SlideShare une entreprise Scribd logo
1  sur  58
Télécharger pour lire hors ligne
MagBeam: R. Winglee, T. Ziemba, J. Prager, B. Roberson, J Carscadden•Coherent Beaming of Plasma 
•Separation of Power/Fuel from Payload 
•Fast, cost-efficient propulsion for multiple missions
Plasma Propulsion 
Major Savings in Mass through higher energy/speed plasma systemsDeep Space 1 
Inherently low thrust systems: very low acceleration 
Solar electric ~1 × 10-4m/s/s
Plasma PropulsionMajor Savings in Mass through higher energy/speed plasma systemsVASIMR 
Inherently low thrust systems: very low acceleration 
Solar electric ~1 × 10-4m/s/s 
Nuclear electric ~1 × 10-3m/s/s 
Long duration and/or costly dedicated power units for single missions 
MagBeam: Focused Beaming of Plasma PowerSeparation of Power and Payload for High Thrust/Low Propellant Usage
Beam Propagation 
Beam Expansion will reduce the efficiency of any beamed energy system 
Nature regularly propagates plasma beams over 10’s km to 10’s of Earth radii 
Able to do so by using collective behavior of plasmas 
MagBeamuses these same collective processes to minimize beam dispersion
Importance of MagBeamDivergent Plasma StreamHighly Focused Plasma Beam 
Benefit 1: 
By studying focusing techniques obtain Higher Efficiency Plasma Thrusters 
Can yield increases by factors of 50% performance
Importance of MagBeam 
Benefit 2: 
Compact electrodeless thrusters 
Able to take high power operation without degradation 
Means consider orbital transfers for large systems like Space Station
Importance of MagBeam•Modify spacecraft orbits (raise or lower) Benefit 3: •Planetary/lunar transfer orbital for multiple payloads•Reduced cost due to reusable nature of system 
Full up system would facilitate human exploration to the Moon, Mars and Beyond
Plasma Plume
Confined Plasma Plume
Implementation of Magnetic Nozzle System
High Power HeliconNozzle MagnetPlasma DiagnosticsMagBeamDeflector
UW: 6ft long x 5ft diameter Vacuum Chamber
SimulationsMagnets: 30 cm; 5cm resolution
SimulationseeiieiPennn∇− ×+×−=Σ1eneBJBVE0=×∇+ ∂ ∂EBtEvolution of Magnetic FieldMagnets: 30 cm; 5cm resolution
SimulationseeiieiPennn∇− ×+×−=Σ1eneBJBVE0=×∇+ ∂ ∂EBtEvolution of Magnetic FieldMagnets: 30 cm; 5cm resolutionLog Plasma Energy DensityDensity 2 ×1013cm-3Bulk Speed: 30 km/sThermal Speed: ~ 30 km/s
SimulationseeiieiPennn∇− ×+×−=Σ1eneBJBVE0=×∇+ ∂ ∂EBtEvolution of Magnetic FieldMagnets: 30 cm; 5cm resolutionLog Plasma Energy DensityDensity 2 ×1013cm-3Bulk Speed: 30 km/sThermal Speed: ~ 30 km/sMulti-Fluid Equationsγt0)(=⋅∇+ ∂ ∂ αααρρV αααααααρPnqdtd∇−×+=))((rBVEV αααααPγPγtP∇⋅−+⋅∇−= ∂ ∂ VV )1()(
Fix Diagnostic ProbesFix Diagnostic Probes
No Nozzle Configuration
High Power Helicon: No Magnetic Nozzle
Improved Performance with Magnetic Nozzle
With magnetic Nozzle
High Power Helicon: With Magnetic Nozzle
Far Field View of Beamed Plasma
MagBeam: Hitting the TargetMagBeamInteraction
MagBeam: Middle of Chamber
MagBeam: End of Chamber
MagBeam: Hitting the Target
(a) MagBeam: Mid Chamber01234560.000.050.100.150.200.250.30time (ms) Voltage From HPHFrom MagBeam(b) MagBeam: End of Chamber0.00.51.01.52.02.50.00.10.20.30.4time (ms) Density 350 V200 V100 V
Power System Requirements 
•Fast Discharge Rates (associated with LEO and Geo) 
•Best supplied by Batteries/Fuel Cells (recharge between missions) •Present day capabilities is 400 W hrs/kg (1.5 MJ/kg) •Expectation in the next decade might be 600 W hrs/kg 
•Charging: -Solar Electric 
•Space Station presently yields 100 kW using 6% efficiency•Present day triple junction systems yield nearly 30% efficiency-Nuclear Electric•Present day capabilities is 20 kg/kW•Expectation in the next decade 5 kg/kW
Bootstrapping into Space 
Suborbital + LEO Space Station
Bootstrapping into Space10,000 kg payload5 min interaction time200,000 kg batteries300 MW thruster, 2000s Isp800 kg of propellantSuborbital + LEO Space StationΔV ~ 3 km/sVERSUS20,000 kg chemical rocket
Suborbital to LEO ΔV ~3 km/s to Geo. Transfer ΔV ~+1.5 km/s 10,000 kg payloadRecharge batteriesFire again1,200 kg total propellantVERSUS30,000 kg chemical rocket
To Escape VelocityΔV ~+3 km/s 10,000 kg payload30 min interaction time200,000 kg batteriesFire Again2000 kg of propellantVERSUS65,000 kg chemical rocket
Fast Trip to Mars: ΔV ~20 km/sLonger Acceleration Period: Need to Start with Space Stationat higher Altitude
Fast Trip to Mars: ΔV ~20 km/s 
Rendezvous using geosynchronous-like transfer
Fast Trip to Mars: ΔV ~20 km/s10,000 kg payload4 hr interaction time3 ×106kgbatteries300 MW thruster, Isp4000sor 1.5 × 106kg advanced nuclear electric7,000 kg of propellantVERSUS18,000,000 kg chemical rocket
Mars Station Provides Braking: ΔV ~25 km/s•ΔV ~ 7 km/s right at surface
Total Trip Time: 0 Day -Start
Total Trip Time: 50 Day -Arrive at Mars
Total Trip Time: 61 Day -Leave Mars
Total Trip Time: 96 Day -Arrive Eath
MagBeam: 
Model/lab results demonstrating performance 
Beamed Plasma System ÖFast Missions 
Reusable system & eliminates large power units for each new mission Ö cost effective solution for multiple missions
Roadmap: Phase II – 
•Demonstrate beam coherence in expanded UW chamber (to 9 ft) 
•Comparative model/lab studies in larger chambers (help from NASA centers to perform studies to 30 ft) 
•Demonstrate performance of higher power thrusters and develop scaling laws for large systems 
Further work–demonstrate km range using sounding rocket experiment-orbital demonstration
Still Finds the Target Even if Deflector Misaligned
Differential motion between the ions and electrons are generated currents and electric fields such that the magnetic field in which the plasma is born stays with the plasma.
Magnetic Field is essentially the transmission wire of space for plasma and power

