SlideShare une entreprise Scribd logo
1  sur  119
Télécharger pour lire hors ligne
Interference Management in MIMO Multicell
Systems with variable CSIT
Giuseppe Abreu
g.abreu@jacobs-university.de
School of Engineering and Sciences
Jacobs University Bremen

November 7, 2013
Evolution

GSM
Application
Access
Latency
Switching Time

12 kbps
20 kbps
150 ms
Few seconds

3G
1 Mbps
24 kbps
50 ms
500 ms

4G
10 Mbps
300 Mbps
10 ms
200 ms

5G
1 Gbps
10 Gbps
1 ms
10 ms
Forecast

Mobile traffic volume trend: 1000x in 10 years.

Requirements
Forecast

Mobile traffic volume trend: 1000x in 10 years.
The Internet of Things

Requirements
Forecast

Mobile traffic volume trend: 1000x in 10 years.
The Internet of Things
The Internet of Things !

Requirements
Forecast

Mobile traffic volume trend: 1000x in 10 years.
The Internet of Things
The Internet of Things !
The Internet of Things !!!

Requirements
Forecast

Mobile traffic volume trend: 1000x in 10 years.
The Internet of Things
The Internet of Things !
The Internet of Things !!!

Requirements
Improve energy efficiency
Forecast

Mobile traffic volume trend: 1000x in 10 years.
The Internet of Things
The Internet of Things !
The Internet of Things !!!

Requirements
Improve energy efficiency
Improve QoS
Forecast

Mobile traffic volume trend: 1000x in 10 years.
The Internet of Things
The Internet of Things !
The Internet of Things !!!

Requirements
Improve energy efficiency
Improve QoS
Improve spectrum efficiency
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA)
Spread-spectrum (WCDMA)
LTE (OFDMA)
???
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA)
LTE (OFDMA)
???
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA)
???
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
???
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity”
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference
Cooperation (Relaying)
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Het-Nets/Cognitive Radio
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Het-Nets/Cognitive Radio → enough (?)
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Het-Nets/Cognitive Radio → enough (?)
Interference Alignment
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Het-Nets/Cognitive Radio → enough (?)
Interference Alignment → scalability (?)
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Het-Nets/Cognitive Radio → enough (?)
Interference Alignment → scalability (?)
Massive MIMO
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Het-Nets/Cognitive Radio → enough (?)
Interference Alignment → scalability (?)
Massive MIMO → revolutionary, expensive (!)
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Het-Nets/Cognitive Radio → enough (?)
Interference Alignment → scalability (?)
Massive MIMO → revolutionary, expensive (!)
CoMP
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Het-Nets/Cognitive Radio → enough (?)
Interference Alignment → scalability (?)
Massive MIMO → revolutionary, expensive (!)
CoMP → evolutionary, flexible, huge background, maturing...
Past and Future
Drivers of cellular system improvement
2G:
3G:
4G:
5G:

Digitalization (GSM/CDMA) → spectrum
Spread-spectrum (WCDMA) → spectrum again...
LTE (OFDMA) → and again...
“granularity” → devices → antennas

Bottlenecked by Interference

Cooperation (Relaying) → security (?)
Het-Nets/Cognitive Radio → enough (?)
Interference Alignment → scalability (?)
Massive MIMO → revolutionary, expensive (!)
CoMP → evolutionary, flexible, huge background, maturing...

Still lots to be done!!
CoMP’s System Model

B coordinating BSs
K users per cell
One BS per cell
Each BS with multiple antennas
User may have multiple antennas
Embedded power control
Desired Signal
Interference Signal

Inter-cell and intra-cell interference
Now let’s get serious...
Dissecting CoMP
Energy Efficiency

Example 1: Power minimization problem [Yu&Lan 2007]
minimize

α

V {vk }

subject to |vn |2 ≤ α pn

SINRk ≥ γk ,

given

hk

K

TX : xN ×1 =

sk vk
k=1

SINRk =

RX : yk = hk · x + zk

|hk · vk |2
2
2
j=k |hk · vk | + σ
Dissecting CoMP
Energy Efficiency

Example 1: Power minimization problem [Yu&Lan 2007]
minimize

α

V {vk }

subject to |vn |2 ≤ α pn

SINRk ≥ γk ,

given

hk

K

TX : xN ×1 =

sk vk
k=1

SINRk =
N=

B
b=1

RX : yk = hk · x + zk

|hk · vk |2
2
2
j=k |hk · vk | + σ

Ntb TX antennas → MISO
Dissecting CoMP
Energy Efficiency

Example 1: Power minimization problem [Yu&Lan 2007]
minimize

α

V {vk }

subject to |vn |2 ≤ α pn

SINRk ≥ γk ,

given

hk

K

TX : xN ×1 =

sk vk
k=1

SINRk =
B

RX : yk = hk · x + zk

|hk · vk |2
2
2
j=k |hk · vk | + σ

N = b=1 Ntb TX antennas → MISO
Fixed pn per-antenna target powers → how (?)
Dissecting CoMP
Energy Efficiency

Example 1: Power minimization problem [Yu&Lan 2007]
minimize

α

V {vk }

subject to |vn |2 ≤ α pn

SINRk ≥ γk ,

given

hk

K

TX : xN ×1 =

sk vk
k=1

SINRk =
B

RX : yk = hk · x + zk

|hk · vk |2
2
2
j=k |hk · vk | + σ

N = b=1 Ntb TX antennas → MISO
Fixed pn per-antenna target powers → how (?)
Per user γk target SINRs → QoS balancing (?)
Dissecting CoMP
Energy Efficiency

Example 1: Power minimization problem [Yu&Lan 2007]
minimize

α

V {vk }

subject to |vn |2 ≤ α pn

SINRk ≥ γk ,

given

hk

K

TX : xN ×1 =

sk vk
k=1

SINRk =
B

RX : yk = hk · x + zk

|hk · vk |2
2
2
j=k |hk · vk | + σ

N = b=1 Ntb TX antennas → MISO
Fixed pn per-antenna target powers → how (?)
Per user γk target SINRs → QoS balancing (?)
Perfectly known hk for all users → overhead (!)
Dissecting CoMP
Energy Efficiency

Example 2: Power minimization problem [Song et al. 2007]
K

minimize
p>0,V,U

wk p k
k=1

subject to SINRk ≥ γk

K

TX : xN ×1 =

given
√
pk s k v k

k=1

SINRk =

Hkj and wk
RX : yk = uH · Hkk · x + zk
k

pk |uH · Hkk · vk |2
k
H
2
2
j=k pj |uk · Hkj · vk | + σ
Dissecting CoMP
Energy Efficiency

Example 2: Power minimization problem [Song et al. 2007]
K

minimize
p>0,V,U

wk p k
k=1

subject to SINRk ≥ γk

K

TX : xN ×1 =

given
√
pk s k v k

k=1

SINRk =
N=

B
b=1

Hkj and wk
RX : yk = uH · Hkk · x + zk
k

pk |uH · Hkk · vk |2
k
H
2
2
j=k pj |uk · Hkj · vk | + σ

Ntb TX antennas → MIMO
Dissecting CoMP
Energy Efficiency

Example 2: Power minimization problem [Song et al. 2007]
K

minimize
p>0,V,U

wk p k
k=1

subject to SINRk ≥ γk

K

TX : xN ×1 =

given
√
pk s k v k

k=1

SINRk =
B

Hkj and wk
RX : yk = uH · Hkk · x + zk
k

pk |uH · Hkk · vk |2
k
H
2
2
j=k pj |uk · Hkj · vk | + σ

N = b=1 Ntb TX antennas → MIMO
Fixed pn per-antenna target powers → optimized per user pk
Known weight per user wk → how (?)
Dissecting CoMP
Energy Efficiency

Example 2: Power minimization problem [Song et al. 2007]
K

minimize
p>0,V,U

wk p k
k=1

subject to SINRk ≥ γk

K

TX : xN ×1 =

given
√
pk s k v k

k=1

SINRk =
B

Hkj and wk
RX : yk = uH · Hkk · x + zk
k

pk |uH · Hkk · vk |2
k
H
2
2
j=k pj |uk · Hkj · vk | + σ

N = b=1 Ntb TX antennas → MIMO
Fixed pn per-antenna target powers → optimized per user pk
Known weight per user wk → how (?)
Per user γk target SINRs → QoS balancing (?)
Dissecting CoMP
Energy Efficiency

