SlideShare une entreprise Scribd logo
1  sur  26
1© Cloudera, Inc. All rights reserved.
Matt Brandwein | Director, Products
Tristan Zajonc | Head of Data Science Engineering
Unlocking Data Science in the Enterprise
Webinar Series
Part 1: Introducing Cloudera
Data Science Workbench
2© Cloudera, Inc. All rights reserved.
Age of Machine Learning
2
Cost of compute
Data volume
Time
Machine
Learning
NO
Machine
Learning
1950s 1960s 1970s 1980s 1990s 2000s 2010s
3© Cloudera, Inc. All rights reserved.
The Enterprise Platform for
Data Science and Machine Learning
The data is now here
30B
CONNECTED DEVICES
440x
MORE DATA
Cloudera first to integrate Spark
Modern Platform for Machine Learning and Advanced Analytics
Leading adoption among enterprises
500Customers
Run Spark on
4© Cloudera, Inc. All rights reserved.
Sample data science / machine learning workflow
From data to exploration to action
Data Engineering Data Science (Exploratory) Production (Operational)
Data Wrangling
Visualization
and Analysis
Model Training
& Testing
Production
Data Pipelines Batch Scoring
Online Scoring
Serving
Data GovernanceGovernance
Processing
Acquisition
Reports,
Dashboards
5© Cloudera, Inc. All rights reserved.
The good news
Data Engineering Data Science (Exploratory) Production (Operational)
Data Wrangling
Visualization
and Analysis
Model Training
& Testing
Production
Data Pipelines Batch Scoring
Online Scoring
Serving
Data GovernanceGovernance
Processing
Acquisition
Reports,
Dashboards
Data has never been
more plentiful
Open source data science and
machine learning libraries are
rapidly evolving
Commodity (and on-demand) compute
makes scalable production machine
learning affordable
6© Cloudera, Inc. All rights reserved.
Poll: Which of the following
languages/tools do you use?
Python
R
Scala
Spark MLlib
H2O
TensorFlow
Other deep learning tool(s)
7© Cloudera, Inc. All rights reserved.
The bad news
Data Engineering Data Science (Exploratory) Production (Operational)
Data Wrangling
Visualization
and Analysis
Model Training
& Testing
Production
Data Pipelines Batch Scoring
Online Scoring
Serving
Data GovernanceGovernance
Processing
Acquisition
Reports,
Dashboards
Most data science done at
small scale, individually,
and is difficult to replicate
Very few models
reach production
Teams have different,
conflicting requests for
languages & libraries
Data needs to move
across multiple different
systems
8© Cloudera, Inc. All rights reserved.
Additional challenges
Access
For sensitive data, secure clusters are
difficult to access. And IT typically
doesn’t want random packages
installed on a secure cluster.
Popular open source tools don’t easily
connect to these environments, or
always support Hadoop data formats.
Scale
Laptops rarely have capacity for
medium, let alone big data. This
leads to a lot of sampling.
Popular frameworks don’t easily
parallelize on a cluster. Typically
code has to get rewritten for
production.
Developer Experience
Notebooks, while awesome, don’t
easily support virtual environment
and dependency management,
especially for teams. This makes
sharing and reproducibility hard.
Notebooks are also challenging to
“put into production.”
9© Cloudera, Inc. All rights reserved.
This year, our goal is to enable data science
and machine learning at scale.
10© Cloudera, Inc. All rights reserved.
Open data science in the enterprise
IT
drive adoption while maintaining compliance
Data Scientist
explore, experiment, iterate
11© Cloudera, Inc. All rights reserved.
Our goal: An open platform for data science at scale
Help more data scientists
use the power of Hadoop
Use a powerful, familiar
environment with direct access to
Hadoop data and compute
Data Scientist
Data Engineer
Make it easy and secure to
add new users, use cases
Offer secure self-service analytics
and a faster path to production on
common, affordable infrastructure
Enterprise Architect
Hadoop Admin
12© Cloudera, Inc. All rights reserved.
Introducing Cloudera Data Science Workbench
Self-service data science for the enterprise
Accelerates data science from
development to production with:
• Secure self-service environments
for data scientists to work against
Cloudera clusters
• Support for Python, R, and Scala,
plus project dependency isolation
for multiple library versions
• Workflow automation, version
control, collaboration and sharing
13© Cloudera, Inc. All rights reserved.
Demo
14© Cloudera, Inc. All rights reserved.
Data scientists can:
• Use R, Python, or Scala from a web
browser, with no desktop footprint
• Install any library or framework within
isolated project environments
• Directly access data in secure clusters
with Spark and Impala
• Share insights with their team for
reproducible, collaborative research
• Automate and monitor data pipelines
using built-in job scheduling
IT can:
• Give their data science team the
freedom to work how they want, when
they want
• Stay compliant with out-of-the-box
support for full platform security,
especially Kerberos
• Run on-premises or in the cloud,
wherever data is managed
With Cloudera Data Science Workbench…
15© Cloudera, Inc. All rights reserved.
Poll: Which of the following describes your
production machine learning use case?
Reports, dashboards, or notebooks
Batch scoring or ETL
Online scoring or model serving
Streaming application
16© Cloudera, Inc. All rights reserved.
Solving Data Science is a Full-Stack Problem
• Support unlimited data
• Provide sufficient tools for Analysts
• Provide sufficient tools for
Data Scientists + Data Engineers
• Enable real-time use cases
• Provide data governance
• Provide full-stack security
• Deploy in the cloud
• Integrate with partner tools
• Be easy for IT to deploy/maintain
✓Hadoop
✓Impala, Hive, Hue
✓Spark, Data Science Workbench
✓Kafka, Spark Streaming
✓Navigator + Partners
✓Kerberos, Sentry, Record Service, KMS/KTS
✓Cloudera Director
✓Rich Ecosystem
✓Cloudera Manager + Director
17© Cloudera, Inc. All rights reserved.
The importance of an open ecosystem
Open Ecosystem Black Box
18© Cloudera, Inc. All rights reserved.
Join us again for…
April 20th
A Visual Dive into Machine Learning and Deep Learning
May 4th
Models in Production: A Look From Beginning to End
19© Cloudera, Inc. All rights reserved.
Thank you!
matt@cloudera.com
tristanz@cloudera.com
Continue the webinar series:
http://go.cloudera.com/LP=1383
20© Cloudera, Inc. All rights reserved.
21© Cloudera, Inc. All rights reserved.
22© Cloudera, Inc. All rights reserved.
23© Cloudera, Inc. All rights reserved.
24© Cloudera, Inc. All rights reserved.
25© Cloudera, Inc. All rights reserved.
26© Cloudera, Inc. All rights reserved.