Contenu connexe

Tendances

MO4.L10 - AUTOMATED MONITORING OF VOLCANIC ASH MICRO- AND MACRO-PHYSICAL PROP...
MO4.L10 - AUTOMATED MONITORING OF VOLCANIC ASH MICRO- AND MACRO-PHYSICAL PROP...MO4.L10 - AUTOMATED MONITORING OF VOLCANIC ASH MICRO- AND MACRO-PHYSICAL PROP...
MO4.L10 - AUTOMATED MONITORING OF VOLCANIC ASH MICRO- AND MACRO-PHYSICAL PROP...
grssieee
 
Tether boostfacilities
Tether boostfacilitiesTether boostfacilities
Tether boostfacilities
Clifford Stone
 
High densitystorageofantimatter
High densitystorageofantimatterHigh densitystorageofantimatter
High densitystorageofantimatter
Clifford Stone
 
637129main werka presentation
637129main werka presentation637129main werka presentation
637129main werka presentation
Clifford Stone
 
291 ( space solar power satellite system) (1)
291 ( space solar power satellite system) (1)291 ( space solar power satellite system) (1)
291 ( space solar power satellite system) (1)
sanjiivambati59
 

Tendances (20)

MO4.L10 - AUTOMATED MONITORING OF VOLCANIC ASH MICRO- AND MACRO-PHYSICAL PROP...
MO4.L10 - AUTOMATED MONITORING OF VOLCANIC ASH MICRO- AND MACRO-PHYSICAL PROP...MO4.L10 - AUTOMATED MONITORING OF VOLCANIC ASH MICRO- AND MACRO-PHYSICAL PROP...
MO4.L10 - AUTOMATED MONITORING OF VOLCANIC ASH MICRO- AND MACRO-PHYSICAL PROP...
 