Example 2: Power minimization problem [Song et al. 2007]
K

minimize
p>0,V,U

wk p k
k=1

subject to SINRk ≥ γk

K

TX : xN ×1 =

given
√
pk s k v k

k=1

SINRk =
B

Hkj and wk
RX : yk = uH · Hkk · x + zk
k

pk |uH · Hkk · vk |2
k
H
2
2
j=k pj |uk · Hkj · vk | + σ

N = b=1 Ntb TX antennas → MIMO
Fixed pn per-antenna target powers → optimized per user pk
Known weight per user wk → how (?)
Per user γk target SINRs → QoS balancing (?)
Perfectly known Hkj for all users → overhead (!)
Dissecting CoMP
Quality of Service

Example 3: Min-max SINR problem [Huang et al. 2011]
maximize
p>0,V

subject to

min SINRk
∀k

p ≤P

vk = 1
given
K

TX : xN ×1 =

√

k=1

SINRk =

hk

p k s k vk

RX : yk = hk · x + zk

pk |hk · vk |2
2
2
j=k pj |hj · vk | + σ
Dissecting CoMP
Quality of Service

Example 3: Min-max SINR problem [Huang et al. 2011]
maximize
p>0,V

subject to

min SINRk
∀k

p ≤P

vk = 1
given
K

TX : xN ×1 =

√

k=1

SINRk =
N=

B
b=1

hk

p k s k vk

RX : yk = hk · x + zk

pk |hk · vk |2
2
2
j=k pj |hj · vk | + σ

Ntb TX antennas → MISO
Dissecting CoMP
Quality of Service

Example 3: Min-max SINR problem [Huang et al. 2011]
maximize
p>0,V

subject to

min SINRk
∀k

p ≤P

vk = 1
given
K

TX : xN ×1 =

√

k=1

SINRk =
B

hk

p k s k vk

RX : yk = hk · x + zk

pk |hk · vk |2
2
2
j=k pj |hj · vk | + σ

N = b=1 Ntb TX antennas → MISO
Fixed pn per-antenna target powers → optimized per user pk
Dissecting CoMP
Quality of Service

Example 3: Min-max SINR problem [Huang et al. 2011]
maximize
p>0,V

subject to

min SINRk
∀k

p ≤P

vk = 1
given
K

TX : xN ×1 =

√

k=1

SINRk =
B

hk

p k s k vk

RX : yk = hk · x + zk

pk |hk · vk |2
2
2
j=k pj |hj · vk | + σ

N = b=1 Ntb TX antennas → MISO
Fixed pn per-antenna target powers → optimized per user pk
Per user γk target SINRs → minimum QoS
Dissecting CoMP
Quality of Service

Example 3: Min-max SINR problem [Huang et al. 2011]
maximize
p>0,V

subject to

min SINRk
∀k

p ≤P

vk = 1
given
K

TX : xN ×1 =

√

k=1

SINRk =
B

hk

p k s k vk

RX : yk = hk · x + zk

pk |hk · vk |2
2
2
j=k pj |hj · vk | + σ

N = b=1 Ntb TX antennas → MISO
Fixed pn per-antenna target powers → optimized per user pk
Per user γk target SINRs → minimum QoS
Perfectly known hk for all → overhead (!)
Dissecting CoMP
Quality of Service

Example 4: Min-max SINR problem [Cai et al. 2011]
maximize
p>0,V

min
∀k

SINRk
αk

subject to w · p ≤ P ,
given
K

TX : xN ×1 =

∈ L |L| < K

Hkj , wk and α
√
pk s k v k

k=1

SINRk =

RX : yk = uH · Hkk · x + zk
k

pk |uH · Hkk · vk |2
k
pj |uH · Hkj · vk |2 + σ 2
j=k
k
Dissecting CoMP
Quality of Service

Example 4: Min-max SINR problem [Cai et al. 2011]
maximize
p>0,V

min
∀k

SINRk
αk

subject to w · p ≤ P ,
given
K

TX : xN ×1 =

Hkj , wk and α
√
pk s k v k

k=1

SINRk =
N=

B
b=1

∈ L |L| < K

RX : yk = uH · Hkk · x + zk
k

pk |uH · Hkk · vk |2
k
pj |uH · Hkj · vk |2 + σ 2
j=k
k

Ntb TX antennas → MIMO
Dissecting CoMP
Quality of Service

Example 4: Min-max SINR problem [Cai et al. 2011]
maximize
p>0,V

min
∀k

SINRk
αk

subject to w · p ≤ P ,
given
K

TX : xN ×1 =

Hkj , wk and α
√
pk s k v k

k=1

SINRk =
B

∈ L |L| < K

RX : yk = uH · Hkk · x + zk
k

pk |uH · Hkk · vk |2
k
pj |uH · Hkj · vk |2 + σ 2
j=k
k

N = b=1 Ntb TX antennas → MIMO
Fixed pn per-antenna target powers → optimized per user pk
Known weight vectors per user wk and scores αk → how (?)
Dissecting CoMP
Quality of Service

Example 4: Min-max SINR problem [Cai et al. 2011]
maximize
p>0,V

min
∀k

SINRk
αk

subject to w · p ≤ P ,
given
K

TX : xN ×1 =

Hkj , wk and α
√
pk s k v k

k=1

SINRk =
B

∈ L |L| < K

RX : yk = uH · Hkk · x + zk
k

pk |uH · Hkk · vk |2
k
pj |uH · Hkj · vk |2 + σ 2
j=k
k

N = b=1 Ntb TX antennas → MIMO
Fixed pn per-antenna target powers → optimized per user pk
Known weight vectors per user wk and scores αk → how (?)
Perfectly known Hkj for all users → overhead (!)
Dissecting CoMP
Spectral Efficiency

Example 5: Sum-rate maximization problem [Tran et al. 2012]
K

maximize
t,V

tk
k=1
1/αk

subject to SINRk ≥ tk
K

vk
k=1

given

2

−1

≤P

hk , P and α

αk log2 (1 + SINRk ) −→ (1 + SINRk )αk −→ tk
Dissecting CoMP
Spectral Efficiency

Example 5: Sum-rate maximization problem [Tran et al. 2012]
K

maximize
t,V

tk
k=1
1/αk

subject to SINRk ≥ tk
K

vk
k=1

given

2

−1

≤P

hk , P and α

αk log2 (1 + SINRk ) −→ (1 + SINRk )αk −→ tk
N=

B
b=1

Ntb TX antennas → MISO
Dissecting CoMP
Spectral Efficiency

Example 5: Sum-rate maximization problem [Tran et al. 2012]
K

maximize
t,V

tk
k=1
1/αk

subject to SINRk ≥ tk
K

vk
k=1

given

2

−1

≤P

hk , P and α

αk log2 (1 + SINRk ) −→ (1 + SINRk )αk −→ tk
B

N = b=1 Ntb TX antennas → MISO
Fixed pn per-antenna target powers → optimized total pk
Known scores αk → how (?)
Dissecting CoMP
Spectral Efficiency

Example 5: Sum-rate maximization problem [Tran et al. 2012]
K

maximize
t,V

tk
k=1
1/αk

subject to SINRk ≥ tk
K

vk
k=1

given

2

−1

≤P

hk , P and α

αk log2 (1 + SINRk ) −→ (1 + SINRk )αk −→ tk
B

N = b=1 Ntb TX antennas → MISO
Fixed pn per-antenna target powers → optimized total pk
Known scores αk → how (?)
Perfectly known hk for all users → overhead (!)
Dissecting CoMP
Spectral Efficiency

