SlideShare une entreprise Scribd logo
1  sur  121
1
Communication Theory
Asst Prof
C.N.VIJAYBALAJI M.E.,
LL.B.(pursuing)
Review of Spectral characteristics
 Periodic and Non-periodic Signals: A signal is said to
be periodic, if it exhibits periodicity. i.e.,
x(t +T)=x(t) , for all values of t.
Periodic signal has the property that it is unchanged
by a time shift of T. A signal that does not satisfy the
above periodicity property is called a non-periodic
signal.
 Periodic signals can be represented using the
Fourier Series. Non-periodic signals can be
represented using the Fourier Transform.
 Both Fourier series and Fourier Transform deal with
the representation of the signals as a combination of
sine and cosine waves.
Fourier Series
 Fourier series: a complicated waveform analyzed
into a number of harmonically related sine and
cosine functions
 A continuous periodic signal x(t) with a period T
may be represented by:
 x(t)=Σ∞
k=1 (Ak cos kω t + Bk sin kω t)+ A0
 Dirichlet conditions must be placed on x(t) for the
series to be valid: the integral of the magnitude of
x(t) over a complete period must be finite, and the
signal can only have a finite number of
discontinuities in any finite interval
Fourier Series Equations
The Fourier series represents a periodic
signal Tp in terms of frequency components:
We get the Fourier series coefficients as
follows:
The complex exponential Fourier coefficients
are a sequence of complex numbers
representing the frequency component ω0k.
p
T
/
2
ω
where
,
e
X
x(t) 0
k
t
ikω
k
0


 






p
0
T
t
ikω
p
k dt
x(t)e
T
1
X
 Periodic signals represented by Fourier Series
have Discrete spectra.
The Fourier Transform
 Fourier transform is used for the non-
periodic signals. A Fourier transform
converts the signal from the time domain
to the spectral domain.
 Continuous Fourier Transform:
   
   











df
e
f
H
t
h
dt
e
t
h
f
H
ift
ift


2
2
 Non-periodic signals represented by Fourier
transform have Continuous spectra.
Fourier Transform Pairs
Note: Π stands for rectangular function. Λ stands for triangular function.
9
Introduction to Communication
Systems
 Communication – Basic process of
exchanging information from one location
(source) to destination (receiving end).
 Refers – process of sending, receiving and
processing of information/signal/input from
one point to another point.
Source Destination
Flow of information
Figure 1 : A simple communication system
10
 Electronic Communication System –
defined as the whole mechanism of
sending and receiving as well as
processing of information electronically
from source to destination.
 Example – Radiotelephony, broadcasting,
point-to-point, mobile communications,
computer communications, radar and
satellite systems.
11
Objectives
 Communication System – to produce an
accurate replica of the transmitted
information that is to transfer information
between two or more points (destinations)
through a communication channel, with
minimum error.
12
NEED FOR COMMUNICATION
 Interaction purposes – enables people to
interact in a timely fashion on a global level in
social, political, economic and scientific areas,
through telephones, electronic-mail and video
conference.
 Transfer Information – Tx in the form of audio,
video, texts, computer data and picture through
facsimile, telegraph or telex and internet.
 Broadcasting – Broadcast information to
masses, through radio, television or teletext.
13
Terms Related To Communications
 Message – physical manifestation produced by the
information source and then converted to electrical
signal before transmission by the transducer in the
transmitter.
 Transducer – Device that converts one form of energy
into another form.
 Input Transducer – placed at the transmitter which
convert an input message into an electrical signal.
 Example – Microphone which converts sound energy to
electrical energy.
Message
Input
Transducer
Electrical
Signal
14
 Output Transducer – placed at the receiver
which converts the electrical signal into the
original message.
 Example – Loudspeaker which converts
electrical energy into sound energy.
 Signal – electrical voltage or current which
varies with time and is used to carry message or
information from one point to another.
Electrical
Signal
Output
Transducer
Message
15
Elements of a Communication
System
 The basic elements are : Source,
Transmitter, Channel, Receiver and
Destination.
Information
Source
Transmitter
Channel
Transmission
Medium
Receiver Destination
Noise
Figure : Basic Block Diagram of a Communication System
EEE Exclusive
16
Function of each Element.
 Information Source – the communication system
exists to send messages. Messages come from
voice, data, video and other types of information.
 Transmitter – Transmit the input message into
electrical signals such as voltage or current into
electromagnetic waves such as radio waves,
microwaves that is suitable for transmission and
compatible with the channel. Besides, the
transmitter also do the modulation and encoding
(for digital signal).
17
Block Diagram of a Transmitter
5 minutes exercise;
Describe the sequence of events that happen at
the radio waves station during news broadcast?
Modulating
Signal
Audio
Amplifier
Modulator
RF
Amplifier
Carrier
Signal
Transmitting
Antenna
18
 Channel/Medium – is the link or path over
which information flows from the source to
destination. Many links combined will
establish a communication networks.
 There are 5 criteria of a transmission
system; Capacity, Performance, Distance,
Security and Cost which includes the
installation, operation and maintenance.
 2 main categories of channel that
commonly used are; line (guided media)
and free space (unguided media)
19
 Receiver – Receives the electrical signals or
electromagnetic waves that are sent by the
transmitter through the channel. It is also
separate the information from the received
signal and sent the information to the
destination.
 Basically, a receiver consists of several stages
of amplification, frequency conversion and
filtering.
20
Block Diagram of a Receiver
 Destination – is where the user receives the
information, such as loud speaker, visual
display, computer monitor, plotter and printer.
RF
Amplifier
Mixer
Local
Oscillator
Intermediate
Frequency
Amplifier
Demodulator
Audio
Amplifier
Destination
Receiving Antenna
21
Analog Modulation
 Baseband Transmission
 Baseband signal is the information either in a
digital or analogue form.
 Transmission of original information whether
analogue or digital, directly into transmission
medium is called baseband transmission.
 Example: intercom (figure below)
Microphone
Voice
Audio
Amplifier
Audio
Amplifier
Speaker
Voice
Wire
22
Baseband signal is not suitable for
long distance communication….
 Hardware limitations
 Requires very long antenna
 Baseband signal is an audio signal of low frequency.
For example voice, range of frequency is 0.3 kHz to
3.4 kHz. The length of the antenna required to
transmit any signal at least 1/10 of its wavelength (λ).
Therefore, L = 100km (impossible!)
 Interference with other waves
 Simultaneous transmission of audio signals will cause
interference with each other. This is due to audio
signals having the same frequency range and
receiver stations cannot distinguish the signals.
23
Modulation
 Modulation – defined as the process of modifying a
carrier wave (radio wave) systematically by the
modulating signal.
 This process makes the signal suitable for transmission
and compatible with the channel.
 Resultant signal – modulated signal
 2 types of modulation; Analog Modulation and Digital
Modulation.
 Analogue Modulation – to transfer an analogue low pass
signal over an analogue bandpass channel.
 Digital Modulation – to transfer a digital bit stream the
carrier is a periodic train and one of the pulse parameter
(amplitude, width or position) changes according to the
audio signal.
24
Purpose of Modulation Process in
Communication Systems
 To generate modulated signal that is suitable for
transmission and compatible with the channel.
 To allow efficient transmission – increase transmission
speed and distance, eg;
1. By using high frequency carrier signal, the information
(voice) can travel and propagate through the air at
greater distances and shorter transmission time
2. Also, high frequency signal is less prone to noise and
interference. Certain types of modulation have the useful
property of suppressing both noise and interference
3. For example, FM use limiter to reduce noise and keep
the signal’s amplitude constant. PCM systems use
repeaters to generate the signal along the transmission
path.
25
Amplitude Modulation (AM)
 Objectives:-
 Recognize AM signal in the time domain, frequency
domain and trigonometric equation form
 Calculate the percentage of modulation index
 Calculate the upper sidebands, lower sidebands and
bandwidth of an AM signal by given the carrier and
modulating signal frequencies
 Calculate the power related in AM signal
 Define the terms of DSBSC, SSB and VSB
 Understand the modulator and demodulator
operations
26
Introduction
 Modulation
 The alteration of the amplitude, phase or frequency of an
oscillator in accordance with another signal.
 Input signal is encoded in a format suitable for transmission
 A low frequency information signal is encoded over a higher
frequency signal
 Carrier Signal
 Sinusoidal wave,
 Modulating Signal/Base band
 Information signal,
 Modulated Wave
 Higher frequency signal which is being modulated
 Modulation Schemes
 To counter the effects of multi path fading and time-delay
spread
t
f
V
v c
c
c 
2
sin

t
f
V
v m
m
m 
2
sin

27
Carrier Signal,
Vc
Modulating Signal,
Vm
Modulation Schemes
Modulated Signal
VAM
VPM
VFM
28
Amplitude Modulation
 Time Domain
 Frequency Domain
29
t
f
V
v m
m
m 
2
sin

)
2
(sin
2
sin
2
sin
t
f
t
f
V
t
f
V
V
c
m
m
c
c
AM





Modulator
Information Signal
Carrier Signal
Output
t
f
V
v c
c
c 
2
sin

AM Modulator
30
Amplitude Modulation
Vc
- Vc
Vm
- Vm
Vam
- Vam
31
Modulation Index
 Modulation Index, m
 Indicates the amount that the carrier signal is
modulated.
 It is an expression of the amount of power in the
sidebands.
 Modulation level ranges = 0-1 where
• 0 = no modulation
• 1 = full modulation
• >1 = distortion
Vc
Vm
m 
min
max
min
max
V
V
V
V
m



32
Modulation Index
Vc
Vm
m 
33
Modulation Index
Vmin
Vmin (p-p)
Vmax
Vmax (p-p)
min
max
min
max
V
V
V
V
m



34
Modulation Index
m = 0 m = 0.5
m = 1
35
fc
Bandwidth
2
mVc
2
mVc
VC
fm
B
fm
fc
fm
fc
B
2
)
(
)
(





 Bandwidth for AM signal,
fc-fm fc+fm
36
Power Distributions
 Total transmitted power, PT
 If R= 1,
USB
LSB
C
T P
P
P
P 


