto, M., Pérez-Uribe, A., Jarvis, A. and Van Damme, P., 2009. Computers and Electronics in Agriculture. 69 (2): 198–208 Sensitivity Matrix Results - Andean blackberry 16 Effective soil depth Temperature averages Geographic location
  • 13. Results - Andean blackberry (a) Kohonen map displaying the resultant 6 clusters and their labels according to yield values (b) Component plane of Andean blackberry yield, the scale bar (right) indicates the range value of productivity in kg/plant/week The upper side exhibits high values of yield, whereas the lower displays low values Unsupervised model - Visualization – component planes - SOM 17 Andean blackberry yieldKohonen map – 6 clusters (a) (b)
  • 14. Results - Andean blackberry Component plane of effective soil depth. The scale bar (right) indicates the range value in cm of soil depth: the upper side of the scale exhibits high values, whereas the lower displays low values 18 Effective soil depth Unsupervised model - Visualization – component planes - SOM
  • 15. Results - Andean blackberry Components planes of the temperature averages. In all figures, the scale bar (right) indicates the range value in ◦C of temperature. The upper side exhibits high values, whereas the lower displays low values 19 Unsupervised model - Visualization – component planes - SOM
  • 16. Results - Andean blackberry Component planes of the specifics geographic areas Nariño–La Union–Chical alto (left) and Nariño–La union–Cusillo bajo (right). The highest values indicate presence and the lowest absence as they are categorical variables Visualization – component planes - SOM 20 Nariño - La Union – Chical Alto Nariño - La Union – Cusillo bajo
  • 17. Drawbacks 20 • Crop management factors not included (only variety) • Only non-parametric approaches (Based on ANNs) • Limited spatial variation (Two locations- two departaments) Advantages • Predictor-predictor and predictor- response dependencies through Kohonen’s Maps • Combination of factors • Non-linear approach
  • 18. 2nd case study- Lulo Distribution of R2 obtained with each model Regression R2 (mean) Confidence interval (95%) Robust (linear) 0.65 0.63 - 0.66 MLP (non-linear) 0.69 0.67 - 0.70 Both models explained more than 60% of variability in Lulo production 2321 Histogram displaying yield data distribution of lulo (g/plant/week) R2 provided by each approach MLP Robust regression 0.2877 0.3545 0.4214 0.4883 0.5552 0.6221 0.6889 0.7558 0.8227 0 2 4 6 8 10 12 14 16 18 20 22 24 26 NumberofobservationsNumberofobservations Numberofobservations Supervised modelling
  • 19. Results - Lulo The Sensitivity Matrix 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 %Sensitivity Jiménez, D., Cock, J., Jarvis, A., Garcia, J., Satizábal, H.F., Van Damme, Pérez-Uribe, A., and Barreto, M., 2010. Interpretation of Commercial Production Information: A case study of lulo, an under-researched Andean fruit. Agricultural Systems. 104 (3): 258-270 22 Sensitivity distribution of the model with respect to the inputs/predictors Effective soil depth Temperature averages Slope
  • 20. (a) U-matrix displaying the distance among prototypes. The scale bar (right) indicates the values of distance. The upper side exhibits high distances, whilst the lower displays low distances; (b) Kohonen map displaying the 3 clusters obtained after using the K-means algorithm and the Davies–Bouldin index The three most relevant variables were used to train a Kohonen map and identify clusters of Homogeneous Environmental Conditions (HECs) Results - Lulo Unsupervised model - Clustering – component planes - SOM 23 U-Matrix Kohonen map – 3 clusters
  • 21. Results - Lulo Clustering – component planes - SOM A mixed model with the categorical variables of three HECs, location and farmer explained more than 80% of variation in lulo yield Parameters Estimate (g/plant/week) Standard Error % of total variance Model including categorical variables of 3 HECs, location and farm HEC 1.85 2.01 61.2% Location 0.07 0.20 2.5% Site-Farm 0.57 0.21 19.0% Error 0.52 0.04 17.3% Total 100.0% Variance components of the mixed model estimations 24