Example 6: Sum-rate maximization problem [Park et al. 2013]
K

maximize
V {Vk }

subject to

k=1

Hjk Vk
Vk

given

2
wk log2 |INr + (σk I + Φk )−1 Hkk Vk Vk HH |
kk

2

2

2
≤ αjk σj

≤ pk

Hjk , w, p and α
K
H
Hkj Vj Vj HH
kj

Φk =
k=1
Dissecting CoMP
Spectral Efficiency

Example 6: Sum-rate maximization problem [Park et al. 2013]
K

maximize
V {Vk }

subject to

k=1

Hjk Vk
Vk

given

2
wk log2 |INr + (σk I + Φk )−1 Hkk Vk Vk HH |
kk

2

2

2
≤ αjk σj

≤ pk

Hjk , w, p and α
K
H
Hkj Vj Vj HH
kj

Φk =
k=1

N=

B
b=1

Ntb TX antennas → MIMO
Dissecting CoMP
Spectral Efficiency

Example 6: Sum-rate maximization problem [Park et al. 2013]
K

maximize
V {Vk }

subject to

k=1

Hjk Vk
Vk

given

2
wk log2 |INr + (σk I + Φk )−1 Hkk Vk Vk HH |
kk

2

2

2
≤ αjk σj

≤ pk

Hjk , w, p and α
K
H
Hkj Vj Vj HH
kj

Φk =
k=1
B
b=1

N=
Ntb TX antennas → MIMO
Fixed pn per-antenna target powers → optimized per user pk
Known weights w, target powers pk and scores αk → how (?)
Dissecting CoMP
Spectral Efficiency

Example 6: Sum-rate maximization problem [Park et al. 2013]
K

maximize
V {Vk }

subject to

k=1

Hjk Vk
Vk

given

2
wk log2 |INr + (σk I + Φk )−1 Hkk Vk Vk HH |
kk

2

2

2
≤ αjk σj

≤ pk

Hjk , w, p and α
K
H
Hkj Vj Vj HH
kj

Φk =
k=1
B
b=1

N=
Ntb TX antennas → MIMO
Fixed pn per-antenna target powers → optimized per user pk
Known weights w, target powers pk and scores αk → how (?)
Perfectly known Hkj for all users → overhead (!)
tion of single beamforming vector) to address the practical issues of decentralized implementation based
on local channel information. Utilization of downlink-uplink duality to formulate noise covariance in uplink,
GP to characterize downlink power, and an alternating optimization problem in [59], authors solved P3 with
per BS power for MIMO systems. Considering conditional eigenvalue problem with affine constraint and
non-linear Perron-Frobenius theory, authors in [52] optimized the physical layer link rate functions. Also
recently, in [57], a relaxed zero forcing method for MISO and MIMO interference channels is proposed for
the rate control problems with centralized and distributed heuristic approach.

Comprehensive Review in a Nutshell

Table 1: Literature Classification of Works on CoMP
MISO †
MIMO
P1

Instantaneous Perfect CSIT

Instantaneous Imperfect CSIT

Statistical CSIT

[26]

[20] [21] [22] [23]
[24] [25]

[43]

[44] [45] [46]
[47] [42]

[60]

Covariance Information

[27] [28] [29]
[30]

[89] [31] [32]
[33]

[61]

[87]

P2

P3

[34] [35] [36]
[37]
[38] [39] [40] [41] [42]
[48] [49] [65] [51] [52]
[53] [54] [55] [56]
[57] [77]
[82] [58]
[59] [57] [78] [79]

†

[81]

Works on the upper diagonal portion of each cell are on MISO, while those on the lower diagonal are on MIMO.

Table 1 summarizes the the key-problems in the literatures, to the best of our knowledge, we have discussed
in Section (2.1.1). We have distinguished the key problems into MISO vs. MIMO with different channel
variations available at the transmitter. Despite the different tools and analytics present in the perfect channel
knowledge at the transmitter side, we have seen a significant need of work to be done in the the multiantenna receiver case. Also, as we progress from left to right of the table, the available literatures diminishes
in number. Within the cited literatures, we have pointed few key-holes for the key-problems which we state
OK, so what if CSIT is not perfect ?
Power Minimization Again
From Perfect to Imperfect CSIT

K

maximize
V {vk }

subject to

vk

2

k=1

SINRk

N
i=1,
i=k

given

{γ1 , · · · , γK }

|hH vk |2
kk
|hH vi |2
ki

+

σ2

≥ γk
Power Minimization Again
From Perfect to Imperfect CSIT

K

maximize
V {vk }

subject to

vk

2

k=1

SINRk

N
i=1,
i=k

given

|hH vk |2
kk
|hH vi |2
ki

{γ1 , · · · , γK }
ˆ
hki = hki + ehki

+

σ2

≥ γk
Power Minimization Again
From Perfect to Imperfect CSIT

K

maximize
V {vk }

subject to

vk

2

k=1

SINRk

N
i=1,
i=k

given

|hH vk |2
kk
|hH vi |2
ki

+

σ2

≥ γk

{γ1 , · · · , γK }
ˆ
hki = hki + ehki

Pr (SINRk ≥ γk ) = Pr

|hH vk |2
kk

N
i=1,i=k

|hH vi |2 + σ 2
ki

≥ γk

≥ 1 − ρk
Power Minimization Again
Robust Formulation

K

maximize
V {vk }

vk

2

k=1

subject to

given

Pr

|hH vk |2
kk

N
i=1,i=k

|hH vi |2 + σ 2
ki

≥ γk

{γ1 , · · · , γK } and {ρ1 , · · · , ρK }

ˆ
hki = hki + ehki

≥ 1 − ρk
Power Minimization Again
Robust Formulation

K

maximize
V {vk }

vk

2

k=1

subject to

given

Pr

|hH vk |2
kk

N
i=1,i=k

|hH vi |2 + σ 2
ki

≥ γk

{γ1 , · · · , γK } and {ρ1 , · · · , ρK }

ˆ
hki = hki + ehki

ehki ∼ CN (0, Qki )

≥ 1 − ρk
Power Minimization Again
Robust Formulation

K

maximize
V {vk }

vk

2

k=1

subject to

given

Pr

|hH vk |2
kk

N
i=1,i=k

|hH vi |2 + σ 2
ki

≥ γk

≥ 1 − ρk

{γ1 , · · · , γK } and {ρ1 , · · · , ρK }

ˆ
hki = hki + ehki
2
ˆ
|hH vi |2 ∼ χ2 (δki ; σki )
2
ki

ehki ∼ CN (0, Qki )
ˆ
δki

ˆ
|hH vi |2
ki

2
H
σki = vi Qki vi
Statistical SINR Constraint
Towards a Closed-form

Pr SINRk ≥ γk
Statistical SINR Constraint
Towards a Closed-form

Pr

|hH vk |2
kk

N
i=1,i=k

|hH vi |2 + σ 2
ki

≥ γk
Statistical SINR Constraint
Towards a Closed-form



N

Pr |hH vk |2 ≥ γk
kk

i=1,i=k



|hH vi |2 + γk · σ 2 
ki
Statistical SINR Constraint
Towards a Closed-form



Pr |hH vk |2 ≥ γk
kk
Xkk



N
i=1,i=k

|hH vk |2
kk
HQ v
vk kk k

|hH vi |2 + γk · σ 2 
ki
Xki

2
H
σki = vi Qki vi

|hH vi |2
ki
HQ v
vi ki i
Statistical SINR Constraint
Towards a Closed-form



2
Pr σkk Xkk − γk

Xkk



N
i=1,i=k

|hH vk |2
kk
HQ v
vk kk k

2
σii Xki ≥ γk · σ 2 

Xki

2
H
σki = vi Qki vi

|hH vi |2
ki
HQ v
vi ki i
Statistical SINR Constraint
Towards a Closed-form

∞
0

N

∞

...
0

Pr Xkk ≥ ckk

ckk =

[Kandukuri]



fXki (ti ) dti . . . dtN
i=1,i=k

γk  2
σ +
2
σkk

N

i=1,i=k



2
σki ti 

S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels
with outage-probability specifications,” IEEE Transactions on Wireless Communications, vol. 1,
no. 1, pp. 46–55, Jan 2002.
Statistical SINR Constraint
Towards a Closed-form

∞
0

N

∞

...
0

Pr Xkk ≥ ckk

ckk =



fXki (ti ) dti . . . dtN
i=1,i=k

γk  2
σ +
2
σkk

N

i=1,i=k



2
σki ti 

ckk is non-central χ2
[Kandukuri]