Contenu connexe

Tendances

Build Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks StreamingBuild Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks StreamingDatabricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Databricks
 
Modernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureModernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureDatabricks
 
Azure Synapse Analytics Overview (r1)
Azure Synapse Analytics Overview (r1)Azure Synapse Analytics Overview (r1)
Azure Synapse Analytics Overview (r1)James Serra
 
Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)James Serra
 
Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...
Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...
Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...Michael Rys
 
Let’s get to know Snowflake
Let’s get to know SnowflakeLet’s get to know Snowflake
Let’s get to know SnowflakeKnoldus Inc.
 
Introduction to AWS Lake Formation.pptx
Introduction to AWS Lake Formation.pptxIntroduction to AWS Lake Formation.pptx
Introduction to AWS Lake Formation.pptxSwathiPonugumati
 
Simplifying Real-Time Architectures for IoT with Apache Kudu
Simplifying Real-Time Architectures for IoT with Apache KuduSimplifying Real-Time Architectures for IoT with Apache Kudu
Simplifying Real-Time Architectures for IoT with Apache KuduCloudera, Inc.
 
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Cathrine Wilhelmsen
 
Azure Data Factory ETL Patterns in the Cloud
Azure Data Factory ETL Patterns in the CloudAzure Data Factory ETL Patterns in the Cloud
Azure Data Factory ETL Patterns in the CloudMark Kromer
 
Architect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh ArchitectureArchitect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh ArchitectureDatabricks
 
Delta Lake with Azure Databricks
Delta Lake with Azure DatabricksDelta Lake with Azure Databricks
Delta Lake with Azure DatabricksDustin Vannoy
 
Free Training: How to Build a Lakehouse
Free Training: How to Build a LakehouseFree Training: How to Build a Lakehouse
Free Training: How to Build a LakehouseDatabricks
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overviewJames Serra
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptxAlex Ivy
 