2
m
1
P
P
2
C
T 









fc-fm fc+fm
fc
37
Double Side Band Suppressed Carrier (DSBSC)
 It is a technique where it is transmitting both the
sidebands without the carrier (carrier is being
suppressed/cut)
 Characteristics:
 Power content less
 Same bandwidth
 Disadvantages - receiver is complex and expensive.
38
Single Side Band
(SSB)
 Improved DSBSC
and standard AM,
which waste
power and
occupy large
bandwidth
 SSB is a process
of transmitting
one of the
sidebands of the
standard AM by
suppressing the
carrier and one of
the sidebands
 Advantages:
 Saving power
 Reduce BW by 50%
 Increase efficiency,
increase SNR
 Disadvantages
 Complex circuits for
frequency stability
39
Vestigial Side Band (VSB)
 VSB is mainly used in TV broadcasting for
their video transmissions.
 TV signal consists of
 Audio signal – transmitted by FM
 Video signal – transmitted by VSB
 A video signal consists a range of frequency
and fmax = 4.5 MHz.
 If it transmitted using conventional AM, the
required BW is 9 MHz (BW=2fm). But
according to the standard, TV signal is
limited to 7 MHz only
 So, to reduce the BW, a part of the LSB of
picture signal is not fully transmitted.
40
Vestigial Side Band (VSB)
 The frequency spectrum for the TV signal / VSB:
Lower
Video
Bands
Upper
Video
Bands
Total TV signal bandwidth = 7 MHz
Video
Carrier
Audio
Carrier
4.5 MHz
Upper
Audio
Bands
Lower
Audio
Bands
1.25 6.75
5.75 7.0
6.25
0
f (MHz)
41
Modulator Circuits
R1
R2
R3
Diode
C L
Modulating
Signal
Output
Carrier
A
B
C D
E
42
Modulator Circuits
A. Modulating Signal
B. Carrier
C. Sum of carrier and
modulating signal
D. Diode current
E. AM output across
tuned circuit
43
Demodulator
R1
Diode
C1
C’
R’
AM
Signal
A B C
44
Demodulator
A. AM signal
B. Current pulses
through diode
C. Demodulating signal
D. Modulating signal
45
Frequency Modulation (FM)
 Objectives:-
 Recognize FM signal in the time domain, frequency
domain and trigonometric equation form
 Calculate the percentage of modulation index
 Calculate the upper sidebands, lower sidebands and
bandwidth of an FM signal by Carsons’s Rule and
Bessel Function Table
 Calculate the power related in FM signal
 Understand the modulator and demodulator of FM
46
Introduction
 FM is the process of varying the frequency of a
carrier wave in proportion to a modulating signal.
 The amplitude of the carrier is kept constant while its
frequency is varied by the amplitude of the
modulating signal.
 In all types of modulation, the carrier wave is varied
by the AMPLITUDE of the modulating signal.
 FM signal does not have an envelope, therefore the
FM receiver does not have to respond to amplitude
variations  it can ignore noise to some extent.
47
Frequency Modulation
48
Frequency Modulation
 The importance features about FM waveforms
are:
 The frequency varies
 The rate of change of carrier frequency changes is
the same as the frequency of the information signal
 The amount of carrier frequency changes is
proportional to the amplitude of the information
signal
 The amplitude is constant
49
 Carrier Signal
 Sinusoidal wave

 Modulating Signal/Base band
 Information signal

 Modulated Wave
 Higher frequency signal which is being modulated

 Where
t
f
V
v c
c
c 
2
sin

t
f
V
v m
m
m 
2
sin

Frequency Modulation
)
2
sin
2
(
cos t
f
t
f
V
v m
c
c
FM 

 

m
f
KVm


2

50
Frequency Modulation
 Time Domain
 Frequency Domain
51
FM Modulator
52
FM Modulator
t
f
V
v m
m
m 
2
sin

t
f
V
v c
c
c 
2
sin

Modulator
Information Signal
Carrier Signal
Output
)
2
sin
2
(
cos t
f
t
f
V
v m
c
c
FM 

 

53
Frequency
 Carrier Frequency
 As in FM system, carrier frequency in FM systems
must be higher than the information signal frequency.
 Maximum Frequency
 Minimum Frequency
 Carrier Swing
f
fc
f 


min
f
fc
f x
m
a 


f
fcs 
 2
54
Modulation Index
 Modulation Index, m @ β
 Indicates the amount that the carrier signal is
modulated.
 It is an expression of the amount of power in the
sidebands.
 Modulation level ranges = 0 –
 Where
• Δf = fd = frequency deviation
• fm = modulating frequency
• Vm = amplitude of modulating signal
fm
f
m




2
kVm
f 

55
Modulation Index
β = 1
β = 5
56
Modulation Index
β = 25
57
Modulation Index
58
Bandwidth
 Using Bessel Function, the bandwidth for
FM signal,
n = number of pairs of the significant sidebands
fm = the frequency the modulating signal
nfm
BW 2

59
Bandwidth
 Using Carson’s Rule, to estimate the
bandwidth for an FM signal transmission.
Δf = peak frequency deviation
fm(max) = highest modulating signal frequency
)
(
2 (max)
m
f
f
BW 


60
Power Distributions
 FM transmitted power, PFM
where
2R
P
R
V
P
2
C
2
rms
FM 

2
V
Vrms 
Narrowband FM and Wideband FM
 Narrowband FM has only a single pair of significant
sidebands. The value of modulation index β <1.
 Wideband FM has a large number (theoretically
infinite) number of sidebands. The value of
modulation index β >=1.
Generation of Narrowband FM (NBFM)
 The modulator splits the carrier into two paths. One path is
direct. The other path contains a -90 degree phase shift unit
and a product modulator. The difference between the signals
in the two paths produces the NBFM signal.
INTEGRATOR
-90 PHASE
SHIFTER
PRODUCT
MODULATOR
Σ
_
+
NBFM
WAVE
CARRIER
WAVE
MODULATING
WAVE
)
2
sin
2
(
cos t
f
t
f
V
v m
c
c
FM 

 

)
2
sin(
)
2
sin(
)
2
(
cos
,
1
t
f
t
f
V
t
f
V
v
have
we
then
If
m
c
c
c
c
NBFM 







Frequency Modulators
 A frequency modulator is a circuit that varies carrier
frequency in accordance with the modulating signal.
 There are two types of frequency modulator circuits.
 (1) Direct FM: Carrier frequency is directly varied by the
message through voltage-controlled oscillator.
 Eg: Varactor diode modulator.
 (2) Indirect FM: Generate NBFM first, then NBFM is
frequency multiplied for targeted Δf.
 Eg: Armstrong modulator
64
FM Varactor Modulator
The Operation of the Varactor Modulator
 The info signal is applied to the base of the input
transistor and appears amplified and inverted at the
collector.
 This low freq signal passes through the RF choke
(L1) and is applied across the varactor diode.
 Varactor diode behaves as voltage controlled
capacitor.
 When low reverse biased voltage is applied, more
capacitance is generated and thus decrease the
frequency.
 When high reverse biased voltage is applied,
less capacitance is generated and thus increase
the frequency.
 The varactor diode changes its capacitance in
sympathy with the info signal and therefore
changes the total value of the capacitance in the
tuned circuit.
 The changing value of capacitance causes the
oscillator freq to increase and decrease under
the control of the information signal.
 The output is therefore an FM signal.
Armstrong of indrect FM generation
 In this method the message signal is first
subjected to NBFM modulator using a crystal-
controlled oscillator for generating carrier.
 Crystal control provides frequency stability.
 The NBFM wave is next multiplied in frequency by
using a frequency multiplier so as to produce the
desired wideband FM.
Frequency Demodulator
 The FM demodulating circuits used to recover
the original modulating signal.
 Any circuit that will convert a frequency
variation in the carrier back into a proportional
voltage variation can be used to demodulate or
detect FM signals.
 A popular method used for FM demodulation
is the Frequency discriminator.
Frequency discriminator
Output of the Frequency discriminator
 The Frequency discriminator circuit consists of
the slope ciruit followed by the envelope
detector.
 The slope circuit converts the instantaneous
frequency variations of the FM input signal to
instantaneous amplitude variations.
 These amplitude variations are rectified by the
envelope detector to provide a DC output
voltage which varies in amplitude and polarity
with the input signal frequency.
71
FM vs AM:
Advantages Disadvantages
Better noise
immunity
Rejection of
interfering signals
because of capture
effect
Better transmitter
efficiency
Excessive use of
spectrum
More complex and
costly circuits
Review of Probability
 Sample Space:the space of all possible outcomes (δ)
 Event:a collection of outcomes:subset of δ
 Probability:a “measure” assigned to the events of a
sample space with the following properties:
1. for all event A in S
2.
3. If A and B are mutually exclusive,
 Theorem:
 The Conditional probability of an event A given the
occurrence of event B is
0

)
(A
P
1
)
( 
S
P
)
(
)
(
)
( B
P
A
P
B
A
P 


)
(
)
(
)
(
)
( B
A
P
B
P
A
P
B
A
P 
 


)
(
)
(
)
|
(
B
P
B
A
P
B
A
P


 Two events A and B are independent if
 Random Variables
 A rule which assigns a numerical value to
each possible outcomes of a chance
experiment.
 If the experiment is flipping a coin. Then a
random variable X can be defined as :
)
(
)
(
)
( B
P
A
P
B
A
P 


S1 H X(S1)=1
S2 T X(S2)=-1
 Cumulative Distribution Function (CDF)
 ≜
 Properties of CDF:
1.
2.
3.
 Probability Density Function (PDF)
 ≜
 Properties of PDF: , ,
)
(x
FX }
{
Prob x
X 
0
)
(
,
1
)
(
,
1
)
(
0 




 X
X
X F
F
x
F
).
(
)
(
lim
)
( 0
0
i.e.
right,
from
continuous
is x
F
x
F
x
F X
X
x
x
X 