S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels
with outage-probability specifications,” IEEE Transactions on Wireless Communications, vol. 1,
no. 1, pp. 46–55, Jan 2002.
Model of Xkk
Non-central and Central

Theorem (Cox&Reid):
˜
Let Z ∼ χ2 (δ; σ 2 ) and Z ∼ χ2 (0; σ 2 ), with δ/n small. Then,
n
n
˜
Pr (Z > γ) ≈ Pr Z >

γ
1+

δ
n

[Cox&Reid] D. R. Cox and N. Reid, “Approximations to noncentral distributions,” The Canadian Journal of
Statistics / La Revue Canadienne de Statistique, vol. 15, no. 2, pp. 105–114, 1987.
Model of Xkk
Non-central and Central
Comparison of the CDF of Non-central and Central χ2 Distribution

1

δ = 0.1

Cumulative Distribution Function: Pr(Z ≥ δ)

0.9
0.8
0.7

δ=2

0.6
0.5
0.4
0.3
0.2
0.1
0
0

Non-central χ2
Central χ2

1

2

3

4

5
6
7
8
9
10
Non-centrality Parameter: δ

11

12

13

14

15
Statistical SINR Constraint
Towards a Closed-form

∞

Pr (SINRk ≥ γk ) ≈

∞

...
0

0

˜
Pr Xkk ≥

N
ckk
δ
1+ kk
2

fXki (ti ) dti . . . dtN
i=1,i=k
Statistical SINR Constraint
Towards a Closed-form

∞

Pr (SINRk ≥ γk ) ≈

∞

...
0

˜
Xkk ∼ χ2
2

0

N

˜
Pr Xkk ≥

=⇒

ckk
δ
1+ kk
2

fXki (ti ) dti . . . dtN
i=1,i=k

˜
Pr(Xkk ≥ x) = e−x/2
Statistical SINR Constraint
Towards a Closed-form

∞

Pr (SINRk ≥ γk ) ≈

∞

...
0

˜
Xkk ∼ χ2
2

0

exp −

=⇒

ckk
1+

δkk
2

N

fXki (ti ) dti . . . dtN
i=1,i=k

˜
Pr(Xkk ≥ x) = e−x/2
Statistical SINR Constraint
Towards a Closed-form

∞

Pr (SINRk ≥ γk ) ≈

∞

...
0
−

=e

0

exp −

γk σ 2
δ
σ 2 (1+ kk )
2
kk

δkk
2

1+

N
i=1,
i=k

αki =

ckk

N

fXki (ti ) dti . . . dtN
i=1,i=k

∞
0

exp (−αki ti )fXki (ti ) dti

2
γk σki
2
σkk (1 +

δkk
2 )
Statistical SINR Constraint
Towards a Closed-form

∞

Pr (SINRk ≥ γk ) ≈

∞

...
0
−

=e

0

exp −

γk σ 2
δ
σ 2 (1+ kk )
2
kk

=e

γk σ 2
2 (1+ δkk )
σ
2
kk

δkk
2

1+

N
0

exp (−αki ti )fXki (ti ) dti

N

E[e−αki ti ]
i=1,
i=k

αki =

fXki (ti ) dti . . . dtN
i=1,i=k

∞

i=1,
i=k

−

N

ckk

2
γk σki
2
σkk (1 +

δkk
2 )
Statistical SINR Constraint
Towards a Closed-form

−

Pr (SINRk ≥ γk ) ≈ e

γk σ 2
2 (1+ δkk )
σ
2
kk

N

i=1,i=k

E[e−αki ti ]
Statistical SINR Constraint
Towards a Closed-form

−

Pr (SINRk ≥ γk ) ≈ e

Z∼

χ2 (δ)
2

γk σ 2
2 (1+ δkk )
σ
2
kk

N

E[e−αki ti ]

i=1,i=k

=⇒

sZ

E[e ] =

exp

sδ
1−2s

1 − 2s
Statistical SINR Constraint
Towards a Closed-form

−

Pr (SINRk ≥ γk ) ≈ e
=e

Z∼

γk σ 2
2 (1+ δkk )
σ
2
kk

N

E[e−αki ti ]

i=1,i=k
γk σ 2
−
δ
σ 2 (1+ kk )
2
kk

χ2 (δ)
2

=⇒

exp

N
i=1,i=k
N
i=1,i=k (1

sZ

E[e ] =

exp

αki δ
− (1+2αki )
ki

+ 2αki )

sδ
1−2s

1 − 2s
Statistical SINR Constraint
Towards a Closed-form

−

Pr (SINRk ≥ γk ) ≈ e
=e

γk σ 2
2 (1+ δkk )
σ
2
kk

N

E[e−αki ti ]

i=1,i=k
γk σ 2
−
δ
σ 2 (1+ kk )
2
kk

−

=e

γk σ 2
δ
σ 2 (1+ kk )
2
kk

N
i=1,i=k

exp

N
i=1,i=k (1
N

Z∼

=⇒

sZ

+ 2αki )

exp −

i=1,i=k

χ2 (δ)
2

αki δ
− (1+2αki )
ki

E[e ] =

2
σkk (1+

1+
exp

γk pki
δkk
2
)+2γk σki
2

2
γk σki
2 (1+δ /2)
σkk
kk

sδ
1−2s

1 − 2s
Statistical SINR Constraint
Towards a Closed-form

Pr (SINRk ≥ γk ) ≈e

−

γk σ 2
vH Akk vk
k

N
i=1,
i=k

exp

ˆ
−γk |hH vi |2
ki
vH Akk vk +γk vH Qki vi
i
k
γ vH Q v
1+ kHi ki i
v Akk vk
k
Statistical SINR Constraint
Towards a Closed-form

Pr (SINRk ≥ γk ) ≈e

−

γk σ 2
vH Akk vk
k

N
i=1,
i=k

Akk

exp

ˆ
−γk |hH vi |2
ki
vH Akk vk +γk vH Qki vi
i
k
γ vH Q v
1+ kHi ki i
v Akk vk
k

ˆ ˆ
Qkk + hkk hH
kk
Statistical SINR Constraint
Towards a Closed-form

Pr (SINRk ≥ γk ) ≈e

−

γk σ 2
vH Akk vk
k

N
i=1,
i=k

Akk

exp

ˆ
−γk |hH vi |2
ki
vH Akk vk +γk vH Qki vi
i
k
γ vH Q v
1+ kHi ki i
v Akk vk
k

ˆ ˆ
Qkk + hkk hH
kk

≥ 1 − ρk
Statistical SINR Constraint
Towards a Closed-form



γ σ2
− Hk
v Akk vk
k


log e

N
i=1,
i=k

exp

ˆ
−γk |hH vi |2
ki
vH Akk vk +γk vH Qki vi
i
k
γ vH Q v
1+ kHi ki i
v Akk vk
k

Akk

ˆ ˆ
Qkk + hkk hH
kk




 ≥ log(1 − ρk )
Statistical SINR Constraint
Towards a Closed-form

ˆ
N
N
γk |hH vi |2
γk vH Qki vi
γk σ 2
ki
ln 1+ Hi
+
+
H
H
H
vk Akk vk i=1, vk Akk vk +γk vi Qki vi i=1,
vk Akk vk
i=k

i=k

Akk

ˆ ˆ
Qkk + hkk hH
kk

≤− ln(1−ρk )
Statistical SINR Constraint
Towards a Closed-form

ˆ
N
N
γk |hH vi |2
γk vH Qki vi
γk σ 2
ki
ln 1+ Hi
+
+
H
H
H
vk Akk vk i=1, vk Akk vk +γk vi Qki vi i=1,
vk Akk vk
i=k

i=k

Akk

ˆ ˆ
Qkk + hkk hH
kk

N
i=1

N

ln(1 + xi ) ≤

xi
i=1

≤− ln(1−ρk )
Statistical SINR Constraint
Towards a Closed-form

γk σ 2
H
vk Akk vk

N

+
i=1,
i=k

ˆ
γk |hH vi |2
ki
H
H
vk Akk vk +γk vi Qki vi

Akk

+

ˆ ˆ
Qkk + hkk hH
kk

N
i=1

H
γk vi Qki vi
H
vk Akk vk

N

ln(1 + xi ) ≤

xi
i=1

≤ − ln(1 − ρk )
Statistical SINR Constraint
Towards a Closed-form

γk σ 2
H
vk Akk vk

N

+
i=1,
i=k

ˆ
γk |hH vi |2
ki
H
H
vk Akk vk +γk vi Qki vi

Akk

+

ˆ ˆ
Qkk + hkk hH
kk

N
i=1

H
γk vi Qki vi
H
vk Akk vk

N

ln(1 + xi ) ≤

xi
i=1

≤ − ln(1 − ρk )
Statistical SINR Constraint
Towards a Closed-form

γk σ 2
H
vk Akk vk

N

+
i=1,
i=k

ˆ
γk |hH vi |2
ki
H
H
vk Akk vk +γk vi Qki vi

Akk

ˆ ˆ
Qkk + hkk hH
kk

N
i=1

≤ − ln(1 − ρk )

