SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.

SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.

Ce diaporama a bien été signalé.

Vous avez aimé cette présentation ? Partagez !

- LinkedIn Member Segmentation Platfo... by DataWorks Summit 1829 views
- Talent Pools: Using insights to pow... by LinkedIn For Sear... 512 views
- Leveraging LinkedIn Data: Recruiter... by LinkedIn Talent S... 1477 views
- Computational advertising in Social... by Anmol Bhasin 6649 views
- Recommender Systems: The Art and Sc... by Anmol Bhasin 6291 views
- Connecting Talent to Opportunity.. ... by Anmol Bhasin 7697 views

1 684 vues

Publié le

Aucun téléchargement

Nombre de vues

1 684

Sur SlideShare

0

Issues des intégrations

0

Intégrations

390

Partages

0

Téléchargements

0

Commentaires

1

J’aime

6

Aucune incorporation

Aucune remarque pour cette diapositive

- 1. Recommendations @ LinkedIn<br />1<br />
- 2. Think Platform<br />Leverage Hadoop<br />2<br />
- 3. The world’s largest professional networkOver 50% of members are now international<br />135M+<br />75%<br />*<br />Fortune 100 Companies use LinkedIn to hire<br />**<br />>2M<br />Company Pages<br />**<br />~2/sec<br />New Members joining<br />*as of Nov 4, 2011**as of June 30, 2011<br />3<br />
- 4. 4<br />Recommendations Opportunity<br />
- 5. 5<br />
- 6. 6<br />
- 7. 7<br />
- 8. 8<br />
- 9. 9<br />
- 10. 10<br />
- 11. The Recommendations Opportunity<br />Pandora Search for People<br />Groups browse maps<br />Events You<br />May Be<br />Interested In<br />11<br />
- 12. 50%<br />12<br />
- 13. 13<br />Positions<br />Education<br />Summary<br />Experience<br />Skills<br />
- 14. Are all titles the same?<br /><ul><li>Software Engineer
- 15. Technical Yahoo
- 16. Member Technical Staff
- 17. Software Development Engineer
- 18. SDE</li></li></ul><li>Are all companies the same?<br />‘IBM’ has 8000+ variations<br /><ul><li>ibm – ireland
- 19. ibm research
- 20. T J Watson Labs
- 21. International Bus. Machines</li></li></ul><li>Recommendation Trade-offsThe need for a common platform<br />Real Time<br /> Time Independent<br />16<br />
- 22. Recommendation Trade-offsThe need for a common platform<br />Content Analysis<br />Collaborative<br />17<br />
- 23. Recommendation Trade-offsThe need for a common platform<br />Precision <br />Recall<br />18<br />
- 24. Specialty -> Specialty<br /> Skills-> Skills<br />Seniority<br />Skills<br />Title<br />Specialty<br />Education<br />Experience<br />Location<br />Industry<br /> Title -> Title<br />Matching<br />0.58<br />Seniority -> Seniority<br />Related Titles<br />Related Companies<br />Related Industries<br />0.94<br />Binary<br />Exact match<br />Exact match in bucket<br />Summary -> Summary<br />0.26<br />Title -> Related Title<br />0.18<br />Education -> Education<br />Soft Match<br /> v1 = tf * idf<br />CosΘ =v1*v2<br />|v1|*|v2|<br />0.98<br />.<br />.<br />.<br />0.16<br />Seniority<br />Skills<br />Title<br />Specialty<br />Education<br />Experience<br />Location<br />Industry<br />0.40<br />Related Titles<br />Related Companies<br />Related Industries<br />
- 25. Importance <br />weight vector<br />(Skills-> Skills)<br />Feedback<br />0.70<br />Normalization, <br />Scoring <br />& Ranking<br />Filtering<br />Location<br />Company<br />Industry<br />Similarity <br />score vector<br />(Skills-> Skills)<br />0.94<br />
- 26. Technologies<br />
- 27. 22<br />Hadoop Case Studies<br /><ul><li>Scaling
- 28. Blending Recommendation Algorithms
- 29. Grandfathering
- 30. Model Selection