Tether boostfacilities
Tether boostfacilitiesTether boostfacilities
Tether boostfacilities
 
ELECTRODYNAMIC TETHER
ELECTRODYNAMIC TETHERELECTRODYNAMIC TETHER
ELECTRODYNAMIC TETHER
 
ELECTRODYNAMIC TETHER
ELECTRODYNAMIC TETHER ELECTRODYNAMIC TETHER
ELECTRODYNAMIC TETHER
 
MFC-MDR-PRE-F
MFC-MDR-PRE-FMFC-MDR-PRE-F
MFC-MDR-PRE-F
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
ProjectReport
ProjectReportProjectReport
ProjectReport
 
Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
Chapter3
Chapter3Chapter3
Chapter3
 
Sheet # 1
Sheet # 1Sheet # 1
Sheet # 1
 
Cubesat satellite
Cubesat satelliteCubesat satellite
Cubesat satellite
 
Space update 042411
Space update 042411Space update 042411
Space update 042411
 
High densitystorageofantimatter
High densitystorageofantimatterHigh densitystorageofantimatter
High densitystorageofantimatter
 
Cev
CevCev
Cev
 
satellite communication system
satellite communication systemsatellite communication system
satellite communication system
 
637129main werka presentation
637129main werka presentation637129main werka presentation
637129main werka presentation
 
Dfd quad chart
Dfd quad chartDfd quad chart
Dfd quad chart
 
291 ( space solar power satellite system) (1)
291 ( space solar power satellite system) (1)291 ( space solar power satellite system) (1)
291 ( space solar power satellite system) (1)
 
Phase-shift Plasma Turbine
Phase-shift Plasma TurbinePhase-shift Plasma Turbine
Phase-shift Plasma Turbine
 
1386 voronka[1]
1386 voronka[1]1386 voronka[1]
1386 voronka[1]
 

En vedette

Apresentação TMC Transformers
Apresentação TMC TransformersApresentação TMC Transformers
Apresentação TMC Transformers
upholder2011
 
Listado a1251204-b
Listado a1251204-bListado a1251204-b
Listado a1251204-b
SALONVIRTUAL
 

En vedette (20)

TEXTO - Hand Tools
TEXTO - Hand ToolsTEXTO - Hand Tools
TEXTO - Hand Tools
 
Introducción al eBusiness01
Introducción al eBusiness01Introducción al eBusiness01
Introducción al eBusiness01
 
2016 2017 match day program
2016 2017 match day program2016 2017 match day program
2016 2017 match day program
 
Iskra credentials
Iskra credentials Iskra credentials
Iskra credentials
 
Bonzer Bar Book Vol2 Low Res
Bonzer Bar Book Vol2 Low ResBonzer Bar Book Vol2 Low Res
Bonzer Bar Book Vol2 Low Res
 
Strategic Buying Group
Strategic Buying GroupStrategic Buying Group
Strategic Buying Group
 
Seasonal work in Italy
Seasonal work in ItalySeasonal work in Italy
Seasonal work in Italy
 
Ibp
IbpIbp
Ibp
 
International business unit1
International business unit1International business unit1
International business unit1
 
Internal Oak EASI-Frame System
Internal Oak EASI-Frame System Internal Oak EASI-Frame System
Internal Oak EASI-Frame System
 
fasteners-stock
fasteners-stockfasteners-stock
fasteners-stock
 
Mapa Conceptual
Mapa ConceptualMapa Conceptual
Mapa Conceptual
 
Stephenson personal-care-brochure
Stephenson personal-care-brochureStephenson personal-care-brochure
Stephenson personal-care-brochure
 
Power training pt - World GMN
Power training pt - World GMNPower training pt - World GMN
Power training pt - World GMN
 
Thobeka Madoda Resume
Thobeka Madoda ResumeThobeka Madoda Resume
Thobeka Madoda Resume
 
LaserSweep Brochure
LaserSweep BrochureLaserSweep Brochure
LaserSweep Brochure
 
Apresentação TMC Transformers
Apresentação TMC TransformersApresentação TMC Transformers
Apresentação TMC Transformers
 
Listado a1251204-b
Listado a1251204-bListado a1251204-b
Listado a1251204-b
 
GO
GOGO
GO
 
Vegan Catering For All
Vegan Catering For AllVegan Catering For All
Vegan Catering For All
 