N

ln(1 + xi ) ≤

xi
i=1
Statistical SINR Constraint
Towards a Closed-form

γk σ 2
H
vk Akk vk

N

+
i=1,
i=k

ˆ
γk |hH vi |2
ki
H
H
vk Akk vk +γk vi Qki vi

Akk

ˆ ˆ
Qkk + hkk hH
kk

N
i=1

≤ − ln(1 − ρk )

N

ln(1 + xi ) ≤

xi
i=1
Statistical SINR Constraint
Towards a Closed-form

σ2 +

N
i=1,i=k

H
ˆ
|hH vi |2 + vi Qki vi
ki

H
vk Akk vk

≤

− ln(1 − ρk )
γk
Statistical SINR Constraint
Towards a Closed-form

H
vk Akk vk

σ2 +

N
i=1,i=k

H
ˆ
|hH vi |2 + vi Qki vi
ki

≥

−γk
ln(1 − ρk )
Statistical SINR Constraint
Towards a Closed-form

H
vk Akk vk

σ2

N

+
i=1,i=k

H
ˆ
|hH vi |2 + vi Qki vi
ki

≥

−γk
ln(1 − ρk )

ηk
Power Minimization Again
Robust Formulation with Closed-form Constraint

K

maximize
V {vk }

subject to

vk

2

k=1

Pr

|hH vk |2
kk

N
i=1,i=k

|hH vi |2 + σ 2
ki

≥ γk

given

{γ1 , · · · , γK } and {ρ1 , · · · , ρK }

given

hki

≥ 1 − ρk
Power Minimization Again
Robust Formulation with Closed-form Constraint

K

maximize
V {vk }

subject to

vk

2

k=1
σ2 +

N
H
ˆH 2
i=1,i=k |hki vi | +vi Qki vi
HA v
vk kk k

≤

− ln(1 − ρk )
γk

given

{γ1 , · · · , γK } and {ρ1 , · · · , ρK }

given

ˆ
hki and Qki
Now, how do we solve this ?
Some Tools...
Semi-Definite Programming

K

minimize
V {vk }

vk

2

k=1
N

subject to |hH vk |2 − γk
kk
given

hk

i=1,
i=k

|hH vi |2 ≥ γk σ 2
ki
Semi-Definite Programming

K

minimize
V {vk }

vk

2

k=1
N

subject to |hH vk |2 − γk
kk
given
Vk

i=1,
i=k

|hH vi |2 ≥ γk σ 2
ki

hk
H
vk vk

(Positive Semi-Definite Matrix)
Semi-Definite Programming

K

minimize
{Vk } 0

Tr(Vk )
k=1
N

subject to |hH vk |2 − γk
kk
given
Vk

i=1,
i=k

|hH vi |2 ≥ γk σ 2
ki

hk
H
vk vk

(Positive Semi-Definite Matrix)
Semi-Definite Programming

K

minimize
{Vk } 0

Tr(Vk )
k=1
N

subject to |hH vk |2 − γk
kk
given

i=1,
i=k

|hH vi |2 ≥ γk σ 2
ki

hk

Vk

H
vk vk

(Positive Semi-Definite Matrix)

Hi

hki hH
ki

(Positive Semi-Definite Matrix)
Semi-Definite Programming

K

minimize
{Vk } 0

Tr(Vk )
k=1
N

subject to Tr(Vk Hk ) − γk
given

Hk

i=1,
i=k

Tr(Vi Hi ) ≥ γk σ 2

0

Vk

H
vk vk

(Positive Semi-Definite Matrix)

Hi

hki hH
ki

(Positive Semi-Definite Matrix)
Power Minimization with Imperfect CSIT
SDP Formulation

K

minimize
V {vk }

subject to

vk

2

k=1
σ2 +

H
vk Akk vk
N
H
ˆH 2
i=1,i=k |hki vi | +vi Qki vi

≥

γk
− ln(1 − ρk )

1
ηk
Power Minimization with Imperfect CSIT
SDP Formulation

K

minimize
{Vk } 0

subject to

Tr(Vk )
k=1
σ2 +

H
vk Akk vk
N
H
ˆH 2
i=1,i=k |hki vi | +vi Qki vi

≥

γk
− ln(1 − ρk )

1
ηk
Power Minimization with Imperfect CSIT
SDP Formulation

K

minimize
{Vk } 0

Tr(Vk )
k=1
N

subject to

H
ηk vk Akk vk ≥ σ 2 +

i=1,i=k

H
ˆ
|hH vi |2 + vi Qki vi
ki
Power Minimization with Imperfect CSIT
SDP Formulation

K

minimize
{Vk } 0

Tr(Vk )
k=1
N

ˆ ˆ
subject to Tr Vk (hkk hH + Qkk ) ≥ σ 2 +
kk

ˆ ˆ
Tr Vi (hki hH + Qki )
ki

i=1,i=k
Second-Order Cone Programming

K

minimize
V {vk }

vk

2

k=1
N

subject to |hH vk |2 − γk
kk

given

hk

i=1,
i=k

|hH vi |2 ≥ γk σ 2
ki
Second-Order Cone Programming

K

minimize
V {vk }

vk

2

k=1
N

subject to |hH vk |2 − γk
kk

given
V

i=1,
i=k

|hH vi |2 ≥ γk σ 2
ki

hk

[v1 , · · · , vK ]

(Beamforming Matrix)
Second-Order Cone Programming

minimize
V

Tr(VH · V)
N

subject to |hH vk |2 − γk
kk

given
V

i=1,
i=k

|hH vi |2 ≥ γk σ 2
ki

hk

[v1 , · · · , vK ]

(Beamforming Matrix)
Second-Order Cone Programming

minimize
V

subject to

given
V

Tr(VH · V)
1
1+
γk

|hH vk |2
kk

hH V
kk
≥
σ2

2

hk

[v1 , · · · , vK ]

(Beamforming Matrix)
Second-Order Cone Programming

minimize

α

V

subject to

given
V

1
1+
γk

|hH vk |2
kk

hH V
kk
≥
σ2

2

Tr(VH · V) ≤ α
hk

[v1 , · · · , vK ]

(Beamforming Matrix)
Power Minimization with Imperfect CSIT
SOCP Formulation

minimize

α

V

subject to

hH V
kk
hH U
ki
σ2

ˆ
ηk |hH vk |2 ≥
kk

2

Tr(VH · V) ≤ α
ˆ
hk and Qki

given

V

[v1 , · · · , vK ]
Uk

(Beamforming Matrix)

[uk1 , · · · , ukK ]

uki

ˆ
hH Qki
ki
Some Results...
CoMP with Imperfect CSIT
Higher Channel Estimation Error
Performance of the Proposed Scheme with Low Ch. Estimation Error
30

SDP method
SOCP method
Perfect CSI

25

Minimum Power Required in dB

20

15

ρ = 0.05
10

ρ = 0.1
5

ρ = 0.3

0

−5

−10

−15

−20
0

2

4

6

Target SINR in dB

8

10

12
CoMP with CSIT
Higher Channel Estimation Error
Performance of the Proposed Scheme with High Ch. Estimation Error
30

15

wi

(in dB)