Intro to Delta Lake
Intro to Delta LakeIntro to Delta Lake
Intro to Delta LakeDatabricks
 
Introducing Databricks Delta
Introducing Databricks DeltaIntroducing Databricks Delta
Introducing Databricks DeltaDatabricks
 

Tendances (20)

Build Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks StreamingBuild Real-Time Applications with Databricks Streaming
Build Real-Time Applications with Databricks Streaming
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
 
Modernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureModernizing to a Cloud Data Architecture
Modernizing to a Cloud Data Architecture
 
Azure Synapse Analytics Overview (r1)
Azure Synapse Analytics Overview (r1)Azure Synapse Analytics Overview (r1)
Azure Synapse Analytics Overview (r1)
 
Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)Data Lakehouse, Data Mesh, and Data Fabric (r1)
Data Lakehouse, Data Mesh, and Data Fabric (r1)
 
Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...
Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...
Big Data and Data Warehousing Together with Azure Synapse Analytics (SQLBits ...
 
Let’s get to know Snowflake
Let’s get to know SnowflakeLet’s get to know Snowflake
Let’s get to know Snowflake
 
Introduction to AWS Lake Formation.pptx
Introduction to AWS Lake Formation.pptxIntroduction to AWS Lake Formation.pptx
Introduction to AWS Lake Formation.pptx
 
Data engineering design patterns
Data engineering design patternsData engineering design patterns
Data engineering design patterns
 
Simplifying Real-Time Architectures for IoT with Apache Kudu
Simplifying Real-Time Architectures for IoT with Apache KuduSimplifying Real-Time Architectures for IoT with Apache Kudu
Simplifying Real-Time Architectures for IoT with Apache Kudu
 
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
Pipelines and Data Flows: Introduction to Data Integration in Azure Synapse A...
 
Azure Data Factory ETL Patterns in the Cloud
Azure Data Factory ETL Patterns in the CloudAzure Data Factory ETL Patterns in the Cloud
Azure Data Factory ETL Patterns in the Cloud
 
Architect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh ArchitectureArchitect’s Open-Source Guide for a Data Mesh Architecture
Architect’s Open-Source Guide for a Data Mesh Architecture
 
Delta Lake with Azure Databricks
Delta Lake with Azure DatabricksDelta Lake with Azure Databricks
Delta Lake with Azure Databricks
 
Free Training: How to Build a Lakehouse
Free Training: How to Build a LakehouseFree Training: How to Build a Lakehouse
Free Training: How to Build a Lakehouse
 
Modern data warehouse
Modern data warehouseModern data warehouse
Modern data warehouse
 
Azure data platform overview
Azure data platform overviewAzure data platform overview
Azure data platform overview
 
Databricks Platform.pptx
Databricks Platform.pptxDatabricks Platform.pptx
Databricks Platform.pptx
 
Intro to Delta Lake
Intro to Delta LakeIntro to Delta Lake
Intro to Delta Lake
 
Introducing Databricks Delta
Introducing Databricks DeltaIntroducing Databricks Delta
Introducing Databricks Delta
 

Similaire à Part 1: Introducing the Cloudera Data Science Workbench

Unlocking data science in the enterprise - with Oracle and Cloudera
Unlocking data science in the enterprise - with Oracle and ClouderaUnlocking data science in the enterprise - with Oracle and Cloudera
Unlocking data science in the enterprise - with Oracle and ClouderaCloudera, Inc.
 
Data Science in Enterprise
Data Science in EnterpriseData Science in Enterprise
Data Science in EnterpriseJosh Yeh
 
Part 2: A Visual Dive into Machine Learning and Deep Learning 

Part 2: A Visual Dive into Machine Learning and Deep Learning 
Part 2: A Visual Dive into Machine Learning and Deep Learning 

Part 2: A Visual Dive into Machine Learning and Deep Learning 
Cloudera, Inc.
 
Data Science in the Enterprise
Data Science in the EnterpriseData Science in the Enterprise
Data Science in the EnterpriseThe Hive
 
Data Science and CDSW
Data Science and CDSWData Science and CDSW
Data Science and CDSWJason Hubbard
 
Analyzing Hadoop Data Using Sparklyr

Analyzing Hadoop Data Using Sparklyr
Analyzing Hadoop Data Using Sparklyr

Analyzing Hadoop Data Using Sparklyr
Cloudera, Inc.
 