Similaire à 1012 winglee[1]

Dw31595598
Dw31595598Dw31595598
Dw31595598
IJMER
 
Space-based solar power varun.pptx ppppp
Space-based solar power varun.pptx pppppSpace-based solar power varun.pptx ppppp
Space-based solar power varun.pptx ppppp
55bsvp2kmq
 
VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2
Stefano Coltellacci
 
Planetary surfacesubsurfaceexploration
Planetary surfacesubsurfaceexplorationPlanetary surfacesubsurfaceexploration
Planetary surfacesubsurfaceexploration
Clifford Stone
 
SPACE DEBRIS PALAT PARLAM no authors
SPACE DEBRIS PALAT PARLAM no authorsSPACE DEBRIS PALAT PARLAM no authors
SPACE DEBRIS PALAT PARLAM no authors
MARIUS EUGEN OPRAN
 

Similaire à 1012 winglee[1] (20)

Team ESAT Preliminary Design Review
Team ESAT Preliminary Design ReviewTeam ESAT Preliminary Design Review
Team ESAT Preliminary Design Review
 
Boechler nicholas[1]
Boechler nicholas[1]Boechler nicholas[1]
Boechler nicholas[1]
 
microwave transmission
microwave transmissionmicrowave transmission
microwave transmission
 
solar based aircraft
solar based aircraftsolar based aircraft
solar based aircraft
 
Dw31595598
Dw31595598Dw31595598
Dw31595598
 
Wireless Power Transmission Options For Space Solar Power
Wireless Power Transmission Options For Space Solar PowerWireless Power Transmission Options For Space Solar Power
Wireless Power Transmission Options For Space Solar Power
 
Importance of SSPS in SDG and ESG, and importance of antennas in SSPS
Importance of SSPS in SDG and ESG, and importance of antennas in SSPSImportance of SSPS in SDG and ESG, and importance of antennas in SSPS
Importance of SSPS in SDG and ESG, and importance of antennas in SSPS
 
CHIPS 2015
CHIPS 2015CHIPS 2015
CHIPS 2015
 
Space-based solar power varun.pptx ppppp
Space-based solar power varun.pptx pppppSpace-based solar power varun.pptx ppppp
Space-based solar power varun.pptx ppppp
 
VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2VHR_preliminary-system_study_issue2
VHR_preliminary-system_study_issue2
 
Senior Design Project "Space-Based Solar Power System"
Senior Design Project "Space-Based Solar Power System"Senior Design Project "Space-Based Solar Power System"
Senior Design Project "Space-Based Solar Power System"
 
Orbital Debris Mapping
Orbital Debris MappingOrbital Debris Mapping
Orbital Debris Mapping
 
Wireless power transmission technologies for solar power satellite
Wireless power transmission technologies for solar power satelliteWireless power transmission technologies for solar power satellite
Wireless power transmission technologies for solar power satellite
 
Wireless Power Transmission Options For Space Solar Power
Wireless Power Transmission Options For Space Solar PowerWireless Power Transmission Options For Space Solar Power
Wireless Power Transmission Options For Space Solar Power
 
Planetary surfacesubsurfaceexploration
Planetary surfacesubsurfaceexplorationPlanetary surfacesubsurfaceexploration
Planetary surfacesubsurfaceexploration
 
Formation flyingoct01
Formation flyingoct01Formation flyingoct01
Formation flyingoct01
 
Space Based Solar Power Satellite
Space Based Solar Power SatelliteSpace Based Solar Power Satellite
Space Based Solar Power Satellite
 
Wireless power transmission via solor power satellite
Wireless power transmission via solor power satelliteWireless power transmission via solor power satellite
Wireless power transmission via solor power satellite
 
Wireless power transmission via solar power satellite(sps)
Wireless power transmission via solar power satellite(sps)Wireless power transmission via solar power satellite(sps)
Wireless power transmission via solar power satellite(sps)
 
SPACE DEBRIS PALAT PARLAM no authors
SPACE DEBRIS PALAT PARLAM no authorsSPACE DEBRIS PALAT PARLAM no authors
SPACE DEBRIS PALAT PARLAM no authors
 

Plus de Clifford Stone (20)

Xray telescopeconcept
Xray telescopeconceptXray telescopeconcept
Xray telescopeconcept
 