.
of
function
ing
nondecreas
a
is
)
( x
x
FX
)
(x
fX dt
t
f
x
F
dx
x
dF x
X
X
X


 )
(
)
(
)
(
0
)
( 
x
fX
1
)
( 




dx
x
fX
df
x
f
x
F
x
F
x
X
x
P
x
x X
X
X )
(
)
(
)
(
)
(
2
1
1
2
2
1 





 Random Processes: A random process is
a mapping from the sample space to an
ensemble of time functions.
X1(t)
X2(t)
XN(t)
Sample function
t
The totality of all sample
functions is called
an ensemble
For a specific time
X(tk) is a random variable
 A random process X(t) is a Gaussian process if
for all n and for all (t1 t2 ... tn), the sequence of
random variables { X(t1), X(t2)... X(tn) } has a
jointly Gaussian density function.
 Central limit theorem
 The sum of a large number of independent
and identically distributed(i.i.d) random
variables getting closer to Gaussian
distribution.
 Thermal noise can be closely modeled by
Gaussian process.
Gaussian process
 Property 1
 For Gaussian process, knowledge of the
mean(m) and covariance(C) provides a
complete statistical description of process.
 Property 2
 If a Gaussian process X(t) is passed through
a LTI system, the output of the system is also
a Gaussian process. The effect of the system
on X(t) is simply reflected by the change in
mean(m) and covariance(C) of X(t).
Noise Theory
 Shot noise: It results from the shot effect in the
amplifying devices and active device. It is
caused by random variation in the arrival of
electrons (or holes) at the output of the devices.
 For diode, the rms shot noise current is given by:
system
of
bandwidth
δ
current
diode
direct
i
electron
of
charge
e
noise
shot
rms
i
δ
2ei
i
f
p
n
f
p
n





 Thermal noise is the electrical noise arising from
the random motion of electrons in a conductor.
The noise power generated by a resistor is given
by:
system
of
bandwidth
δ
e
temperatur
absolute
T
constant
s
Boltzmann'
k
power
noise
P
kTδ
P
f
n
f
n





 White noise: It is the idealized form of noise,
whose spectrum is independent of the
operating frequency. The power spectral
density of white noise w(t) is Sw(f)=N0 /2. The
autocorrelation Rw(t) of white noise is an
impulse as shown below.
Sw(f)
Rw()
)
(


2
N 0
2
0
N
f

81
Narrow band noise (Ideal case)
w(t) n(t)
 filtered noise is narrow-band noise
 n(t) = nI(t)cos(2fCt) - nQ(t)sin(2fCt)
• where nI(t) is inphase, nQ(t) is quadrature component
  filtered signal x(t)
 x(t) = s(t) + n(t)
 - Average Noise Power = N0BT
BPF
Noise Figure
 Consider a signal source. The signal to noise
ratio (SNR) available from the source is given by:
 Consider that the source is connected to an
amplifier with gain G. Since all amplifiers
contribute noise, the available output SNR will be
less than the SNR of the source.
system
of
bandwidth
δ
e
temperatur
absolute
T
constant
s
Boltzmann'
k
source
the
from
power
signal
P
/kTδ
P
(S/N)
f
si
f
si
in





 The noise power at the output of the amplifier will
be
 The noise factor F is defined as :
 When noise factor is expressed in decibels, it is
called noise figure.
Noise figure = (F) dB = 10logF
f
no
si
no
f
si
GkT
P
P
P
kT
P
F
output
at
ratio
power
S/N
available
input
at
ratio
power
S/N
available
F






G
f
no GkT
P 

 The noise power expressed in terms of a
temperature is callled Noise Temperature.
 If the amplifier noise is Pna , then the equivalent
noise temperature Te of the amplifier is given by
the equation k
/
P
Te f
na 

0
0
f
f
0
f
na
f
0
na
1)T
-
(F
Te
1)T
-
(F
k
/
1)kT
-
(F
k
/
P
Te
as
written
be
can
re
temperatu
noise
The
1)kT
-
(F
P
Since










AM SUPERHETERODYNE RECEIVER
 RF section: It generally consists of a pre-selector
and an amplifier stage. The pre-selector is a
broad tuned band-pass filter with adjustable
center frequency that is tuned to the desired
carrier frequency. The other functions of the RF
section are detecting, band limiting and
amplifying the received RF signals.
 Mixer/converter section: It is the stage of down-
converts the received RF frequencies to
intermediate frequencies (IF) which are simply
frequencies that fall somewhere between the RF
and information frequencies, hence the name
intermediate. This section also includes a local
oscillator (LO).
 IF Section: IF or intermediate frequency section
is the stage where its primary functions are
amplification and selectivity.
 AM detector Section: AM detector section is the
stage that demodulates the AM wave and
converts it to the original
 information signal.
 Audio section: Audio section is the stage that
amplifies the recovered information.
88
Performance of CW Modulation
Systems
 Introduction
 - Receiver Noise (Channel Noise) :
additive, White, and Gaussian
 Receiver Model
 1. RX Model
Sw(f)
Rw()
)
(

2
N0
2
N0
f

N0 = KTe where K = Boltzmann’s constant
Te = equivalent noise Temp.
Average noise power per unit bandwidth
SNR
 The signal x(t) available for demodulation is defined by
 The output signal-to-noise ratio (SNR)O is defined as the
ratio of the average power of the demodulated message
signal to the average power of the noise, both measured
at the receiver output.
 The channel signal-to-noise ratio, (SNR)C is defined as the
ratio of the average power of the modulated signal to the
average power of the channel noise in the message
bandwidth, both measure at the receiver input.
 For the purpose of comparing different CW modulation
systems, we normalize the receiver performance by
dividing (SNR)O by (SNR)C. This ratio is called figure of
merit for the receiver and is defined as
)
(
)
(
)
( t
n
t
s
t
x 

C
O
SNR
SNR
)
(
)
(
merit
of
Figure 
90
Noise in DSB-SC Receivers
Let’s consider the case of DSB-SC. The expression for the
modulated signal is given as
The carrier wave is statistically independent of the message
signal. The average power of DSB-SC modulated
component of s(t) is
+ BPF
x(t) Product
modulator
y(t)
DSB-SC
signal s(t)
Noise
w(t)
LPF
v(t)
Local
Oscillator
cos(wct)
Coherent
detector
)
(
)
2
cos(
)
( t
m
t
f
A
t
s c
C 

2
2
m
c P
A
 With a noise PSD of N0/2 the average noise power in the
message bandwidth W equals WN0 (baseband
scenario).
 Pm is the power of the message. Hence we have
 Finding an expression for (SNR)O, we have
0
2
C
2
(SNR)
WN
P
A m
c

)
(
)
(
)
( t
n
t
s
t
x 

     
t
f
t
n
t
f
t
n
t
m
t
f
A c
Q
c
I
c
c 

 2
sin
)
(
2
cos
)
(
)
(
2
cos 


 
     
t
f
t
n
t
f
t
n
t
m
A
t
n
t
m
A
t
f
t
x
t
v
c
Q
c
I
c
I
c
c



4
sin
)
(
2
1
4
cos
)
(
)
(
2
1
)
(
2
1
)
(
2
2
cos
)
(
)
(






 Output of the LPF is
 The power of the signal component at the
receiver output is . The average power of
the filtered noise is 2WN0.
 The average noise power at the receiver output
is
 Hence we have,
)
(
2
1
)
(
2
1
)
( t
n
t
m
A
t
y I
c 

4
/
2
m
P
AC


 







elsewhere
W
f
W
f
f
S
f
f
S
f
S
f
S c
N
c
N
N
N Q
I
,
0
),
(
)
(
)
(
)
(
0
0
2
2
1
2
2
1
WN
WN 






0
2
0
2
2
2
/
4
/
WN
P
A
WN
P
A
(SNR) m
c
m
c
O,DSB-SC 
 1
)
(
)
(
merit
of
Figure 

C
O
SNR
SNR
Noise in AM receiver using envelope detection
 The expression for AM signal is given as
where it is assumed that
The average power of the carrier in the AM signal s(t) is
The average power of the information bearing component
is
Average power of the full AM signal s(t) is
   
t
f
t
m
k
A
t
s c
a
c 
2
cos
)
(
1
)
( 

1
)
( 
t
m
ka
+ BPF
x(t) Envelope
Detector
y(t)
AM signal
s(t)
Noise
w(t)
.
2
/
2
C
A
 
t
f
t
m
k
A c
a
c 
2
cos
)
( 2
/
2
2
m
a
C P
k
A
2
/
)
1
( 2
2
m
a
C P
k
A 
 Hence, the channel signal to noise ratio for AM is
 Finding an expression for (SNR)O, we have
 
0
2
2
,
2
1
)
(
WN
P
k
A
SNR m
a
C
AM
C


)
(
)
(
)
( t
n
t
m
k
A
t
y I
a
C 

0
2
2
,
2
)
(
WN
P
k
A
SNR
m
C
AM
O
a

m
m
AM
C
O
P
k
P
k
SNR
SNR
Merit
of
Figure
a
a
2
2
1
)
(
)
(


)
(
)
(
)
( t
n
t
s
t
x 

  )
2
sin(
)
(
)
2
cos(
)
(
)
(
)
( t
f
t
n
t
f
t
n
t
m
k
A
A
t
x c
Q
c
I
a
C
C 
 



)
(
of
envelope
)
( t
x
t
y 
Threshold Effect
 When carrier-to-noise ratio is small as compared
to unity the noise term dominates the
performance of the envelope detector and is
completely different. Representing the
narrowband noise n(t) in terms of its envelope and
phase, we have
 The phasor diagram for x(t) = s(t) + n(t) becomes
 
)
(
2
cos
)
(
)
( t
t
f
t
r
t
n c 

 
Resultant y(t)
r(t)
)
(t



)
(
1
t
m
k
A
a
C

   
)
(
cos
)
(
1 t
t
m
k
A a
C 





)
(
sin
)
(
1
t
t
m
k
A
a
C


 The noise envelope is used as a reference here due to its
dominance. Here it is assumed that Ac is small as
compared to r(t). If we neglect the quadrature component
of the signal with respect to the noise we have
 Hence, when carrier-to-noise ratio is small the detector
has no component that is strictly proportional to the
message signal m(t). Recalling that is uniformly
distributed over radians. Hence, it follows that we have a
complete loss of information at the detector output (as
expected value will be zero). This loss of information m(t)
at the output of the envelope detector is called the
threshold effect.
   