- 31. A/B Testing
- 32. Tracking and Reporting</li></li></ul><li>23<br />Scaling<br />Billions of Recommendations<br />Latency > 1 sec<br />Minhashing<br />Latency < 1 sec<br />Recall = Low<br />Latency < 1 sec<br />Recall = High<br />23<br />
- 33. 24<br />Hadoop Case Studies<br /><ul><li>Scaling ✔
- 34. Blending Recommendation Algorithms
- 35. Grandfathering
- 36. Model Selection
- 37. A/B Testing
- 38. Tracking and Reporting</li></li></ul><li>Blending Recommendation Algorithms<br />Co-View <br />Impact Latency ~ Minutes <br />Complexity = High<br />Co-View <br />Impact Latency ~ Hours<br /> Complexity = Low<br />25<br />
- 39. 26<br />Hadoop Case Studies<br /><ul><li>Scaling ✔
- 40. Blending Recommendation Algorithms ✔
- 41. Grandfathering
- 42. Model Selection
- 43. A/B Testing
- 44. Tracking and Reporting</li></li></ul><li>27<br />Grandfathering<br />Adding and Changing Features<br />Next Profile Edit<br />No Time Guarantees<br />Minimal Disruption<br />Parallel Feature<br />Extraction Pipeline<br />Time ~ Week<br />Significant Systems Work<br />Time ~ Hour<br />Minimal Disruption<br />Grandfather When Ready<br />
- 45. 28<br />Hadoop Case Studies<br /><ul><li>Scaling ✔
- 46. Blending Recommendation Algorithms ✔
- 47. Grandfathering ✔
- 48. Model Selection
- 49. A/B Testing
- 50. Tracking and Reporting</li></li></ul><li>29<br />Model Selection<br />Decision Trees<br /><ul><li>Features
- 51. Models
- 52. Parameters</li></ul>SVM<br />SVM<br />Logistic<br />Regression<br />`<br />Content,<br />Collaborative<br /> L1+L2<br />Regularization<br />29<br />29<br />
- 53. 30<br />Hadoop Case Studies<br /><ul><li>Scaling ✔
- 54. Blending Recommendation Algorithms ✔
- 55. Grandfathering ✔
- 56. Model Selection ✔
- 57. A/B Testing
- 58. Tracking and Reporting</li></li></ul><li>31<br />A/B Testing<br />Is Option A Better Than Option B? Let’s Test<br />New <br />Model<br />`<br />A<br />10%<br />Traffic<br />Old<br />Model<br />90%<br />B<br />Send 10% of members who have more than 100 connections AND <br />who have logged in the past one week, AND who are based in Europe<br />31<br />31<br />
- 59. 32<br />Hadoop Case Studies<br /><ul><li>Scaling ✔
- 60. Blending Recommendation Algorithms ✔
- 61. Grandfathering ✔
- 62. Model Selection ✔
- 63. A/B Testing ✔
- 64. Tracking and Reporting</li></li></ul><li>33<br />Tracking and Reporting<br />K-way joins across billions of rows<br />Up to the minute reporting<br />Nearsightedness<br />K-way join complexity<br />Lacks up to the<br /> minute reporting<br />Simple k-way joins<br />
- 65. 34<br />Think Platform<br />Leverage Hadoop<br />
- 66. 35<br />Come work with us at LinkedIn<br />You<br />Applied Research<br />Engineer<br />LinkedIn<br />35<br />

Aucun clipboard public n’a été trouvé avec cette diapositive

Il semblerait que vous ayez déjà ajouté cette diapositive à .

Créer un clipboard

I am Modester by name good day. i just went to your profile this time true this site (www.slideshare.net) and i got your detail and your explanation in fact the way you explain your self shows me that you are innocent and maturity and also understand person i decided to have a contact with you so that we can explain to our self each other because God great everyone to make a friend with each other and from that we know that we are from thism planet God great for us ok my dear please try and reach me through my email address (modester4life4@yahoo.com) so that i can send you my picture true your reply we can know each other ok have a nice day and God bless you yours Modester