Edge to AI: Analytics from Edge to Cloud with Efficient Movement of Machine ...
Edge to AI:  Analytics from Edge to Cloud with Efficient Movement of Machine ...Edge to AI:  Analytics from Edge to Cloud with Efficient Movement of Machine ...
Edge to AI: Analytics from Edge to Cloud with Efficient Movement of Machine ...Timothy Spann
 
The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...
The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...
The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...Cloudera, Inc.
 
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud Stefan Lipp
 
Part 3: Models in Production: A Look From Beginning to End
Part 3: Models in Production: A Look From Beginning to EndPart 3: Models in Production: A Look From Beginning to End
Part 3: Models in Production: A Look From Beginning to EndCloudera, Inc.
 
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science WorkbenchNOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science WorkbenchNOVA DATASCIENCE
 
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017Stefan Lipp
 
Supercharge Splunk with Cloudera

Supercharge Splunk with Cloudera
Supercharge Splunk with Cloudera

Supercharge Splunk with Cloudera
Cloudera, Inc.
 
High-Performance Analytics in the Cloud with Apache Impala
High-Performance Analytics in the Cloud with Apache ImpalaHigh-Performance Analytics in the Cloud with Apache Impala
High-Performance Analytics in the Cloud with Apache ImpalaCloudera, Inc.
 
Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18Cloudera, Inc.
 
Machine Learning Model Deployment: Strategy to Implementation
Machine Learning Model Deployment: Strategy to ImplementationMachine Learning Model Deployment: Strategy to Implementation
Machine Learning Model Deployment: Strategy to ImplementationDataWorks Summit
 
Cloudera Altus: Big Data in the Cloud Made Easy
Cloudera Altus: Big Data in the Cloud Made EasyCloudera Altus: Big Data in the Cloud Made Easy
Cloudera Altus: Big Data in the Cloud Made EasyCloudera, Inc.
 
What it takes to bring Hadoop to a production-ready state
What it takes to bring Hadoop to a production-ready stateWhat it takes to bring Hadoop to a production-ready state
What it takes to bring Hadoop to a production-ready stateClouderaUserGroups
 
Enterprise Metadata Integration, Cloudera
Enterprise Metadata Integration, ClouderaEnterprise Metadata Integration, Cloudera
Enterprise Metadata Integration, ClouderaNeo4j
 
The Vision & Challenge of Applied Machine Learning
The Vision & Challenge of Applied Machine LearningThe Vision & Challenge of Applied Machine Learning
The Vision & Challenge of Applied Machine LearningCloudera, Inc.
 

Similaire à Part 1: Introducing the Cloudera Data Science Workbench (20)

Unlocking data science in the enterprise - with Oracle and Cloudera
Unlocking data science in the enterprise - with Oracle and ClouderaUnlocking data science in the enterprise - with Oracle and Cloudera
Unlocking data science in the enterprise - with Oracle and Cloudera
 
Data Science in Enterprise
Data Science in EnterpriseData Science in Enterprise
Data Science in Enterprise
 
Part 2: A Visual Dive into Machine Learning and Deep Learning 

Part 2: A Visual Dive into Machine Learning and Deep Learning 
Part 2: A Visual Dive into Machine Learning and Deep Learning 

Part 2: A Visual Dive into Machine Learning and Deep Learning 

 
Data Science in the Enterprise
Data Science in the EnterpriseData Science in the Enterprise
Data Science in the Enterprise
 
Data Science and CDSW
Data Science and CDSWData Science and CDSW
Data Science and CDSW
 
Analyzing Hadoop Data Using Sparklyr

Analyzing Hadoop Data Using Sparklyr
Analyzing Hadoop Data Using Sparklyr

Analyzing Hadoop Data Using Sparklyr

 
Edge to AI: Analytics from Edge to Cloud with Efficient Movement of Machine ...
Edge to AI:  Analytics from Edge to Cloud with Efficient Movement of Machine ...Edge to AI:  Analytics from Edge to Cloud with Efficient Movement of Machine ...
Edge to AI: Analytics from Edge to Cloud with Efficient Movement of Machine ...
 
The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...
The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...
The 6th Wave of Automation: Automation of Decisions | Cloudera Analytics & Ma...
 