  • 22. Variable ranges HEC Slope (degrees) EffDepth (cm) TempAvg_0 (°C) 5-14 21-40 15 -16.5 1 8-15 32-69 15 -18.9 2 13-24 40-67 15.8 -19 3 HEC 3 yielded 41 g/plant/week more fruit than average Results - Lulo -30.00 -20.00 -10.00 0.00 10.00 20.00 30.00 40.00 50.00 1 2 3 Luloyield(g/plant/week) Effects of clusters of environmental conditions 25
  • 23. Results - Lulo Farm 7 and 9 in HEC 3. Farm 7 produced 68 g/plant/week less than average, whilst farm 9 produced 51 g/plant/week more than average -80.00 -60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 1 2 3 4 5 8 17 5 6 8 10 11 12 13 15 16 17 19 20 7 9 14 18 19 20 21 1 2 3 Luloyield(g/plant/week) Effects of farms across clusters of environmental conditions 1 2 3 26 Jiménez, D., Cock, J., Jarvis, A., Garcia, J., Satizábal, H.F., Van Damme, Pérez-Uribe, A., and Barreto, M., 2010. Interpretation of Commercial Production Information: A case study of lulo, an under-researched Andean fruit. Agricultural Systems. 104 (3): 258-270
  • 24. Drawbacks 20 • Crop management factors not included (only variety) • Compared with the Andean blackberry study, even more limited spatial Variation (locations within one department) Advantages • Iterative procedure (combination of parametric & non parametric /linear & non- linear) • Combination of factors • The study is the first formal research study that evidences the yield gap between farmers under similar climatic conditions in Colombia...provided the basis for the site-specific analytical approaches • Successfully identified farms that have superior management practices for given environmental conditions
  • 25. 23 Facto Class (Clusters de Clima) -1.0 -0.5 0.0 0.5 1.0 -1.0-0.50.00.51.0 Variables factor map (PCA) Dim 1 (44.64%) Dim2(27.62%) bio_1 bio_2 bio_3 bio_4 bio_5 bio_6 bio_7 bio_8 bio_9bio_10bio_11 bio_12bio_13 bio_14 bio_15 bio_16 bio_17bio_18 bio_19 -5 0 5 10 -4-20246 Dim 1 (43.43%) Dim2(29.83%) Cluster 1 2 3 4 5 6 7 8 3er Estudio de Caso- Plátano
  • 26. 23 PCA CATPCA (Clusters de Suelo) 3er Estudio de Caso- Plátano
  • 27. 23 C4S5 Cluster de Clima 4 Cluster Suelo 5 3er Estudio de Caso- Plátano
  • 28. C4S5 3er Estudio de Caso- Plátano Modelo Linear Generalizado ( MLG) Log(Yield) = (1.22) + densidad de siembra (0.0008) + E El modelo - Dependencias entre predictores y la variable de respuesta Nivel de significancia al 5% Log (Y) = B0 + X (B1) + E
  • 29. Log (Y) = B0 + X (B1) + X(B2) + E C5S5 Log(Yield) = 0.80 + densidad de siembra (0.00101) + MezcVar (0.324154) + E Modelo Linear Generalizado ( MLG) 3er Estudio de Caso- Plátano Nivel de significancia al 5%
  • 30. 23 log(Yield) = β0+ β1 𝑋1 + β2 𝑋2 + … + ε 𝑒log(𝑌𝑖𝑒𝑙𝑑) = 𝑒β0+ β1 𝑋1+ β2 𝑋2+ … + ε (No linear) 𝑌𝑖𝑒𝑙𝑑 = 𝑒β0+ β1 𝑋1+ β2 𝑋2+ … + ε (regresando a unidad inicial Tons/ha) 𝑌𝑖𝑒𝑙𝑑 = 𝑒β0 𝑒β1 𝑋1 𝑒β2 𝑋2 … 𝑒ε (dependencias entre predictores y Tons/ha) Con el modelo es posible calcular en cuantas veces se aumenta o disminuye el rendimiento, mediante el cambio de una práctica específica • Interpretación de los parámetros 3er Estudio de Caso- Plátano Modelo Linear Generalizado ( MLG)
  • 31. 23 Log(Yield) = (1.22) + densidad de siembra (0.0008) + E Yield = 𝒆(1.22) 𝒆densidad de siembra (0.0008) 𝒆E Densidad de siembra = 100  𝑒100 (0.008) Con un nivel de confianza del 90%, se puede esperar que por cada 100 árboles/ha, el rendimiento anual en tons/ha aumente de un 3.2% a un 14.2%. C4S5(Densidad de siembra) • Interpretación de los parámetros Modelo Linear Generalizado ( MLG) 3er Estudio de Caso- Plátano
  • 32. 23 3rd case study- Plantain Mezc Var = 𝟎. 𝟎𝟎𝟏𝟎  𝑒presencia (0.0010) Con un nivel de confianza del 90% se puede esperar que sembrar variedades mezcladas pueda aumentar la producción en más de 10.46%. Log(Yield) = 0.80 + densidad de siembra (0.00101) + Mezc Var (0.324154) + E Yield = 𝒆(0.80) 𝒆 densidad de siembra (0.00101) 𝒆Mezc Var (0.00101) 𝒆E C5S5 (Mezcla de Variedades) • Interpretación de los parámetros Modelo Linear Generalizado ( MLG)