)
(
cos
)
(
)
(
cos
)
(
)
( t
t
m
k
A
t
A
t
r
t
y a
C
C 




)
(t

Pre-emphasis and De-emphasis
 FM results is an unacceptably low SNR at the high
frequency end of the message spectrum. To offset this
undesirable occurrence, pre-emphasis and de-emphasis
technique is used.
 Pre-emphasis consists in artificially boosting the spectral
components in the higher part of the message spectrum.
This is accomplished by passing message signal m(t) ,
through the pre-emphasis filter, denoted Hpe(f) . The pre-
emphasized signal is used to frequency modulate the carrier
at the transmitting end.
 In the receiver, the inverse operation, de-emphasis, is
performed. This is accomplished by passing the
discriminator output through a filter, called the de-emphasis
filter, denoted Hde(f ) .
98
Pre-emphasis and de-emphasis in FM
P.S.D. of noise at FM Rx output
P.S.D. of typical message signal
otherwise
0
2
f
A
f
N
(f)
S
output
tor
discrimina
the
at
(t)
n
noise
of
P.S.D
W
f
W
-
,
)
(
1
)
(
2
C
2
0
Nd
d










T
pe
de
B
f
H
f
H
Information theory
What is information theory ?
 Information theory is needed to enable the
communication system to carry information
(signals) from sender to receiver over a
communication channel
• it deals with mathematical modelling and analysis
of a communication system
• its major task is to answer to the questions of
signal compression and data transfer rate.
 Those answers can be found and solved by
entropy and channel capacity
 Information is a measure of uncertainty. The less
is the probability of occurrence of a certain
message, the higher is the information.
 Since the information is closely associated with
the uncertainty of the occurrence of a particular
symbol, When the symbol occurs the information
associated with its occurrence is defined as:
k'.
'
symbol
by
carried
n
informatio
the
is
I
and
k'
'
symbol
of
occurrence
of
y
probabilit
the
is
P
where
)
log(P
-
)
P
1
(
log
I
k
k
k
k
k 

Entropy
 Entropy is defined in terms of probabilistic
behaviour of a source of information
 In information theory the source output
are discrete random variables that have a
certain fixed finite alphabet with certain
probabilities
 Entropy is an average information content for
the given source symbol. (bits/message)




1
0
2 )
1
(
log
K
k k
k
p
p
H
 Rate of information:
 If a source generates at a rate of ‘r’
messages per second, the rate of
information ‘R’ is defined as the average
number of bits of information per second.
 ‘H’ is the average number of bits of
information per message. Hence
R = rH bits/sec
Source Coding
 Source coding (a.k.a lossless data
compression) means that we will remove
redundant information from the signal prior
the transmission.
 Basically this is achieved by assigning short
descriptions to the most frequent outcomes
of the source output and vice versa.
 The common source-coding schemes are
prefix coding, huffman coding, lempel-ziv
coding.
Source Coding Theorem
 Source coding theorem states that the output of
any information source having entropy H units per
symbol can be encoded into an alphabet having N
symbols in such a way that the source symbols
are represented by code words having a weighted
average length not less than H/logN.
 Hence source coding theorem says that encoding
of messages from a source with entropy H can be
done, bounded by the fundamental information
theoretic limitation that the Minimum average
number of symbols/message is H/logN.
Source coding example
 Prefix coding has an important
feature that it is always uniquely
decodable and it also satisfies Kraft-
McMillan (see formula 10.22 p. 624)
inequality term
 Prefix codes can also be referred to
as instantaneous codes, meaning
that the decoding process is achieved
immediately
 Shannon-Fano Coding: In Shannon–Fano
coding, the symbols are arranged in order from
most probable to least probable, and then
divided into two sets whose total probabilities
are as close as possible to being equal. All
symbols then have the first digits of their codes
assigned; symbols in the first set receive "0" and
symbols in the second set receive "1".
 As long as any sets with more than one member
remain, the same process is repeated on those
sets, to determine successive digits of their
codes. When a set has been reduced to one
symbol, of course, this means the symbol's code
is complete and will not form the prefix of any
other symbol's code.
 Huffman Coding: Create a list for the symbols, in
decreasing order of probability. The symbols with
the lowest probability are assigned a ‘0’ and a ‘1’.
 These two symbols are combined into a new
symbol with the probability equal to the sum of
their individual probabilities. The new symbol is
placed in the list as per its probability value.
 The procedure is repeated until we are left with 2
symbols only for which 0 and 1 are assigned.
 Huffman code is the bit sequence obtained by
working backwards and tracking sequence of 0’s
and 1’s assigned to that symbol and its
successors.
 Lempel-Ziv Coding: A drawback of Huffman
code is that knowledge of probability model of
source is needed. Lempel-Ziv coding is used to
overcome this drawback.
 while Huffman’s algorithm encodes blocks of
fixed size into binary sequences of variable
length, Lempel-Ziv encodes blocks of varying
length into blocks of fixed size.
 Lempel-Ziv coding is performed by parsing the
source data into segments that are the shortest
subsequences not encountered before.
Mutual Information

 Consider a communication system with a source of entropy
H(X). The entropy on the receiver side be H(Y).
 H(X|Y) and H(Y|X) are the conditional entropies, and H(X,Y)
is the joint entropy of X and Y.
 Then the Mutual information between the source X and the
receiver Y can be expressed as:
I(X,Y) = H(X) - H(X|Y)
 H(X) is the uncertainty of source X and H(X/Y) is the
uncertainty of X given Y. Hence the quantity H(X) - H(X|Y)
represents the reduction in uncertainty of X given the
knowledge of Y. Hence I(X,Y) is termed mutual information.
Source
X
Channel Receiver
Y
Channel Capacity
 Capacity in the channel is defined as a
intrinsic ability of a channel to convey
information.
 Using mutual information the channel
capacity of a discrete memoryless channel is
the maximum average mutual information in
any single use of channel over all possible
probability distributions.
 Thus Channel capacity C=max( I(X,Y) ).
Shannon’s Channel Coding theorem
 The Shannon theorem states that given a noisy channel
with channel capacity C and information transmitted at a
rate R, then if R < C there exist codes that allow the
probability of error at the receiver to be made arbitrarily
small. This means that theoretically, it is possible to transmit
information nearly without error at any rate below a limiting
rate, C.
 The converse is also important. If R > C, an arbitrarily small
probability of error is not achievable. All codes will have a
probability of error greater than a certain positive minimal
level, and this level increases as the rate increases. So,
information cannot be guaranteed to be transmitted reliably
across a channel at rates beyond the channel capacity.
Shannon-Hartley theorem or Information
Capacity Theorem
 An application of the channel capacity concept to
an additive white Gaussian noise channel with B
Hz bandwidth and signal-to-noise ratio S/N is the
Information Capacity Theorem.
 It states that for a band-limited Gaussian channel
operating in the presence of additive Gaussian
noise, the channel capacity is given by
C = B log2(1 + S/N)
where C is the capacity in bits per second, B is the
bandwidth of the channel in Hertz, and S/N is the
signal-to-noise ratio.
Band width and SNR tradeoff
 As the bandwidth of the channel increases, it
is possible to make faster changes in the
information signal, thereby increasing the
information rate.
 However, as B  , the channel capacity
does not become infinite since, with an
increase in bandwidth, the noise power also
increases.
 As S/N increases, one can increase the
information rate while still preventing errors
due to noise.
 For no noise, S/N   and an infinite
information rate is possible irrespective of
bandwidth.
Implications of the Information Capacity
Theorem
Rate distortion theory
 Rate distortion theory is the branch of information
theory addressing the problem of determining the
minimal amount of entropy or information that
should be communicated over a channel such
that the source can be reconstructed at the
receiver with a given distortion.
 Rate distortion theory can be used for the given
below situations:
 1. Source coding in which the coding alphabet
cannot exactly represent the source information.
 2. when the information is to be transmitted at a
rate greater than channel capacity.
Lower the bit rate R by allowing some
acceptable distortion D of the signal
 Rate Distortion Function:
 The functions that relate the rate and
distortion are found as the solution of the
following minimization problem.
 In the above equation, I(X,Y) is the Mutual
information.
Rate distortion function for Gaussian
memory-less source
 If Px(X) is Gaussian, variance is 2 and if
we assume that successive samples of the
signal x are stochastically independent, we
find the following analytical expression for
the rate distortion function.
A Plot of the Rate distortion function for
Gaussian source
Lossy Source Coding
 Lossy source coding is the representation of the
source in digital form with as few bits as possible
while maintaining an acceptable loss of
information.
 In lossy source coding, the source output is
encoded at a rate less than the source entropy.
 Hence there is reduction in the information content
of the source.
 Eg: It is not possible to digitally encode an analog
signal with a finite number of bits without producing
some distortion.
THANK YOU
121

Contenu connexe

Tendances

Transmission modes & medias networking
Transmission modes & medias networkingTransmission modes & medias networking
Transmission modes & medias networkingVINOTHINI DURAIRAJ
 
5 transmission media
5 transmission media5 transmission media
5 transmission mediaSamit Singh
 
Communication means
Communication meansCommunication means
Communication meansSunny Tandan
 
Physical layer overview
Physical layer overviewPhysical layer overview
Physical layer overviewakruthi k
 
Transmission line, single and double matching
Transmission line, single and double matchingTransmission line, single and double matching
Transmission line, single and double matchingShankar Gangaju
 
1 . introduction to communication system
1 . introduction to communication system1 . introduction to communication system
1 . introduction to communication systemabhijitjnec
 
Introduction to Communication System
Introduction to Communication SystemIntroduction to Communication System
Introduction to Communication SystemYong Heui Cho
 
Communication Engineering
Communication EngineeringCommunication Engineering
Communication Engineeringadnanqayum
 
Introduction to Communication Systems
Introduction to Communication SystemsIntroduction to Communication Systems
Introduction to Communication SystemsDr. Ghanshyam Singh
 
Network Media and Data Transmission
Network Media and Data TransmissionNetwork Media and Data Transmission
Network Media and Data TransmissionClaisse Martinez
 
Communication systems
Communication systemsCommunication systems
Communication systemsUmang Gupta
 
Cavity resonators
Cavity resonatorsCavity resonators
Cavity resonatorsAJESWIN
 
communication channels and types
communication channels and typescommunication channels and types
communication channels and typesChandu Kck
 
Introduction to wireless communication
Introduction to wireless communicationIntroduction to wireless communication
Introduction to wireless communicationramalakshmi54
 

Tendances (20)

Transmission modes & medias networking
Transmission modes & medias networkingTransmission modes & medias networking
Transmission modes & medias networking
 
5 transmission media
5 transmission media5 transmission media
5 transmission media
 
Communication means
Communication meansCommunication means
Communication means
 
04 transmission media
04 transmission media04 transmission media
04 transmission media
 
Ep301
Ep301Ep301
Ep301
 
Physical layer overview
Physical layer overviewPhysical layer overview
Physical layer overview
 
Lec microwave
Lec microwaveLec microwave
Lec microwave
 
Transmission line, single and double matching
Transmission line, single and double matchingTransmission line, single and double matching
Transmission line, single and double matching
 