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
Cloudera Analytics and Machine Learning Platform - Optimized for Cloud
 
Part 3: Models in Production: A Look From Beginning to End
Part 3: Models in Production: A Look From Beginning to EndPart 3: Models in Production: A Look From Beginning to End
Part 3: Models in Production: A Look From Beginning to End
 
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science WorkbenchNOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
NOVA Data Science Meetup 2-21-2018 Presentation Cloudera Data Science Workbench
 
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
Cloudera Big Data Integration Speedpitch at TDWI Munich June 2017
 
Supercharge Splunk with Cloudera

Supercharge Splunk with Cloudera
Supercharge Splunk with Cloudera

Supercharge Splunk with Cloudera

 
High-Performance Analytics in the Cloud with Apache Impala
High-Performance Analytics in the Cloud with Apache ImpalaHigh-Performance Analytics in the Cloud with Apache Impala
High-Performance Analytics in the Cloud with Apache Impala
 
Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18Introducing the data science sandbox as a service 8.30.18
Introducing the data science sandbox as a service 8.30.18
 
Machine Learning Model Deployment: Strategy to Implementation
Machine Learning Model Deployment: Strategy to ImplementationMachine Learning Model Deployment: Strategy to Implementation
Machine Learning Model Deployment: Strategy to Implementation
 
Cloudera Altus: Big Data in the Cloud Made Easy
Cloudera Altus: Big Data in the Cloud Made EasyCloudera Altus: Big Data in the Cloud Made Easy
Cloudera Altus: Big Data in the Cloud Made Easy
 
What it takes to bring Hadoop to a production-ready state
What it takes to bring Hadoop to a production-ready stateWhat it takes to bring Hadoop to a production-ready state
What it takes to bring Hadoop to a production-ready state
 
Enterprise Metadata Integration, Cloudera
Enterprise Metadata Integration, ClouderaEnterprise Metadata Integration, Cloudera
Enterprise Metadata Integration, Cloudera
 
The Vision & Challenge of Applied Machine Learning
The Vision & Challenge of Applied Machine LearningThe Vision & Challenge of Applied Machine Learning
The Vision & Challenge of Applied Machine Learning
 

Plus de Cloudera, Inc.

Partner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptxPartner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptxCloudera, Inc.
 
Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists Cloudera, Inc.
 
2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards FinalistsCloudera, Inc.
 
Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019Cloudera, Inc.
 
Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19Cloudera, Inc.
 
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19Cloudera, Inc.
 
Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19Cloudera, Inc.
 
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19Cloudera, Inc.
 
Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19Cloudera, Inc.
 
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19Cloudera, Inc.
 
Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2Cloudera, Inc.
 
Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1Cloudera, Inc.
 
Extending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the PlatformExtending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the PlatformCloudera, Inc.
 
Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18Cloudera, Inc.
 
Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360Cloudera, Inc.
 
Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18Cloudera, Inc.
 
Introducing Workload XM 8.7.18
Introducing Workload XM 8.7.18Introducing Workload XM 8.7.18
Introducing Workload XM 8.7.18Cloudera, Inc.
 

Plus de Cloudera, Inc. (20)

Partner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptxPartner Briefing_January 25 (FINAL).pptx
Partner Briefing_January 25 (FINAL).pptx
 
Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists Cloudera Data Impact Awards 2021 - Finalists
Cloudera Data Impact Awards 2021 - Finalists
 
2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists2020 Cloudera Data Impact Awards Finalists
2020 Cloudera Data Impact Awards Finalists
 
Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019Edc event vienna presentation 1 oct 2019
Edc event vienna presentation 1 oct 2019
 
Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19Machine Learning with Limited Labeled Data 4/3/19
Machine Learning with Limited Labeled Data 4/3/19
 
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19Data Driven With the Cloudera Modern Data Warehouse 3.19.19
Data Driven With the Cloudera Modern Data Warehouse 3.19.19
 
Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19Introducing Cloudera DataFlow (CDF) 2.13.19
Introducing Cloudera DataFlow (CDF) 2.13.19
 
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
Shortening the Sales Cycle with a Modern Data Warehouse 1.30.19
 
Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19Leveraging the cloud for analytics and machine learning 1.29.19
Leveraging the cloud for analytics and machine learning 1.29.19
 
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
Modernizing the Legacy Data Warehouse – What, Why, and How 1.23.19
 
Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18Leveraging the Cloud for Big Data Analytics 12.11.18
Leveraging the Cloud for Big Data Analytics 12.11.18
 
Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3Modern Data Warehouse Fundamentals Part 3
Modern Data Warehouse Fundamentals Part 3
 
Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2Modern Data Warehouse Fundamentals Part 2
Modern Data Warehouse Fundamentals Part 2
 
Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1Modern Data Warehouse Fundamentals Part 1
Modern Data Warehouse Fundamentals Part 1
 
Extending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the PlatformExtending Cloudera SDX beyond the Platform
Extending Cloudera SDX beyond the Platform
 
Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18Federated Learning: ML with Privacy on the Edge 11.15.18
Federated Learning: ML with Privacy on the Edge 11.15.18
 
Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360Analyst Webinar: Doing a 180 on Customer 360
Analyst Webinar: Doing a 180 on Customer 360
 
Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18Build a modern platform for anti-money laundering 9.19.18
Build a modern platform for anti-money laundering 9.19.18
 
Cloudera SDX
Cloudera SDXCloudera SDX
Cloudera SDX
 
Introducing Workload XM 8.7.18
Introducing Workload XM 8.7.18Introducing Workload XM 8.7.18
Introducing Workload XM 8.7.18
 

Dernier

Diamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with PrecisionDiamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with PrecisionSolGuruz
 
Optimizing AI for immediate response in Smart CCTV
Optimizing AI for immediate response in Smart CCTVOptimizing AI for immediate response in Smart CCTV
Optimizing AI for immediate response in Smart CCTVshikhaohhpro
 
How To Troubleshoot Collaboration Apps for the Modern Connected Worker
How To Troubleshoot Collaboration Apps for the Modern Connected WorkerHow To Troubleshoot Collaboration Apps for the Modern Connected Worker
How To Troubleshoot Collaboration Apps for the Modern Connected WorkerThousandEyes
 
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online ☂️
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online  ☂️CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online  ☂️
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online ☂️anilsa9823
 
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...MyIntelliSource, Inc.
 
HR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.comHR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.comFatema Valibhai
 
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...kellynguyen01
 
5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdfWave PLM
 
Professional Resume Template for Software Developers
Professional Resume Template for Software DevelopersProfessional Resume Template for Software Developers
Professional Resume Template for Software DevelopersVinodh Ram
 
DNT_Corporate presentation know about us
DNT_Corporate presentation know about usDNT_Corporate presentation know about us
DNT_Corporate presentation know about usDynamic Netsoft
 
Right Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsRight Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsJhone kinadey
 
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdfLearn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdfkalichargn70th171
 
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...panagenda
 
Tech Tuesday-Harness the Power of Effective Resource Planning with OnePlan’s ...
Tech Tuesday-Harness the Power of Effective Resource Planning with OnePlan’s ...Tech Tuesday-Harness the Power of Effective Resource Planning with OnePlan’s ...
Tech Tuesday-Harness the Power of Effective Resource Planning with OnePlan’s ...OnePlan Solutions
 
Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...
Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...
Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...harshavardhanraghave
 
Advancing Engineering with AI through the Next Generation of Strategic Projec...
Advancing Engineering with AI through the Next Generation of Strategic Projec...Advancing Engineering with AI through the Next Generation of Strategic Projec...
Advancing Engineering with AI through the Next Generation of Strategic Projec...OnePlan Solutions
 

Dernier (20)

Microsoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdfMicrosoft AI Transformation Partner Playbook.pdf
Microsoft AI Transformation Partner Playbook.pdf
 
Diamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with PrecisionDiamond Application Development Crafting Solutions with Precision
Diamond Application Development Crafting Solutions with Precision
 
Optimizing AI for immediate response in Smart CCTV
Optimizing AI for immediate response in Smart CCTVOptimizing AI for immediate response in Smart CCTV
Optimizing AI for immediate response in Smart CCTV
 
How To Troubleshoot Collaboration Apps for the Modern Connected Worker
How To Troubleshoot Collaboration Apps for the Modern Connected WorkerHow To Troubleshoot Collaboration Apps for the Modern Connected Worker
How To Troubleshoot Collaboration Apps for the Modern Connected Worker
 
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online ☂️
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online  ☂️CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online  ☂️
CALL ON ➥8923113531 🔝Call Girls Kakori Lucknow best sexual service Online ☂️
 
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
Try MyIntelliAccount Cloud Accounting Software As A Service Solution Risk Fre...
 