SDP Method
SDP Method
Perfect CSIT

20

2

25

Minimum Required Power:

10

ρ = 0.05

ρ = 0.1

5

0

ρ = 0.3
−5

−10

−15

−20
−4

−2

0

2

4

Target SINR: γ (in dB)

6

8

10
Thank You !
Questions ?

Contenu connexe

Tendances

Suppression of grating lobes
Suppression of grating lobesSuppression of grating lobes
Suppression of grating lobeskavindrakrishna
 
CoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open Cloud
CoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open CloudCoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open Cloud
CoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open CloudAta Turk
 
Telxius OFC 2017 Multi-vendor 100G DP-QPSK line side interoperability field t...
Telxius OFC 2017 Multi-vendor 100G DP-QPSK line side interoperability field t...Telxius OFC 2017 Multi-vendor 100G DP-QPSK line side interoperability field t...
Telxius OFC 2017 Multi-vendor 100G DP-QPSK line side interoperability field t...Nestor Garrafa
 
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用NVIDIA Taiwan
 
Nfoec Submission 100 G Submarine Trial Final
Nfoec Submission   100 G Submarine Trial FinalNfoec Submission   100 G Submarine Trial Final
Nfoec Submission 100 G Submarine Trial FinalNestor Garrafa
 
CSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO SystemsCSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO SystemsCPqD
 
IEDM2006_Efficiency improvement
IEDM2006_Efficiency improvementIEDM2006_Efficiency improvement
IEDM2006_Efficiency improvementSteven Theeuwen
 

Tendances (7)

Suppression of grating lobes
Suppression of grating lobesSuppression of grating lobes
Suppression of grating lobes
 
CoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open Cloud
CoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open CloudCoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open Cloud
CoolDC'16: Seeing into a Public Cloud: Monitoring the Massachusetts Open Cloud
 
Telxius OFC 2017 Multi-vendor 100G DP-QPSK line side interoperability field t...
Telxius OFC 2017 Multi-vendor 100G DP-QPSK line side interoperability field t...Telxius OFC 2017 Multi-vendor 100G DP-QPSK line side interoperability field t...
Telxius OFC 2017 Multi-vendor 100G DP-QPSK line side interoperability field t...
 
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
GTC Taiwan 2017 GPU 平台上導入深度學習於半導體產業之 EDA 應用
 
Nfoec Submission 100 G Submarine Trial Final
Nfoec Submission   100 G Submarine Trial FinalNfoec Submission   100 G Submarine Trial Final
Nfoec Submission 100 G Submarine Trial Final
 
CSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO SystemsCSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO Systems
 
IEDM2006_Efficiency improvement
IEDM2006_Efficiency improvementIEDM2006_Efficiency improvement
IEDM2006_Efficiency improvement
 

En vedette

8 lengvi pratimai vyrams geresniam seksualiniam gyenimui
8 lengvi pratimai vyrams geresniam seksualiniam gyenimui8 lengvi pratimai vyrams geresniam seksualiniam gyenimui
8 lengvi pratimai vyrams geresniam seksualiniam gyenimuiSekso_prekes
 
PIANO ARIA REGIONE SICILIA CAPITOLO 2 DA PAG 30 A PAG 140 COPIATO DAL PIANO ...
PIANO ARIA REGIONE SICILIA  CAPITOLO 2 DA PAG 30 A PAG 140 COPIATO DAL PIANO ...PIANO ARIA REGIONE SICILIA  CAPITOLO 2 DA PAG 30 A PAG 140 COPIATO DAL PIANO ...
PIANO ARIA REGIONE SICILIA CAPITOLO 2 DA PAG 30 A PAG 140 COPIATO DAL PIANO ...Pino Ciampolillo
 
Webinaari: Paytrail-tili - ostamisen uusi helppous!
Webinaari: Paytrail-tili - ostamisen uusi helppous!Webinaari: Paytrail-tili - ostamisen uusi helppous!
Webinaari: Paytrail-tili - ostamisen uusi helppous!Paytrail
 
Scioglimento c.c. isola scioglimento consiglio comunale isola porto isola bil...
Scioglimento c.c. isola scioglimento consiglio comunale isola porto isola bil...Scioglimento c.c. isola scioglimento consiglio comunale isola porto isola bil...
Scioglimento c.c. isola scioglimento consiglio comunale isola porto isola bil...Pino Ciampolillo
 
Commissione parlamentare sulla mafia pomiero sifac bbp morgantina billeci sal...
Commissione parlamentare sulla mafia pomiero sifac bbp morgantina billeci sal...Commissione parlamentare sulla mafia pomiero sifac bbp morgantina billeci sal...
Commissione parlamentare sulla mafia pomiero sifac bbp morgantina billeci sal...Pino Ciampolillo
 
Quality label nottingham
Quality label nottinghamQuality label nottingham
Quality label nottinghamalinesta
 
Scioglimento c.c. isola ordinanza callea maria grazie portobello gaspare sind...
Scioglimento c.c. isola ordinanza callea maria grazie portobello gaspare sind...Scioglimento c.c. isola ordinanza callea maria grazie portobello gaspare sind...
Scioglimento c.c. isola ordinanza callea maria grazie portobello gaspare sind...Pino Ciampolillo
 
Cannova gianfranco rup aia italcementi decaduta per inosservanza prescrizioni...
Cannova gianfranco rup aia italcementi decaduta per inosservanza prescrizioni...Cannova gianfranco rup aia italcementi decaduta per inosservanza prescrizioni...
Cannova gianfranco rup aia italcementi decaduta per inosservanza prescrizioni...Pino Ciampolillo
 
L italcementi ricorso al tar provincia 5355 2012 pagina 4 egale novembre 2012
L italcementi ricorso al tar provincia 5355 2012 pagina 4 egale novembre 2012L italcementi ricorso al tar provincia 5355 2012 pagina 4 egale novembre 2012
L italcementi ricorso al tar provincia 5355 2012 pagina 4 egale novembre 2012Pino Ciampolillo
 
PIANO ARIA REGIONE SIILIA CAPITOLO 1 DA PAG 9 A 29 COPIATO DAL PIANO VENETO D...
PIANO ARIA REGIONE SIILIA CAPITOLO 1 DA PAG 9 A 29 COPIATO DAL PIANO VENETO D...PIANO ARIA REGIONE SIILIA CAPITOLO 1 DA PAG 9 A 29 COPIATO DAL PIANO VENETO D...
PIANO ARIA REGIONE SIILIA CAPITOLO 1 DA PAG 9 A 29 COPIATO DAL PIANO VENETO D...Pino Ciampolillo
 
Tirreno power vado ligure gazzetta ufficiale 5 gennaio 2013 decreto ministeri...
Tirreno power vado ligure gazzetta ufficiale 5 gennaio 2013 decreto ministeri...Tirreno power vado ligure gazzetta ufficiale 5 gennaio 2013 decreto ministeri...
Tirreno power vado ligure gazzetta ufficiale 5 gennaio 2013 decreto ministeri...Pino Ciampolillo
 
AISB 2008 — The Haptic Creature Project: Social Human-Robot Interaction throu...
AISB 2008 — The Haptic Creature Project: Social Human-Robot Interaction throu...AISB 2008 — The Haptic Creature Project: Social Human-Robot Interaction throu...
AISB 2008 — The Haptic Creature Project: Social Human-Robot Interaction throu...Steve Yohanan
 
Personal Digipak Ideas
Personal Digipak IdeasPersonal Digipak Ideas
Personal Digipak Ideascharsimcox96
 
Scioglimento consiglio comunale isola durante d'arpa bonuso pietro riso det....
Scioglimento consiglio comunale isola durante d'arpa bonuso pietro  riso det....Scioglimento consiglio comunale isola durante d'arpa bonuso pietro  riso det....
Scioglimento consiglio comunale isola durante d'arpa bonuso pietro riso det....Pino Ciampolillo
 
Caravello selespurghi mutolo micalizzi riccobono enea pag 44
Caravello selespurghi mutolo micalizzi riccobono enea pag 44 Caravello selespurghi mutolo micalizzi riccobono enea pag 44
Caravello selespurghi mutolo micalizzi riccobono enea pag 44 Pino Ciampolillo
 