1 . introduction to communication system
1 . introduction to communication system1 . introduction to communication system
1 . introduction to communication system
 
Microwave radio link design
Microwave radio link designMicrowave radio link design
Microwave radio link design
 
Introduction to Communication System
Introduction to Communication SystemIntroduction to Communication System
Introduction to Communication System
 
Transmission media
Transmission mediaTransmission media
Transmission media
 
Communication Engineering
Communication EngineeringCommunication Engineering
Communication Engineering
 
Introduction to Communication Systems
Introduction to Communication SystemsIntroduction to Communication Systems
Introduction to Communication Systems
 
Network Media and Data Transmission
Network Media and Data TransmissionNetwork Media and Data Transmission
Network Media and Data Transmission
 
Communication systems
Communication systemsCommunication systems
Communication systems
 
Cavity resonators
Cavity resonatorsCavity resonators
Cavity resonators
 
communication channels and types
communication channels and typescommunication channels and types
communication channels and types
 
Cn lec-02
Cn lec-02Cn lec-02
Cn lec-02
 
Introduction to wireless communication
Introduction to wireless communicationIntroduction to wireless communication
Introduction to wireless communication
 

Similaire à Communication theory

Communications
CommunicationsCommunications
CommunicationsKANNAN
 
Lecture 1 introduction to communication systems
Lecture 1 introduction to communication systemsLecture 1 introduction to communication systems
Lecture 1 introduction to communication systemsavocado1111
 
Communications
CommunicationsCommunications
CommunicationsWaqas !!!!
 
Communication system 1 chapter 1 ppt
Communication system 1 chapter  1 pptCommunication system 1 chapter  1 ppt
Communication system 1 chapter 1 pptBetelihemMesfin1
 
Physics Class 12 Communication Powerpoint presentation
Physics Class 12 Communication Powerpoint presentationPhysics Class 12 Communication Powerpoint presentation
Physics Class 12 Communication Powerpoint presentationBibin Vincent
 
Introduction to communication system lecture1
Introduction to communication system lecture1Introduction to communication system lecture1
Introduction to communication system lecture1Jumaan Ally Mohamed
 
Lecture 1 introduction and signals analysis
Lecture 1 introduction and signals analysisLecture 1 introduction and signals analysis
Lecture 1 introduction and signals analysistalhawaqar
 
communication system lec3
 communication system lec3 communication system lec3
communication system lec3ZareenRauf1
 
Wireless communication
Wireless communicationWireless communication
Wireless communicationMukesh Chinta
 
CommunicatSystems_basic ppt.pdf
CommunicatSystems_basic ppt.pdfCommunicatSystems_basic ppt.pdf
CommunicatSystems_basic ppt.pdfArunKumar674066
 
SIGNAL ANALYSIS am MODULATION downlod ppt
SIGNAL ANALYSIS am MODULATION  downlod pptSIGNAL ANALYSIS am MODULATION  downlod ppt
SIGNAL ANALYSIS am MODULATION downlod pptshreenathji26
 
communication system Introduction - AM
communication system Introduction - AMcommunication system Introduction - AM
communication system Introduction - AMAbdelrahman Elewah
 
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptxELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptxzainal968005
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroductionsrilaxmi524
 
Comms 1.docx
Comms 1.docxComms 1.docx
Comms 1.docx03211830
 
ANALOG AND DIGITAL COMMUNICATION.pptx
ANALOG AND DIGITAL COMMUNICATION.pptxANALOG AND DIGITAL COMMUNICATION.pptx
ANALOG AND DIGITAL COMMUNICATION.pptxssuser0132001
 
Wireless communication
Wireless communicationWireless communication
Wireless communicationMukesh Chinta
 

Similaire à Communication theory (20)

Communications
CommunicationsCommunications
Communications
 
Lecture 1 introduction to communication systems
Lecture 1 introduction to communication systemsLecture 1 introduction to communication systems
Lecture 1 introduction to communication systems
 
Communications
CommunicationsCommunications
Communications
 
Communication system 1 chapter 1 ppt
Communication system 1 chapter  1 pptCommunication system 1 chapter  1 ppt
Communication system 1 chapter 1 ppt
 
Physics Class 12 Communication Powerpoint presentation
Physics Class 12 Communication Powerpoint presentationPhysics Class 12 Communication Powerpoint presentation
Physics Class 12 Communication Powerpoint presentation
 
Introduction to communication system lecture1
Introduction to communication system lecture1Introduction to communication system lecture1
Introduction to communication system lecture1
 
Lecture 1 introduction and signals analysis
Lecture 1 introduction and signals analysisLecture 1 introduction and signals analysis
Lecture 1 introduction and signals analysis
 
communication system lec3
 communication system lec3 communication system lec3
communication system lec3
 
Wireless communication
Wireless communicationWireless communication
Wireless communication
 
Communication
CommunicationCommunication
Communication
 
CommunicatSystems_basic ppt.pdf
CommunicatSystems_basic ppt.pdfCommunicatSystems_basic ppt.pdf
CommunicatSystems_basic ppt.pdf
 
SIGNAL ANALYSIS am MODULATION downlod ppt
SIGNAL ANALYSIS am MODULATION  downlod pptSIGNAL ANALYSIS am MODULATION  downlod ppt
SIGNAL ANALYSIS am MODULATION downlod ppt
 
communication system Introduction - AM
communication system Introduction - AMcommunication system Introduction - AM
communication system Introduction - AM
 
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptxELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
ELEKTRONIKA_KOMUNIKASI_and_GELOMBANG_MIK (2).pptx
 
Analog communicationintroduction
Analog communicationintroductionAnalog communicationintroduction
Analog communicationintroduction
 
Comms 1.docx
Comms 1.docxComms 1.docx
Comms 1.docx
 
Chapter#2
Chapter#2Chapter#2
Chapter#2
 
ANALOG AND DIGITAL COMMUNICATION.pptx
ANALOG AND DIGITAL COMMUNICATION.pptxANALOG AND DIGITAL COMMUNICATION.pptx
ANALOG AND DIGITAL COMMUNICATION.pptx
 
ADC Unit 1.pdf
ADC Unit 1.pdfADC Unit 1.pdf
ADC Unit 1.pdf
 
Wireless communication
Wireless communicationWireless communication
Wireless communication
 

Dernier

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 

Dernier (20)

APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 

Communication theory

  • 2. Review of Spectral characteristics  Periodic and Non-periodic Signals: A signal is said to be periodic, if it exhibits periodicity. i.e., x(t +T)=x(t) , for all values of t. Periodic signal has the property that it is unchanged by a time shift of T. A signal that does not satisfy the above periodicity property is called a non-periodic signal.  Periodic signals can be represented using the Fourier Series. Non-periodic signals can be represented using the Fourier Transform.  Both Fourier series and Fourier Transform deal with the representation of the signals as a combination of sine and cosine waves.
  • 3. Fourier Series  Fourier series: a complicated waveform analyzed into a number of harmonically related sine and cosine functions  A continuous periodic signal x(t) with a period T may be represented by:  x(t)=Σ∞ k=1 (Ak cos kω t + Bk sin kω t)+ A0  Dirichlet conditions must be placed on x(t) for the series to be valid: the integral of the magnitude of x(t) over a complete period must be finite, and the signal can only have a finite number of discontinuities in any finite interval
  • 4. Fourier Series Equations The Fourier series represents a periodic signal Tp in terms of frequency components: We get the Fourier series coefficients as follows: The complex exponential Fourier coefficients are a sequence of complex numbers representing the frequency component ω0k. p T / 2 ω where , e X x(t) 0 k t ikω k 0           p 0 T t ikω p k dt x(t)e T 1 X
  • 5.  Periodic signals represented by Fourier Series have Discrete spectra.
  • 6. The Fourier Transform  Fourier transform is used for the non- periodic signals. A Fourier transform converts the signal from the time domain to the spectral domain.  Continuous Fourier Transform:                    df e f H t h dt e t h f H ift ift   2 2
  • 7.  Non-periodic signals represented by Fourier transform have Continuous spectra.
  • 8. Fourier Transform Pairs Note: Π stands for rectangular function. Λ stands for triangular function.
  • 9. 9 Introduction to Communication Systems  Communication – Basic process of exchanging information from one location (source) to destination (receiving end).  Refers – process of sending, receiving and processing of information/signal/input from one point to another point. Source Destination Flow of information Figure 1 : A simple communication system
  • 10. 10  Electronic Communication System – defined as the whole mechanism of sending and receiving as well as processing of information electronically from source to destination.  Example – Radiotelephony, broadcasting, point-to-point, mobile communications, computer communications, radar and satellite systems.
  • 11. 11 Objectives  Communication System – to produce an accurate replica of the transmitted information that is to transfer information between two or more points (destinations) through a communication channel, with minimum error.
  • 12. 12 NEED FOR COMMUNICATION  Interaction purposes – enables people to interact in a timely fashion on a global level in social, political, economic and scientific areas, through telephones, electronic-mail and video conference.  Transfer Information – Tx in the form of audio, video, texts, computer data and picture through facsimile, telegraph or telex and internet.  Broadcasting – Broadcast information to masses, through radio, television or teletext.
  • 13. 13 Terms Related To Communications  Message – physical manifestation produced by the information source and then converted to electrical signal before transmission by the transducer in the transmitter.  Transducer – Device that converts one form of energy into another form.  Input Transducer – placed at the transmitter which convert an input message into an electrical signal.  Example – Microphone which converts sound energy to electrical energy. Message Input Transducer Electrical Signal
  • 14. 14  Output Transducer – placed at the receiver which converts the electrical signal into the original message.  Example – Loudspeaker which converts electrical energy into sound energy.  Signal – electrical voltage or current which varies with time and is used to carry message or information from one point to another. Electrical Signal Output Transducer Message
  • 15. 15 Elements of a Communication System  The basic elements are : Source, Transmitter, Channel, Receiver and Destination. Information Source Transmitter Channel Transmission Medium Receiver Destination Noise Figure : Basic Block Diagram of a Communication System EEE Exclusive
  • 16. 16 Function of each Element.  Information Source – the communication system exists to send messages. Messages come from voice, data, video and other types of information.  Transmitter – Transmit the input message into electrical signals such as voltage or current into electromagnetic waves such as radio waves, microwaves that is suitable for transmission and compatible with the channel. Besides, the transmitter also do the modulation and encoding (for digital signal).
  • 17. 17 Block Diagram of a Transmitter 5 minutes exercise; Describe the sequence of events that happen at the radio waves station during news broadcast? Modulating Signal Audio Amplifier Modulator RF Amplifier Carrier Signal Transmitting Antenna
  • 18. 18  Channel/Medium – is the link or path over which information flows from the source to destination. Many links combined will establish a communication networks.  There are 5 criteria of a transmission system; Capacity, Performance, Distance, Security and Cost which includes the installation, operation and maintenance.  2 main categories of channel that commonly used are; line (guided media) and free space (unguided media)
  • 19. 19  Receiver – Receives the electrical signals or electromagnetic waves that are sent by the transmitter through the channel. It is also separate the information from the received signal and sent the information to the destination.  Basically, a receiver consists of several stages of amplification, frequency conversion and filtering.
  • 20. 20 Block Diagram of a Receiver  Destination – is where the user receives the information, such as loud speaker, visual display, computer monitor, plotter and printer. RF Amplifier Mixer Local Oscillator Intermediate Frequency Amplifier Demodulator Audio Amplifier Destination Receiving Antenna
  • 21. 21 Analog Modulation  Baseband Transmission  Baseband signal is the information either in a digital or analogue form.  Transmission of original information whether analogue or digital, directly into transmission medium is called baseband transmission.  Example: intercom (figure below) Microphone Voice Audio Amplifier Audio Amplifier Speaker Voice Wire
  • 22. 22 Baseband signal is not suitable for long distance communication….  Hardware limitations  Requires very long antenna  Baseband signal is an audio signal of low frequency. For example voice, range of frequency is 0.3 kHz to 3.4 kHz. The length of the antenna required to transmit any signal at least 1/10 of its wavelength (λ). Therefore, L = 100km (impossible!)  Interference with other waves  Simultaneous transmission of audio signals will cause interference with each other. This is due to audio signals having the same frequency range and receiver stations cannot distinguish the signals.
  • 23. 23 Modulation  Modulation – defined as the process of modifying a carrier wave (radio wave) systematically by the modulating signal.  This process makes the signal suitable for transmission and compatible with the channel.  Resultant signal – modulated signal  2 types of modulation; Analog Modulation and Digital Modulation.  Analogue Modulation – to transfer an analogue low pass signal over an analogue bandpass channel.  Digital Modulation – to transfer a digital bit stream the carrier is a periodic train and one of the pulse parameter (amplitude, width or position) changes according to the audio signal.
  • 24. 24 Purpose of Modulation Process in Communication Systems  To generate modulated signal that is suitable for transmission and compatible with the channel.  To allow efficient transmission – increase transmission speed and distance, eg; 1. By using high frequency carrier signal, the information (voice) can travel and propagate through the air at greater distances and shorter transmission time 2. Also, high frequency signal is less prone to noise and interference. Certain types of modulation have the useful property of suppressing both noise and interference 3. For example, FM use limiter to reduce noise and keep the signal’s amplitude constant. PCM systems use repeaters to generate the signal along the transmission path.
  • 25. 25 Amplitude Modulation (AM)  Objectives:-  Recognize AM signal in the time domain, frequency domain and trigonometric equation form  Calculate the percentage of modulation index  Calculate the upper sidebands, lower sidebands and bandwidth of an AM signal by given the carrier and modulating signal frequencies  Calculate the power related in AM signal  Define the terms of DSBSC, SSB and VSB  Understand the modulator and demodulator operations
  • 26. 26 Introduction  Modulation  The alteration of the amplitude, phase or frequency of an oscillator in accordance with another signal.  Input signal is encoded in a format suitable for transmission  A low frequency information signal is encoded over a higher frequency signal  Carrier Signal  Sinusoidal wave,  Modulating Signal/Base band  Information signal,  Modulated Wave  Higher frequency signal which is being modulated  Modulation Schemes  To counter the effects of multi path fading and time-delay spread t f V v c c c  2 sin  t f V v m m m  2 sin 
  • 27. 27 Carrier Signal, Vc Modulating Signal, Vm Modulation Schemes Modulated Signal VAM VPM VFM
  • 28. 28 Amplitude Modulation  Time Domain  Frequency Domain
  • 31. 31 Modulation Index  Modulation Index, m  Indicates the amount that the carrier signal is modulated.  It is an expression of the amount of power in the sidebands.  Modulation level ranges = 0-1 where • 0 = no modulation • 1 = full modulation • >1 = distortion Vc Vm m  min max min max V V V V m   
  • 33. 33 Modulation Index Vmin Vmin (p-p) Vmax Vmax (p-p) min max min max V V V V m   
  • 34. 34 Modulation Index m = 0 m = 0.5 m = 1
  • 36. 36 Power Distributions  Total transmitted power, PT  If R= 1, USB LSB C T P P P P    2 m 1 P P 2 C T           fc-fm fc+fm fc
  • 37. 37 Double Side Band Suppressed Carrier (DSBSC)  It is a technique where it is transmitting both the sidebands without the carrier (carrier is being suppressed/cut)  Characteristics:  Power content less  Same bandwidth  Disadvantages - receiver is complex and expensive.
  • 38. 38 Single Side Band (SSB)  Improved DSBSC and standard AM, which waste power and occupy large bandwidth  SSB is a process of transmitting one of the sidebands of the standard AM by suppressing the carrier and one of the sidebands  Advantages:  Saving power  Reduce BW by 50%  Increase efficiency, increase SNR  Disadvantages  Complex circuits for frequency stability
  • 39. 39 Vestigial Side Band (VSB)  VSB is mainly used in TV broadcasting for their video transmissions.  TV signal consists of  Audio signal – transmitted by FM  Video signal – transmitted by VSB  A video signal consists a range of frequency and fmax = 4.5 MHz.  If it transmitted using conventional AM, the required BW is 9 MHz (BW=2fm). But according to the standard, TV signal is limited to 7 MHz only  So, to reduce the BW, a part of the LSB of picture signal is not fully transmitted.
  • 40. 40 Vestigial Side Band (VSB)  The frequency spectrum for the TV signal / VSB: Lower Video Bands Upper Video Bands Total TV signal bandwidth = 7 MHz Video Carrier Audio Carrier 4.5 MHz Upper Audio Bands Lower Audio Bands 1.25 6.75 5.75 7.0 6.25 0 f (MHz)
  • 42. 42 Modulator Circuits A. Modulating Signal B. Carrier C. Sum of carrier and modulating signal D. Diode current E. AM output across tuned circuit
  • 44. 44 Demodulator A. AM signal B. Current pulses through diode C. Demodulating signal D. Modulating signal
  • 45. 45 Frequency Modulation (FM)  Objectives:-  Recognize FM signal in the time domain, frequency domain and trigonometric equation form  Calculate the percentage of modulation index  Calculate the upper sidebands, lower sidebands and bandwidth of an FM signal by Carsons’s Rule and Bessel Function Table  Calculate the power related in FM signal  Understand the modulator and demodulator of FM