Wpafb blue bookdocuments
Wpafb blue bookdocumentsWpafb blue bookdocuments
Wpafb blue bookdocuments
 
What gov knows_about_ufos
What gov knows_about_ufosWhat gov knows_about_ufos
What gov knows_about_ufos
 
Welcome oct02
Welcome oct02Welcome oct02
Welcome oct02
 
Weather jun02
Weather jun02Weather jun02
Weather jun02
 
Wassersug richard[1]
Wassersug richard[1]Wassersug richard[1]
Wassersug richard[1]
 
Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952
 
Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952
 
Vol4ch03
Vol4ch03Vol4ch03
Vol4ch03
 
Vol4ch02
Vol4ch02Vol4ch02
Vol4ch02
 
Vol4ch01
Vol4ch01Vol4ch01
Vol4ch01
 
Vol3ch16
Vol3ch16Vol3ch16
Vol3ch16
 
Vol3ch14
Vol3ch14Vol3ch14
Vol3ch14
 
Vol3ch13
Vol3ch13Vol3ch13
Vol3ch13
 
Vol3ch12
Vol3ch12Vol3ch12
Vol3ch12
 
Vol3ch11
Vol3ch11Vol3ch11
Vol3ch11
 
Vol3ch10
Vol3ch10Vol3ch10
Vol3ch10
 
Vol3ch09
Vol3ch09Vol3ch09
Vol3ch09
 
Vol3ch08
Vol3ch08Vol3ch08
Vol3ch08
 
Vol3ch07
Vol3ch07Vol3ch07
Vol3ch07
 

1012 winglee[1]