Documento confutazione ctu aggiornato 24 12 12 _3_
Documento confutazione ctu aggiornato 24 12 12 _3_Documento confutazione ctu aggiornato 24 12 12 _3_
Documento confutazione ctu aggiornato 24 12 12 _3_Pino Ciampolillo
 

En vedette (20)

8 lengvi pratimai vyrams geresniam seksualiniam gyenimui
8 lengvi pratimai vyrams geresniam seksualiniam gyenimui8 lengvi pratimai vyrams geresniam seksualiniam gyenimui
8 lengvi pratimai vyrams geresniam seksualiniam gyenimui
 
PIANO ARIA REGIONE SICILIA CAPITOLO 2 DA PAG 30 A PAG 140 COPIATO DAL PIANO ...
PIANO ARIA REGIONE SICILIA  CAPITOLO 2 DA PAG 30 A PAG 140 COPIATO DAL PIANO ...PIANO ARIA REGIONE SICILIA  CAPITOLO 2 DA PAG 30 A PAG 140 COPIATO DAL PIANO ...
PIANO ARIA REGIONE SICILIA CAPITOLO 2 DA PAG 30 A PAG 140 COPIATO DAL PIANO ...
 
Webinaari: Paytrail-tili - ostamisen uusi helppous!
Webinaari: Paytrail-tili - ostamisen uusi helppous!Webinaari: Paytrail-tili - ostamisen uusi helppous!
Webinaari: Paytrail-tili - ostamisen uusi helppous!
 
SIMULACRO SEMANAL - 10 AGOSTO 2013
SIMULACRO SEMANAL - 10 AGOSTO 2013SIMULACRO SEMANAL - 10 AGOSTO 2013
SIMULACRO SEMANAL - 10 AGOSTO 2013
 
Scioglimento c.c. isola scioglimento consiglio comunale isola porto isola bil...
Scioglimento c.c. isola scioglimento consiglio comunale isola porto isola bil...Scioglimento c.c. isola scioglimento consiglio comunale isola porto isola bil...
Scioglimento c.c. isola scioglimento consiglio comunale isola porto isola bil...
 
Commissione parlamentare sulla mafia pomiero sifac bbp morgantina billeci sal...
Commissione parlamentare sulla mafia pomiero sifac bbp morgantina billeci sal...Commissione parlamentare sulla mafia pomiero sifac bbp morgantina billeci sal...
Commissione parlamentare sulla mafia pomiero sifac bbp morgantina billeci sal...
 
Quality label nottingham
Quality label nottinghamQuality label nottingham
Quality label nottingham
 
Scioglimento c.c. isola ordinanza callea maria grazie portobello gaspare sind...
Scioglimento c.c. isola ordinanza callea maria grazie portobello gaspare sind...Scioglimento c.c. isola ordinanza callea maria grazie portobello gaspare sind...
Scioglimento c.c. isola ordinanza callea maria grazie portobello gaspare sind...
 
Cannova gianfranco rup aia italcementi decaduta per inosservanza prescrizioni...
Cannova gianfranco rup aia italcementi decaduta per inosservanza prescrizioni...Cannova gianfranco rup aia italcementi decaduta per inosservanza prescrizioni...
Cannova gianfranco rup aia italcementi decaduta per inosservanza prescrizioni...
 
L italcementi ricorso al tar provincia 5355 2012 pagina 4 egale novembre 2012
L italcementi ricorso al tar provincia 5355 2012 pagina 4 egale novembre 2012L italcementi ricorso al tar provincia 5355 2012 pagina 4 egale novembre 2012
L italcementi ricorso al tar provincia 5355 2012 pagina 4 egale novembre 2012
 
17 jan 2017
17 jan  201717 jan  2017
17 jan 2017
 
PIANO ARIA REGIONE SIILIA CAPITOLO 1 DA PAG 9 A 29 COPIATO DAL PIANO VENETO D...
PIANO ARIA REGIONE SIILIA CAPITOLO 1 DA PAG 9 A 29 COPIATO DAL PIANO VENETO D...PIANO ARIA REGIONE SIILIA CAPITOLO 1 DA PAG 9 A 29 COPIATO DAL PIANO VENETO D...
PIANO ARIA REGIONE SIILIA CAPITOLO 1 DA PAG 9 A 29 COPIATO DAL PIANO VENETO D...
 
Metro
MetroMetro
Metro
 
Tirreno power vado ligure gazzetta ufficiale 5 gennaio 2013 decreto ministeri...
Tirreno power vado ligure gazzetta ufficiale 5 gennaio 2013 decreto ministeri...Tirreno power vado ligure gazzetta ufficiale 5 gennaio 2013 decreto ministeri...
Tirreno power vado ligure gazzetta ufficiale 5 gennaio 2013 decreto ministeri...
 
AISB 2008 — The Haptic Creature Project: Social Human-Robot Interaction throu...
AISB 2008 — The Haptic Creature Project: Social Human-Robot Interaction throu...AISB 2008 — The Haptic Creature Project: Social Human-Robot Interaction throu...
AISB 2008 — The Haptic Creature Project: Social Human-Robot Interaction throu...
 
Personal Digipak Ideas
Personal Digipak IdeasPersonal Digipak Ideas
Personal Digipak Ideas
 
Scioglimento consiglio comunale isola durante d'arpa bonuso pietro riso det....
Scioglimento consiglio comunale isola durante d'arpa bonuso pietro  riso det....Scioglimento consiglio comunale isola durante d'arpa bonuso pietro  riso det....
Scioglimento consiglio comunale isola durante d'arpa bonuso pietro riso det....
 
30 metro
30 metro30 metro
30 metro
 
Caravello selespurghi mutolo micalizzi riccobono enea pag 44
Caravello selespurghi mutolo micalizzi riccobono enea pag 44 Caravello selespurghi mutolo micalizzi riccobono enea pag 44
Caravello selespurghi mutolo micalizzi riccobono enea pag 44
 
Documento confutazione ctu aggiornato 24 12 12 _3_
Documento confutazione ctu aggiornato 24 12 12 _3_Documento confutazione ctu aggiornato 24 12 12 _3_
Documento confutazione ctu aggiornato 24 12 12 _3_
 

Similaire à 6 interference management in mimo multicell

HIAST-Ayman Alsawah Lecture on Multiple-Antenna Techniques in Advanced Mobile...
HIAST-Ayman Alsawah Lecture on Multiple-Antenna Techniques in Advanced Mobile...HIAST-Ayman Alsawah Lecture on Multiple-Antenna Techniques in Advanced Mobile...
HIAST-Ayman Alsawah Lecture on Multiple-Antenna Techniques in Advanced Mobile...Ayman Alsawah
 
Sam Samuel - Are we stuck in a Rut? The need for agressive research goals
Sam Samuel - Are we stuck in a Rut? The need for agressive research goalsSam Samuel - Are we stuck in a Rut? The need for agressive research goals
Sam Samuel - Are we stuck in a Rut? The need for agressive research goalsiMinds conference
 
Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...
Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...
Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...T. E. BOGALE
 
Enabling the rise of the smartphone: Chronicling the developmental history at...
Enabling the rise of the smartphone: Chronicling the developmental history at...Enabling the rise of the smartphone: Chronicling the developmental history at...
Enabling the rise of the smartphone: Chronicling the developmental history at...Qualcomm Research
 
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...Journal For Research
 
Optical Transport Technologies and Trends
Optical Transport Technologies and TrendsOptical Transport Technologies and Trends
Optical Transport Technologies and TrendsMyNOG
 
Channel Models for Massive MIMO
Channel Models for Massive MIMOChannel Models for Massive MIMO
Channel Models for Massive MIMOCPqD
 
Data Networks: Next-Generation Optical Access toward 10 Gb/s Everywhere
Data Networks: Next-Generation Optical Access toward 10 Gb/s EverywhereData Networks: Next-Generation Optical Access toward 10 Gb/s Everywhere
Data Networks: Next-Generation Optical Access toward 10 Gb/s EverywhereXi'an Jiaotong-Liverpool University
 