  • 46. 46 Introduction  FM is the process of varying the frequency of a carrier wave in proportion to a modulating signal.  The amplitude of the carrier is kept constant while its frequency is varied by the amplitude of the modulating signal.  In all types of modulation, the carrier wave is varied by the AMPLITUDE of the modulating signal.  FM signal does not have an envelope, therefore the FM receiver does not have to respond to amplitude variations  it can ignore noise to some extent.
  • 48. 48 Frequency Modulation  The importance features about FM waveforms are:  The frequency varies  The rate of change of carrier frequency changes is the same as the frequency of the information signal  The amount of carrier frequency changes is proportional to the amplitude of the information signal  The amplitude is constant
  • 49. 49  Carrier Signal  Sinusoidal wave   Modulating Signal/Base band  Information signal   Modulated Wave  Higher frequency signal which is being modulated   Where t f V v c c c  2 sin  t f V v m m m  2 sin  Frequency Modulation ) 2 sin 2 ( cos t f t f V v m c c FM      m f KVm   2 
  • 50. 50 Frequency Modulation  Time Domain  Frequency Domain
  • 52. 52 FM Modulator t f V v m m m  2 sin  t f V v c c c  2 sin  Modulator Information Signal Carrier Signal Output ) 2 sin 2 ( cos t f t f V v m c c FM     
  • 53. 53 Frequency  Carrier Frequency  As in FM system, carrier frequency in FM systems must be higher than the information signal frequency.  Maximum Frequency  Minimum Frequency  Carrier Swing f fc f    min f fc f x m a    f fcs   2
  • 54. 54 Modulation Index  Modulation Index, m @ β  Indicates the amount that the carrier signal is modulated.  It is an expression of the amount of power in the sidebands.  Modulation level ranges = 0 –  Where • Δf = fd = frequency deviation • fm = modulating frequency • Vm = amplitude of modulating signal fm f m     2 kVm f  
  • 58. 58 Bandwidth  Using Bessel Function, the bandwidth for FM signal, n = number of pairs of the significant sidebands fm = the frequency the modulating signal nfm BW 2 
  • 59. 59 Bandwidth  Using Carson’s Rule, to estimate the bandwidth for an FM signal transmission. Δf = peak frequency deviation fm(max) = highest modulating signal frequency ) ( 2 (max) m f f BW   
  • 60. 60 Power Distributions  FM transmitted power, PFM where 2R P R V P 2 C 2 rms FM   2 V Vrms 
  • 61. Narrowband FM and Wideband FM  Narrowband FM has only a single pair of significant sidebands. The value of modulation index β <1.  Wideband FM has a large number (theoretically infinite) number of sidebands. The value of modulation index β >=1.
  • 62. Generation of Narrowband FM (NBFM)  The modulator splits the carrier into two paths. One path is direct. The other path contains a -90 degree phase shift unit and a product modulator. The difference between the signals in the two paths produces the NBFM signal. INTEGRATOR -90 PHASE SHIFTER PRODUCT MODULATOR Σ _ + NBFM WAVE CARRIER WAVE MODULATING WAVE ) 2 sin 2 ( cos t f t f V v m c c FM      ) 2 sin( ) 2 sin( ) 2 ( cos , 1 t f t f V t f V v have we then If m c c c c NBFM        
  • 63. Frequency Modulators  A frequency modulator is a circuit that varies carrier frequency in accordance with the modulating signal.  There are two types of frequency modulator circuits.  (1) Direct FM: Carrier frequency is directly varied by the message through voltage-controlled oscillator.  Eg: Varactor diode modulator.  (2) Indirect FM: Generate NBFM first, then NBFM is frequency multiplied for targeted Δf.  Eg: Armstrong modulator
  • 65. The Operation of the Varactor Modulator  The info signal is applied to the base of the input transistor and appears amplified and inverted at the collector.  This low freq signal passes through the RF choke (L1) and is applied across the varactor diode.  Varactor diode behaves as voltage controlled capacitor.  When low reverse biased voltage is applied, more capacitance is generated and thus decrease the frequency.
  • 66.  When high reverse biased voltage is applied, less capacitance is generated and thus increase the frequency.  The varactor diode changes its capacitance in sympathy with the info signal and therefore changes the total value of the capacitance in the tuned circuit.  The changing value of capacitance causes the oscillator freq to increase and decrease under the control of the information signal.  The output is therefore an FM signal.
  • 67. Armstrong of indrect FM generation  In this method the message signal is first subjected to NBFM modulator using a crystal- controlled oscillator for generating carrier.  Crystal control provides frequency stability.  The NBFM wave is next multiplied in frequency by using a frequency multiplier so as to produce the desired wideband FM.
  • 68. Frequency Demodulator  The FM demodulating circuits used to recover the original modulating signal.  Any circuit that will convert a frequency variation in the carrier back into a proportional voltage variation can be used to demodulate or detect FM signals.  A popular method used for FM demodulation is the Frequency discriminator.
  • 69. Frequency discriminator Output of the Frequency discriminator
  • 70.  The Frequency discriminator circuit consists of the slope ciruit followed by the envelope detector.  The slope circuit converts the instantaneous frequency variations of the FM input signal to instantaneous amplitude variations.  These amplitude variations are rectified by the envelope detector to provide a DC output voltage which varies in amplitude and polarity with the input signal frequency.
  • 71. 71 FM vs AM: Advantages Disadvantages Better noise immunity Rejection of interfering signals because of capture effect Better transmitter efficiency Excessive use of spectrum More complex and costly circuits
  • 72. Review of Probability  Sample Space:the space of all possible outcomes (δ)  Event:a collection of outcomes:subset of δ  Probability:a “measure” assigned to the events of a sample space with the following properties: 1. for all event A in S 2. 3. If A and B are mutually exclusive,  Theorem:  The Conditional probability of an event A given the occurrence of event B is 0  ) (A P 1 ) (  S P ) ( ) ( ) ( B P A P B A P    ) ( ) ( ) ( ) ( B A P B P A P B A P      ) ( ) ( ) | ( B P B A P B A P  
  • 73.  Two events A and B are independent if  Random Variables  A rule which assigns a numerical value to each possible outcomes of a chance experiment.  If the experiment is flipping a coin. Then a random variable X can be defined as : ) ( ) ( ) ( B P A P B A P    S1 H X(S1)=1 S2 T X(S2)=-1
  • 74.  Cumulative Distribution Function (CDF)  ≜  Properties of CDF: 1. 2. 3.  Probability Density Function (PDF)  ≜  Properties of PDF: , , ) (x FX } { Prob x X  0 ) ( , 1 ) ( , 1 ) ( 0       X X X F F x F ). ( ) ( lim ) ( 0 0 i.e. right, from continuous is x F x F x F X X x x X    . of function ing nondecreas a is ) ( x x FX ) (x fX dt t f x F dx x dF x X X X    ) ( ) ( ) ( 0 ) (  x fX 1 ) (      dx x fX df x f x F x F x X x P x x X X X ) ( ) ( ) ( ) ( 2 1 1 2 2 1      
  • 75.  Random Processes: A random process is a mapping from the sample space to an ensemble of time functions. X1(t) X2(t) XN(t) Sample function t The totality of all sample functions is called an ensemble For a specific time X(tk) is a random variable
  • 76.  A random process X(t) is a Gaussian process if for all n and for all (t1 t2 ... tn), the sequence of random variables { X(t1), X(t2)... X(tn) } has a jointly Gaussian density function.  Central limit theorem  The sum of a large number of independent and identically distributed(i.i.d) random variables getting closer to Gaussian distribution.  Thermal noise can be closely modeled by Gaussian process. Gaussian process
  • 77.  Property 1  For Gaussian process, knowledge of the mean(m) and covariance(C) provides a complete statistical description of process.  Property 2  If a Gaussian process X(t) is passed through a LTI system, the output of the system is also a Gaussian process. The effect of the system on X(t) is simply reflected by the change in mean(m) and covariance(C) of X(t).
  • 78. Noise Theory  Shot noise: It results from the shot effect in the amplifying devices and active device. It is caused by random variation in the arrival of electrons (or holes) at the output of the devices.  For diode, the rms shot noise current is given by: system of bandwidth δ current diode direct i electron of charge e noise shot rms i δ 2ei i f p n f p n     
  • 79.  Thermal noise is the electrical noise arising from the random motion of electrons in a conductor. The noise power generated by a resistor is given by: system of bandwidth δ e temperatur absolute T constant s Boltzmann' k power noise P kTδ P f n f n     
  • 80.  White noise: It is the idealized form of noise, whose spectrum is independent of the operating frequency. The power spectral density of white noise w(t) is Sw(f)=N0 /2. The autocorrelation Rw(t) of white noise is an impulse as shown below. Sw(f) Rw() ) (   2 N 0 2 0 N f 
  • 81. 81 Narrow band noise (Ideal case) w(t) n(t)  filtered noise is narrow-band noise  n(t) = nI(t)cos(2fCt) - nQ(t)sin(2fCt) • where nI(t) is inphase, nQ(t) is quadrature component   filtered signal x(t)  x(t) = s(t) + n(t)  - Average Noise Power = N0BT BPF
  • 82. Noise Figure  Consider a signal source. The signal to noise ratio (SNR) available from the source is given by:  Consider that the source is connected to an amplifier with gain G. Since all amplifiers contribute noise, the available output SNR will be less than the SNR of the source. system of bandwidth δ e temperatur absolute T constant s Boltzmann' k source the from power signal P /kTδ P (S/N) f si f si in     
  • 83.  The noise power at the output of the amplifier will be  The noise factor F is defined as :  When noise factor is expressed in decibels, it is called noise figure. Noise figure = (F) dB = 10logF f no si no f si GkT P P P kT P F output at ratio power S/N available input at ratio power S/N available F       G f no GkT P  
  • 84.  The noise power expressed in terms of a temperature is callled Noise Temperature.  If the amplifier noise is Pna , then the equivalent noise temperature Te of the amplifier is given by the equation k / P Te f na   0 0 f f 0 f na f 0 na 1)T - (F Te 1)T - (F k / 1)kT - (F k / P Te as written be can re temperatu noise The 1)kT - (F P Since          
  • 86.  RF section: It generally consists of a pre-selector and an amplifier stage. The pre-selector is a broad tuned band-pass filter with adjustable center frequency that is tuned to the desired carrier frequency. The other functions of the RF section are detecting, band limiting and amplifying the received RF signals.  Mixer/converter section: It is the stage of down- converts the received RF frequencies to intermediate frequencies (IF) which are simply frequencies that fall somewhere between the RF and information frequencies, hence the name intermediate. This section also includes a local oscillator (LO).
  • 87.  IF Section: IF or intermediate frequency section is the stage where its primary functions are amplification and selectivity.  AM detector Section: AM detector section is the stage that demodulates the AM wave and converts it to the original  information signal.  Audio section: Audio section is the stage that amplifies the recovered information.
  • 88. 88 Performance of CW Modulation Systems  Introduction  - Receiver Noise (Channel Noise) : additive, White, and Gaussian  Receiver Model  1. RX Model Sw(f) Rw() ) (  2 N0 2 N0 f  N0 = KTe where K = Boltzmann’s constant Te = equivalent noise Temp. Average noise power per unit bandwidth
  • 89. SNR  The signal x(t) available for demodulation is defined by  The output signal-to-noise ratio (SNR)O is defined as the ratio of the average power of the demodulated message signal to the average power of the noise, both measured at the receiver output.  The channel signal-to-noise ratio, (SNR)C is defined as the ratio of the average power of the modulated signal to the average power of the channel noise in the message bandwidth, both measure at the receiver input.  For the purpose of comparing different CW modulation systems, we normalize the receiver performance by dividing (SNR)O by (SNR)C. This ratio is called figure of merit for the receiver and is defined as ) ( ) ( ) ( t n t s t x   C O SNR SNR ) ( ) ( merit of Figure 
  • 90. 90 Noise in DSB-SC Receivers Let’s consider the case of DSB-SC. The expression for the modulated signal is given as The carrier wave is statistically independent of the message signal. The average power of DSB-SC modulated component of s(t) is + BPF x(t) Product modulator y(t) DSB-SC signal s(t) Noise w(t) LPF v(t) Local Oscillator cos(wct) Coherent detector ) ( ) 2 cos( ) ( t m t f A t s c C   2 2 m c P A