HR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.comHR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.com
 
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
 
5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf
 
Professional Resume Template for Software Developers
Professional Resume Template for Software DevelopersProfessional Resume Template for Software Developers
Professional Resume Template for Software Developers
 
DNT_Corporate presentation know about us
DNT_Corporate presentation know about usDNT_Corporate presentation know about us
DNT_Corporate presentation know about us
 
Right Money Management App For Your Financial Goals
Right Money Management App For Your Financial GoalsRight Money Management App For Your Financial Goals
Right Money Management App For Your Financial Goals
 
Call Girls In Mukherjee Nagar 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SE...
Call Girls In Mukherjee Nagar 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SE...Call Girls In Mukherjee Nagar 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SE...
Call Girls In Mukherjee Nagar 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SE...
 
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdfLearn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
Learn the Fundamentals of XCUITest Framework_ A Beginner's Guide.pdf
 
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
W01_panagenda_Navigating-the-Future-with-The-Hitchhikers-Guide-to-Notes-and-D...
 
Vip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS Live
Vip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS LiveVip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS Live
Vip Call Girls Noida ➡️ Delhi ➡️ 9999965857 No Advance 24HRS Live
 
Tech Tuesday-Harness the Power of Effective Resource Planning with OnePlan’s ...
Tech Tuesday-Harness the Power of Effective Resource Planning with OnePlan’s ...Tech Tuesday-Harness the Power of Effective Resource Planning with OnePlan’s ...
Tech Tuesday-Harness the Power of Effective Resource Planning with OnePlan’s ...
 
Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...
Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...
Reassessing the Bedrock of Clinical Function Models: An Examination of Large ...
 
Advancing Engineering with AI through the Next Generation of Strategic Projec...
Advancing Engineering with AI through the Next Generation of Strategic Projec...Advancing Engineering with AI through the Next Generation of Strategic Projec...
Advancing Engineering with AI through the Next Generation of Strategic Projec...
 
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Pushp Vihar (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 