  • 33. 23 C4S5 (densidad de siembra) Yield = 𝒆(−2.078) 𝒆 densidad de siembra (0.0077) 𝒆dibujo de siembra(0.2079) 𝒆E Con un nivel de confianza del 90%, se puede esperar que por cada 10 árboles/ha que se aumente en la densidad de siembra, el rendimiento anual en toneladas por hectárea puede aumentar de un 2.3% a un 13.2 % Densidad de siembra = 10 𝑒10 (0.0077) • Interpretación de los parámetros Modelo Linear Generalizado ( MLG) 4to Estudio de Caso- Aguacate
  • 34. 23 C2S4 (Dibujo de siembra) Yield = 𝒆(3.6) 𝒆 densidad de siembra (−0.006) 𝒆variedad (0.434) 𝒆dibujo de siembra (0.7946) 𝒆E Dibujo de siembra = 10 𝑒presencia (0.7946) Con un nivel de confianza de 90%, se puede esperar que un productor de esta zona que siembre en tresbolillo en vez de cuadrado, puede aumentar su producción en más de 30.21% 4to Estudio de Caso- Aguacate • Interpretación de los parámetros Modelo Linear Generalizado ( MLG)
  • 35. Drawbacks 20 • Not enough crop management factors to applied a hierarchical approach such as mixed models • Limited temporal variation Advantages • Iterative procedure (combination of parametric and semi-parametric) • Crop management factors included (Farmer can control them) • Predictors- response dependencies through GLM • Large spatial variation • Soil information included • Linear & non-linear approach
  • 37. -5 0 5 -4 -2 0 2 4 Factor 1: 3.8369 (48%) Factor2:2.518(31.5%) 1194 24752476247724782479 248424852486 248724882489 24902491249224932494249724982499250025012502250325042505250625072508 2510 25112513251425152516251725182519 2524 25252526252725282529253025312532 2533 2534253525362537 253825392540301030113012301330143015301630173018301930203021 30223023 3024 302530263027 302830293030303130323033 303530363037303830393040304130423043 3044304530463047 3048304930503051305230533054305730583059 3060 306230633064 30653067 3360 736 13201321132213231324132513261327132813291331133213331335 1355 13591360136113621363 136413651366136713681369137013811382 1386 139013911392139313941395 1399140014011402 1403140414051415 1416 1417141914201421 1422 15501551 159416111612 1616 1624 20642067 206920702077207820792081208420892090209320962099210021012102 21042105 2106 2110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137 21382139214021412142214321442145 2146 2147214821492150 2433 254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572 2573257425752576257725782579 2580 2728 577578579580581582583584585586587588589590592595596597605610613615 619621 624643650 670671672673674675676679680682 687 690691 692 839840842844845 2706270727082709 271127122713 2714 271527162717271827192720 2721272227262727 272927302731 2736 27402741 2742 274327442745 2748 2749275027512752275327542757 2791 3182319832003261326232633264326532663267326832693270 3271 32723273 99809981 99829983 9985 9986 9987 9988 9989 9990 9991 647 869870871872873874875876877878879880893894895896897898899900901904905906907908909 910911912913 914915918919920923924925929938950951 953954955956957958 964965 1983 1984 1985 2012 2014 2386 2390 2465 248024812482 2483 249524962509 2512 2520252125222523 2822 28242825282628282829 2830 2836 284928502851 285528562857285828592860286128632864 2865 286628672868287028722873 287728782879288028812885 303430553056306130663068 3107 31313132 3324 9984bio_7bio_12bio_13 bio_4bio_6bio_15 cons_mths bio_14 cl1 cl2 cl3 Parametric methods •Ordinary Least Squares regression (OLS) •Principal component analysis (PCA) •Robust linear regressions •Mixed Models •Best Linear Unbiased Prediction (BLUP) •Facto Class (Factor analysis, Ward's method , K-means •Categorical Principal Components Analysis (CATPCA) Semi or non-parametric methods • Generalized linear model (GLM) • Self Organizing Maps (SOM) • Multilayer perceptron (MLP) • Fuzzy logic Analytical approaches – Data-driven We adapt a range of methodologies to the analysis of real data … rather than data to some methodologies.