  • 91.  With a noise PSD of N0/2 the average noise power in the message bandwidth W equals WN0 (baseband scenario).  Pm is the power of the message. Hence we have  Finding an expression for (SNR)O, we have 0 2 C 2 (SNR) WN P A m c  ) ( ) ( ) ( t n t s t x         t f t n t f t n t m t f A c Q c I c c    2 sin ) ( 2 cos ) ( ) ( 2 cos            t f t n t f t n t m A t n t m A t f t x t v c Q c I c I c c    4 sin ) ( 2 1 4 cos ) ( ) ( 2 1 ) ( 2 1 ) ( 2 2 cos ) ( ) (      
  • 92.  Output of the LPF is  The power of the signal component at the receiver output is . The average power of the filtered noise is 2WN0.  The average noise power at the receiver output is  Hence we have, ) ( 2 1 ) ( 2 1 ) ( t n t m A t y I c   4 / 2 m P AC            elsewhere W f W f f S f f S f S f S c N c N N N Q I , 0 ), ( ) ( ) ( ) ( 0 0 2 2 1 2 2 1 WN WN        0 2 0 2 2 2 / 4 / WN P A WN P A (SNR) m c m c O,DSB-SC   1 ) ( ) ( merit of Figure   C O SNR SNR
  • 93. Noise in AM receiver using envelope detection  The expression for AM signal is given as where it is assumed that The average power of the carrier in the AM signal s(t) is The average power of the information bearing component is Average power of the full AM signal s(t) is     t f t m k A t s c a c  2 cos ) ( 1 ) (   1 ) (  t m ka + BPF x(t) Envelope Detector y(t) AM signal s(t) Noise w(t) . 2 / 2 C A   t f t m k A c a c  2 cos ) ( 2 / 2 2 m a C P k A 2 / ) 1 ( 2 2 m a C P k A 
  • 94.  Hence, the channel signal to noise ratio for AM is  Finding an expression for (SNR)O, we have   0 2 2 , 2 1 ) ( WN P k A SNR m a C AM C   ) ( ) ( ) ( t n t m k A t y I a C   0 2 2 , 2 ) ( WN P k A SNR m C AM O a  m m AM C O P k P k SNR SNR Merit of Figure a a 2 2 1 ) ( ) (   ) ( ) ( ) ( t n t s t x     ) 2 sin( ) ( ) 2 cos( ) ( ) ( ) ( t f t n t f t n t m k A A t x c Q c I a C C       ) ( of envelope ) ( t x t y 
  • 95. Threshold Effect  When carrier-to-noise ratio is small as compared to unity the noise term dominates the performance of the envelope detector and is completely different. Representing the narrowband noise n(t) in terms of its envelope and phase, we have  The phasor diagram for x(t) = s(t) + n(t) becomes   ) ( 2 cos ) ( ) ( t t f t r t n c     Resultant y(t) r(t) ) (t    ) ( 1 t m k A a C      ) ( cos ) ( 1 t t m k A a C       ) ( sin ) ( 1 t t m k A a C  
  • 96.  The noise envelope is used as a reference here due to its dominance. Here it is assumed that Ac is small as compared to r(t). If we neglect the quadrature component of the signal with respect to the noise we have  Hence, when carrier-to-noise ratio is small the detector has no component that is strictly proportional to the message signal m(t). Recalling that is uniformly distributed over radians. Hence, it follows that we have a complete loss of information at the detector output (as expected value will be zero). This loss of information m(t) at the output of the envelope detector is called the threshold effect.     ) ( cos ) ( ) ( cos ) ( ) ( t t m k A t A t r t y a C C      ) (t 
  • 97. Pre-emphasis and De-emphasis  FM results is an unacceptably low SNR at the high frequency end of the message spectrum. To offset this undesirable occurrence, pre-emphasis and de-emphasis technique is used.  Pre-emphasis consists in artificially boosting the spectral components in the higher part of the message spectrum. This is accomplished by passing message signal m(t) , through the pre-emphasis filter, denoted Hpe(f) . The pre- emphasized signal is used to frequency modulate the carrier at the transmitting end.  In the receiver, the inverse operation, de-emphasis, is performed. This is accomplished by passing the discriminator output through a filter, called the de-emphasis filter, denoted Hde(f ) .
  • 98. 98 Pre-emphasis and de-emphasis in FM P.S.D. of noise at FM Rx output P.S.D. of typical message signal otherwise 0 2 f A f N (f) S output tor discrimina the at (t) n noise of P.S.D W f W - , ) ( 1 ) ( 2 C 2 0 Nd d           T pe de B f H f H
  • 99. Information theory What is information theory ?  Information theory is needed to enable the communication system to carry information (signals) from sender to receiver over a communication channel • it deals with mathematical modelling and analysis of a communication system • its major task is to answer to the questions of signal compression and data transfer rate.  Those answers can be found and solved by entropy and channel capacity
  • 100.  Information is a measure of uncertainty. The less is the probability of occurrence of a certain message, the higher is the information.  Since the information is closely associated with the uncertainty of the occurrence of a particular symbol, When the symbol occurs the information associated with its occurrence is defined as: k'. ' symbol by carried n informatio the is I and k' ' symbol of occurrence of y probabilit the is P where ) log(P - ) P 1 ( log I k k k k k  
  • 101. Entropy  Entropy is defined in terms of probabilistic behaviour of a source of information  In information theory the source output are discrete random variables that have a certain fixed finite alphabet with certain probabilities  Entropy is an average information content for the given source symbol. (bits/message)     1 0 2 ) 1 ( log K k k k p p H
  • 102.  Rate of information:  If a source generates at a rate of ‘r’ messages per second, the rate of information ‘R’ is defined as the average number of bits of information per second.  ‘H’ is the average number of bits of information per message. Hence R = rH bits/sec
  • 103. Source Coding  Source coding (a.k.a lossless data compression) means that we will remove redundant information from the signal prior the transmission.  Basically this is achieved by assigning short descriptions to the most frequent outcomes of the source output and vice versa.  The common source-coding schemes are prefix coding, huffman coding, lempel-ziv coding.
  • 104. Source Coding Theorem  Source coding theorem states that the output of any information source having entropy H units per symbol can be encoded into an alphabet having N symbols in such a way that the source symbols are represented by code words having a weighted average length not less than H/logN.  Hence source coding theorem says that encoding of messages from a source with entropy H can be done, bounded by the fundamental information theoretic limitation that the Minimum average number of symbols/message is H/logN.
  • 105. Source coding example  Prefix coding has an important feature that it is always uniquely decodable and it also satisfies Kraft- McMillan (see formula 10.22 p. 624) inequality term  Prefix codes can also be referred to as instantaneous codes, meaning that the decoding process is achieved immediately
  • 106.  Shannon-Fano Coding: In Shannon–Fano coding, the symbols are arranged in order from most probable to least probable, and then divided into two sets whose total probabilities are as close as possible to being equal. All symbols then have the first digits of their codes assigned; symbols in the first set receive "0" and symbols in the second set receive "1".  As long as any sets with more than one member remain, the same process is repeated on those sets, to determine successive digits of their codes. When a set has been reduced to one symbol, of course, this means the symbol's code is complete and will not form the prefix of any other symbol's code.
  • 107.  Huffman Coding: Create a list for the symbols, in decreasing order of probability. The symbols with the lowest probability are assigned a ‘0’ and a ‘1’.  These two symbols are combined into a new symbol with the probability equal to the sum of their individual probabilities. The new symbol is placed in the list as per its probability value.  The procedure is repeated until we are left with 2 symbols only for which 0 and 1 are assigned.  Huffman code is the bit sequence obtained by working backwards and tracking sequence of 0’s and 1’s assigned to that symbol and its successors.
  • 108.  Lempel-Ziv Coding: A drawback of Huffman code is that knowledge of probability model of source is needed. Lempel-Ziv coding is used to overcome this drawback.  while Huffman’s algorithm encodes blocks of fixed size into binary sequences of variable length, Lempel-Ziv encodes blocks of varying length into blocks of fixed size.  Lempel-Ziv coding is performed by parsing the source data into segments that are the shortest subsequences not encountered before.
  • 109. Mutual Information   Consider a communication system with a source of entropy H(X). The entropy on the receiver side be H(Y).  H(X|Y) and H(Y|X) are the conditional entropies, and H(X,Y) is the joint entropy of X and Y.  Then the Mutual information between the source X and the receiver Y can be expressed as: I(X,Y) = H(X) - H(X|Y)  H(X) is the uncertainty of source X and H(X/Y) is the uncertainty of X given Y. Hence the quantity H(X) - H(X|Y) represents the reduction in uncertainty of X given the knowledge of Y. Hence I(X,Y) is termed mutual information. Source X Channel Receiver Y
  • 110. Channel Capacity  Capacity in the channel is defined as a intrinsic ability of a channel to convey information.  Using mutual information the channel capacity of a discrete memoryless channel is the maximum average mutual information in any single use of channel over all possible probability distributions.  Thus Channel capacity C=max( I(X,Y) ).
  • 111. Shannon’s Channel Coding theorem  The Shannon theorem states that given a noisy channel with channel capacity C and information transmitted at a rate R, then if R < C there exist codes that allow the probability of error at the receiver to be made arbitrarily small. This means that theoretically, it is possible to transmit information nearly without error at any rate below a limiting rate, C.  The converse is also important. If R > C, an arbitrarily small probability of error is not achievable. All codes will have a probability of error greater than a certain positive minimal level, and this level increases as the rate increases. So, information cannot be guaranteed to be transmitted reliably across a channel at rates beyond the channel capacity.
  • 112. Shannon-Hartley theorem or Information Capacity Theorem  An application of the channel capacity concept to an additive white Gaussian noise channel with B Hz bandwidth and signal-to-noise ratio S/N is the Information Capacity Theorem.  It states that for a band-limited Gaussian channel operating in the presence of additive Gaussian noise, the channel capacity is given by C = B log2(1 + S/N) where C is the capacity in bits per second, B is the bandwidth of the channel in Hertz, and S/N is the signal-to-noise ratio.
  • 113. Band width and SNR tradeoff  As the bandwidth of the channel increases, it is possible to make faster changes in the information signal, thereby increasing the information rate.  However, as B  , the channel capacity does not become infinite since, with an increase in bandwidth, the noise power also increases.  As S/N increases, one can increase the information rate while still preventing errors due to noise.  For no noise, S/N   and an infinite information rate is possible irrespective of bandwidth.
  • 114. Implications of the Information Capacity Theorem
  • 115. Rate distortion theory  Rate distortion theory is the branch of information theory addressing the problem of determining the minimal amount of entropy or information that should be communicated over a channel such that the source can be reconstructed at the receiver with a given distortion.  Rate distortion theory can be used for the given below situations:  1. Source coding in which the coding alphabet cannot exactly represent the source information.  2. when the information is to be transmitted at a rate greater than channel capacity.
  • 116. Lower the bit rate R by allowing some acceptable distortion D of the signal
  • 117.  Rate Distortion Function:  The functions that relate the rate and distortion are found as the solution of the following minimization problem.  In the above equation, I(X,Y) is the Mutual information.
  • 118. Rate distortion function for Gaussian memory-less source  If Px(X) is Gaussian, variance is 2 and if we assume that successive samples of the signal x are stochastically independent, we find the following analytical expression for the rate distortion function.
  • 119. A Plot of the Rate distortion function for Gaussian source
  • 120. Lossy Source Coding  Lossy source coding is the representation of the source in digital form with as few bits as possible while maintaining an acceptable loss of information.  In lossy source coding, the source output is encoded at a rate less than the source entropy.  Hence there is reduction in the information content of the source.  Eg: It is not possible to digitally encode an analog signal with a finite number of bits without producing some distortion.