  • 1. MagBeam: R. Winglee, T. Ziemba, J. Prager, B. Roberson, J Carscadden•Coherent Beaming of Plasma •Separation of Power/Fuel from Payload •Fast, cost-efficient propulsion for multiple missions
  • 2. Plasma Propulsion Major Savings in Mass through higher energy/speed plasma systemsDeep Space 1 Inherently low thrust systems: very low acceleration Solar electric ~1 × 10-4m/s/s
  • 3. Plasma PropulsionMajor Savings in Mass through higher energy/speed plasma systemsVASIMR Inherently low thrust systems: very low acceleration Solar electric ~1 × 10-4m/s/s Nuclear electric ~1 × 10-3m/s/s Long duration and/or costly dedicated power units for single missions MagBeam: Focused Beaming of Plasma PowerSeparation of Power and Payload for High Thrust/Low Propellant Usage
  • 4. Beam Propagation Beam Expansion will reduce the efficiency of any beamed energy system Nature regularly propagates plasma beams over 10’s km to 10’s of Earth radii Able to do so by using collective behavior of plasmas MagBeamuses these same collective processes to minimize beam dispersion
  • 5. Importance of MagBeamDivergent Plasma StreamHighly Focused Plasma Beam Benefit 1: By studying focusing techniques obtain Higher Efficiency Plasma Thrusters Can yield increases by factors of 50% performance
  • 6. Importance of MagBeam Benefit 2: Compact electrodeless thrusters Able to take high power operation without degradation Means consider orbital transfers for large systems like Space Station
  • 7. Importance of MagBeam•Modify spacecraft orbits (raise or lower) Benefit 3: •Planetary/lunar transfer orbital for multiple payloads•Reduced cost due to reusable nature of system Full up system would facilitate human exploration to the Moon, Mars and Beyond
  • 8.
  • 11.
  • 12. Implementation of Magnetic Nozzle System
  • 13. High Power HeliconNozzle MagnetPlasma DiagnosticsMagBeamDeflector
  • 14. UW: 6ft long x 5ft diameter Vacuum Chamber
  • 15. SimulationsMagnets: 30 cm; 5cm resolution
  • 16. SimulationseeiieiPennn∇− ×+×−=Σ1eneBJBVE0=×∇+ ∂ ∂EBtEvolution of Magnetic FieldMagnets: 30 cm; 5cm resolution
  • 17. SimulationseeiieiPennn∇− ×+×−=Σ1eneBJBVE0=×∇+ ∂ ∂EBtEvolution of Magnetic FieldMagnets: 30 cm; 5cm resolutionLog Plasma Energy DensityDensity 2 ×1013cm-3Bulk Speed: 30 km/sThermal Speed: ~ 30 km/s
  • 18. SimulationseeiieiPennn∇− ×+×−=Σ1eneBJBVE0=×∇+ ∂ ∂EBtEvolution of Magnetic FieldMagnets: 30 cm; 5cm resolutionLog Plasma Energy DensityDensity 2 ×1013cm-3Bulk Speed: 30 km/sThermal Speed: ~ 30 km/sMulti-Fluid Equationsγt0)(=⋅∇+ ∂ ∂ αααρρV αααααααρPnqdtd∇−×+=))((rBVEV αααααPγPγtP∇⋅−+⋅∇−= ∂ ∂ VV )1()(
  • 19. Fix Diagnostic ProbesFix Diagnostic Probes
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 30. High Power Helicon: No Magnetic Nozzle
  • 31. Improved Performance with Magnetic Nozzle
  • 33. High Power Helicon: With Magnetic Nozzle
  • 34. Far Field View of Beamed Plasma
  • 35. MagBeam: Hitting the TargetMagBeamInteraction
  • 37. MagBeam: End of Chamber
  • 39. (a) MagBeam: Mid Chamber01234560.000.050.100.150.200.250.30time (ms) Voltage From HPHFrom MagBeam(b) MagBeam: End of Chamber0.00.51.01.52.02.50.00.10.20.30.4time (ms) Density 350 V200 V100 V
  • 40.
  • 41. Power System Requirements •Fast Discharge Rates (associated with LEO and Geo) •Best supplied by Batteries/Fuel Cells (recharge between missions) •Present day capabilities is 400 W hrs/kg (1.5 MJ/kg) •Expectation in the next decade might be 600 W hrs/kg •Charging: -Solar Electric •Space Station presently yields 100 kW using 6% efficiency•Present day triple junction systems yield nearly 30% efficiency-Nuclear Electric•Present day capabilities is 20 kg/kW•Expectation in the next decade 5 kg/kW
  • 42. Bootstrapping into Space Suborbital + LEO Space Station
  • 43. Bootstrapping into Space10,000 kg payload5 min interaction time200,000 kg batteries300 MW thruster, 2000s Isp800 kg of propellantSuborbital + LEO Space StationΔV ~ 3 km/sVERSUS20,000 kg chemical rocket
  • 44. Suborbital to LEO ΔV ~3 km/s to Geo. Transfer ΔV ~+1.5 km/s 10,000 kg payloadRecharge batteriesFire again1,200 kg total propellantVERSUS30,000 kg chemical rocket
  • 45. To Escape VelocityΔV ~+3 km/s 10,000 kg payload30 min interaction time200,000 kg batteriesFire Again2000 kg of propellantVERSUS65,000 kg chemical rocket
  • 46. Fast Trip to Mars: ΔV ~20 km/sLonger Acceleration Period: Need to Start with Space Stationat higher Altitude
  • 47. Fast Trip to Mars: ΔV ~20 km/s Rendezvous using geosynchronous-like transfer
  • 48. Fast Trip to Mars: ΔV ~20 km/s10,000 kg payload4 hr interaction time3 ×106kgbatteries300 MW thruster, Isp4000sor 1.5 × 106kg advanced nuclear electric7,000 kg of propellantVERSUS18,000,000 kg chemical rocket
  • 49. Mars Station Provides Braking: ΔV ~25 km/s•ΔV ~ 7 km/s right at surface
  • 50. Total Trip Time: 0 Day -Start
  • 51. Total Trip Time: 50 Day -Arrive at Mars
  • 52. Total Trip Time: 61 Day -Leave Mars
  • 53. Total Trip Time: 96 Day -Arrive Eath
  • 54. MagBeam: Model/lab results demonstrating performance Beamed Plasma System ÖFast Missions Reusable system & eliminates large power units for each new mission Ö cost effective solution for multiple missions
  • 55. Roadmap: Phase II – •Demonstrate beam coherence in expanded UW chamber (to 9 ft) •Comparative model/lab studies in larger chambers (help from NASA centers to perform studies to 30 ft) •Demonstrate performance of higher power thrusters and develop scaling laws for large systems Further work–demonstrate km range using sounding rocket experiment-orbital demonstration
  • 56. Still Finds the Target Even if Deflector Misaligned
  • 57. Differential motion between the ions and electrons are generated currents and electric fields such that the magnetic field in which the plasma is born stays with the plasma.
  • 58. Magnetic Field is essentially the transmission wire of space for plasma and power