Part 1: Introducing the Cloudera Data Science Workbench

  • 1. 1© Cloudera, Inc. All rights reserved. Matt Brandwein | Director, Products Tristan Zajonc | Head of Data Science Engineering Unlocking Data Science in the Enterprise Webinar Series Part 1: Introducing Cloudera Data Science Workbench
  • 2. 2© Cloudera, Inc. All rights reserved. Age of Machine Learning 2 Cost of compute Data volume Time Machine Learning NO Machine Learning 1950s 1960s 1970s 1980s 1990s 2000s 2010s
  • 3. 3© Cloudera, Inc. All rights reserved. The Enterprise Platform for Data Science and Machine Learning The data is now here 30B CONNECTED DEVICES 440x MORE DATA Cloudera first to integrate Spark Modern Platform for Machine Learning and Advanced Analytics Leading adoption among enterprises 500Customers Run Spark on
  • 4. 4© Cloudera, Inc. All rights reserved. Sample data science / machine learning workflow From data to exploration to action Data Engineering Data Science (Exploratory) Production (Operational) Data Wrangling Visualization and Analysis Model Training & Testing Production Data Pipelines Batch Scoring Online Scoring Serving Data GovernanceGovernance Processing Acquisition Reports, Dashboards
  • 5. 5© Cloudera, Inc. All rights reserved. The good news Data Engineering Data Science (Exploratory) Production (Operational) Data Wrangling Visualization and Analysis Model Training & Testing Production Data Pipelines Batch Scoring Online Scoring Serving Data GovernanceGovernance Processing Acquisition Reports, Dashboards Data has never been more plentiful Open source data science and machine learning libraries are rapidly evolving Commodity (and on-demand) compute makes scalable production machine learning affordable
  • 6. 6© Cloudera, Inc. All rights reserved. Poll: Which of the following languages/tools do you use? Python R Scala Spark MLlib H2O TensorFlow Other deep learning tool(s)
  • 7. 7© Cloudera, Inc. All rights reserved. The bad news Data Engineering Data Science (Exploratory) Production (Operational) Data Wrangling Visualization and Analysis Model Training & Testing Production Data Pipelines Batch Scoring Online Scoring Serving Data GovernanceGovernance Processing Acquisition Reports, Dashboards Most data science done at small scale, individually, and is difficult to replicate Very few models reach production Teams have different, conflicting requests for languages & libraries Data needs to move across multiple different systems
  • 8. 8© Cloudera, Inc. All rights reserved. Additional challenges Access For sensitive data, secure clusters are difficult to access. And IT typically doesn’t want random packages installed on a secure cluster. Popular open source tools don’t easily connect to these environments, or always support Hadoop data formats. Scale Laptops rarely have capacity for medium, let alone big data. This leads to a lot of sampling. Popular frameworks don’t easily parallelize on a cluster. Typically code has to get rewritten for production. Developer Experience Notebooks, while awesome, don’t easily support virtual environment and dependency management, especially for teams. This makes sharing and reproducibility hard. Notebooks are also challenging to “put into production.”
  • 9. 9© Cloudera, Inc. All rights reserved. This year, our goal is to enable data science and machine learning at scale.
  • 10. 10© Cloudera, Inc. All rights reserved. Open data science in the enterprise IT drive adoption while maintaining compliance Data Scientist explore, experiment, iterate
  • 11. 11© Cloudera, Inc. All rights reserved. Our goal: An open platform for data science at scale Help more data scientists use the power of Hadoop Use a powerful, familiar environment with direct access to Hadoop data and compute Data Scientist Data Engineer Make it easy and secure to add new users, use cases Offer secure self-service analytics and a faster path to production on common, affordable infrastructure Enterprise Architect Hadoop Admin
  • 12. 12© Cloudera, Inc. All rights reserved. Introducing Cloudera Data Science Workbench Self-service data science for the enterprise Accelerates data science from development to production with: • Secure self-service environments for data scientists to work against Cloudera clusters • Support for Python, R, and Scala, plus project dependency isolation for multiple library versions • Workflow automation, version control, collaboration and sharing
  • 13. 13© Cloudera, Inc. All rights reserved. Demo
  • 14. 14© Cloudera, Inc. All rights reserved. Data scientists can: • Use R, Python, or Scala from a web browser, with no desktop footprint • Install any library or framework within isolated project environments • Directly access data in secure clusters with Spark and Impala • Share insights with their team for reproducible, collaborative research • Automate and monitor data pipelines using built-in job scheduling IT can: • Give their data science team the freedom to work how they want, when they want • Stay compliant with out-of-the-box support for full platform security, especially Kerberos • Run on-premises or in the cloud, wherever data is managed With Cloudera Data Science Workbench…
  • 15. 15© Cloudera, Inc. All rights reserved. Poll: Which of the following describes your production machine learning use case? Reports, dashboards, or notebooks Batch scoring or ETL Online scoring or model serving Streaming application
  • 16. 16© Cloudera, Inc. All rights reserved. Solving Data Science is a Full-Stack Problem • Support unlimited data • Provide sufficient tools for Analysts • Provide sufficient tools for Data Scientists + Data Engineers • Enable real-time use cases • Provide data governance • Provide full-stack security • Deploy in the cloud • Integrate with partner tools • Be easy for IT to deploy/maintain ✓Hadoop ✓Impala, Hive, Hue ✓Spark, Data Science Workbench ✓Kafka, Spark Streaming ✓Navigator + Partners ✓Kerberos, Sentry, Record Service, KMS/KTS ✓Cloudera Director ✓Rich Ecosystem ✓Cloudera Manager + Director
  • 17. 17© Cloudera, Inc. All rights reserved. The importance of an open ecosystem Open Ecosystem Black Box
  • 18. 18© Cloudera, Inc. All rights reserved. Join us again for… April 20th A Visual Dive into Machine Learning and Deep Learning May 4th Models in Production: A Look From Beginning to End
  • 19. 19© Cloudera, Inc. All rights reserved. Thank you! matt@cloudera.com tristanz@cloudera.com Continue the webinar series: http://go.cloudera.com/LP=1383
  • 20. 20© Cloudera, Inc. All rights reserved.
  • 21. 21© Cloudera, Inc. All rights reserved.
  • 22. 22© Cloudera, Inc. All rights reserved.
  • 23. 23© Cloudera, Inc. All rights reserved.
  • 24. 24© Cloudera, Inc. All rights reserved.
  • 25. 25© Cloudera, Inc. All rights reserved.
  • 26. 26© Cloudera, Inc. All rights reserved.