Green Communication
Green CommunicationGreen Communication
Green CommunicationVARUN KUMAR
 
A Two-stages Microstrip Power Amplifier for WiMAX Applications
A Two-stages Microstrip Power Amplifier for WiMAX ApplicationsA Two-stages Microstrip Power Amplifier for WiMAX Applications
A Two-stages Microstrip Power Amplifier for WiMAX ApplicationsTELKOMNIKA JOURNAL
 
2015 10 07 - efficient optical transport layer for high-capacity optical netw...
2015 10 07 - efficient optical transport layer for high-capacity optical netw...2015 10 07 - efficient optical transport layer for high-capacity optical netw...
2015 10 07 - efficient optical transport layer for high-capacity optical netw...Xtera Communications
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMCarlos Antonio Leal Saballos
 
System Level 5G Evaluation of GFDM Waveforms in an LTE-A Platform
System Level 5G Evaluation of GFDM Waveforms in an LTE-A PlatformSystem Level 5G Evaluation of GFDM Waveforms in an LTE-A Platform
System Level 5G Evaluation of GFDM Waveforms in an LTE-A PlatformCommunication Systems & Networks
 
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?Amr ABDELFATTAH
 
mstp_ofc05_abstract_updated
mstp_ofc05_abstract_updatedmstp_ofc05_abstract_updated
mstp_ofc05_abstract_updatedLoukas Paraschis
 
Adaptive Radio Links
Adaptive Radio LinksAdaptive Radio Links
Adaptive Radio LinksPavel Loskot
 
2015 02 04 international optical transport developments wdm africa 2015
2015 02 04 international optical transport developments wdm africa 20152015 02 04 international optical transport developments wdm africa 2015
2015 02 04 international optical transport developments wdm africa 2015Xtera Communications
 

Similaire à 6 interference management in mimo multicell (20)

HIAST-Ayman Alsawah Lecture on Multiple-Antenna Techniques in Advanced Mobile...
HIAST-Ayman Alsawah Lecture on Multiple-Antenna Techniques in Advanced Mobile...HIAST-Ayman Alsawah Lecture on Multiple-Antenna Techniques in Advanced Mobile...
HIAST-Ayman Alsawah Lecture on Multiple-Antenna Techniques in Advanced Mobile...
 
Sam Samuel - Are we stuck in a Rut? The need for agressive research goals
Sam Samuel - Are we stuck in a Rut? The need for agressive research goalsSam Samuel - Are we stuck in a Rut? The need for agressive research goals
Sam Samuel - Are we stuck in a Rut? The need for agressive research goals
 
Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...
Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...
Beamforming for Multiuser Massive MIMO Systems: Digital versus Hybrid Analog-...
 
Enabling the rise of the smartphone: Chronicling the developmental history at...
Enabling the rise of the smartphone: Chronicling the developmental history at...Enabling the rise of the smartphone: Chronicling the developmental history at...
Enabling the rise of the smartphone: Chronicling the developmental history at...
 
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
PERFORMANCE ANALYSIS OF QOS PARAMETERS LIKE PSNR, MAE & RMSE USED IN IMAGE TR...
 
Optical Transport Technologies and Trends
Optical Transport Technologies and TrendsOptical Transport Technologies and Trends
Optical Transport Technologies and Trends
 
Channel Models for Massive MIMO
Channel Models for Massive MIMOChannel Models for Massive MIMO
Channel Models for Massive MIMO
 
Data Networks: Next-Generation Optical Access toward 10 Gb/s Everywhere
Data Networks: Next-Generation Optical Access toward 10 Gb/s EverywhereData Networks: Next-Generation Optical Access toward 10 Gb/s Everywhere
Data Networks: Next-Generation Optical Access toward 10 Gb/s Everywhere
 
Green Communication
Green CommunicationGreen Communication
Green Communication
 
A Two-stages Microstrip Power Amplifier for WiMAX Applications
A Two-stages Microstrip Power Amplifier for WiMAX ApplicationsA Two-stages Microstrip Power Amplifier for WiMAX Applications
A Two-stages Microstrip Power Amplifier for WiMAX Applications
 
2015 10 07 - efficient optical transport layer for high-capacity optical netw...
2015 10 07 - efficient optical transport layer for high-capacity optical netw...2015 10 07 - efficient optical transport layer for high-capacity optical netw...
2015 10 07 - efficient optical transport layer for high-capacity optical netw...
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
 
System Level 5G Evaluation of GFDM Waveforms in an LTE-A Platform
System Level 5G Evaluation of GFDM Waveforms in an LTE-A PlatformSystem Level 5G Evaluation of GFDM Waveforms in an LTE-A Platform
System Level 5G Evaluation of GFDM Waveforms in an LTE-A Platform
 
Introduction To Fso Technology
Introduction To Fso TechnologyIntroduction To Fso Technology
Introduction To Fso Technology
 
VOCATIONAL TRAINING-1
VOCATIONAL TRAINING-1VOCATIONAL TRAINING-1
VOCATIONAL TRAINING-1
 
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
How do you configure your LTE-U eNodeB to fairly coexist with Wi-Fi?
 
mstp_ofc05_abstract_updated
mstp_ofc05_abstract_updatedmstp_ofc05_abstract_updated
mstp_ofc05_abstract_updated
 
Adaptive Radio Links
Adaptive Radio LinksAdaptive Radio Links
Adaptive Radio Links
 
Marzetta
MarzettaMarzetta
Marzetta
 
2015 02 04 international optical transport developments wdm africa 2015
2015 02 04 international optical transport developments wdm africa 20152015 02 04 international optical transport developments wdm africa 2015
2015 02 04 international optical transport developments wdm africa 2015
 

Plus de CPqD

Control Plane for High Capacity Networks Public
Control Plane for High Capacity Networks PublicControl Plane for High Capacity Networks Public
Control Plane for High Capacity Networks PublicCPqD
 
Brazilian Semiconductor Scenario and Opportuni3es
Brazilian Semiconductor Scenario and Opportuni3esBrazilian Semiconductor Scenario and Opportuni3es
Brazilian Semiconductor Scenario and Opportuni3esCPqD
 
Cognitive Technique for Software Defined Optical Network (SDON)
Cognitive Technique for Software Defined Optical Network (SDON)Cognitive Technique for Software Defined Optical Network (SDON)
Cognitive Technique for Software Defined Optical Network (SDON)CPqD
 
The Dawn of Industry 4.0
The Dawn of Industry 4.0The Dawn of Industry 4.0
The Dawn of Industry 4.0CPqD
 
Embedded Electronics for Telecom DSP
Embedded Electronics for Telecom DSPEmbedded Electronics for Telecom DSP
Embedded Electronics for Telecom DSPCPqD
 
Troubleshooting Coherent Optical Communication Systems
Troubleshooting Coherent Optical Communication SystemsTroubleshooting Coherent Optical Communication Systems
Troubleshooting Coherent Optical Communication SystemsCPqD
 
OPTICAL COMMUNICATIONS APPLICATIONS
OPTICAL COMMUNICATIONS APPLICATIONSOPTICAL COMMUNICATIONS APPLICATIONS
OPTICAL COMMUNICATIONS APPLICATIONSCPqD
 
Integrated Photonics Advances in Optical Transmission: An Industry View
Integrated Photonics Advances in Optical Transmission: An Industry ViewIntegrated Photonics Advances in Optical Transmission: An Industry View
Integrated Photonics Advances in Optical Transmission: An Industry ViewCPqD
 
Novo modelo de apoio à inovação
Novo modelo de apoio à inovaçãoNovo modelo de apoio à inovação
Novo modelo de apoio à inovaçãoCPqD
 
CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...
CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...
CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...CPqD
 
Flexible Optical Transmission
Flexible Optical TransmissionFlexible Optical Transmission
Flexible Optical TransmissionCPqD
 
High Capacity Optical Access Networks
High Capacity Optical Access NetworksHigh Capacity Optical Access Networks
High Capacity Optical Access NetworksCPqD
 
BNDES: Instrumentos de Apoio à Inovação
BNDES: Instrumentos de Apoio à InovaçãoBNDES: Instrumentos de Apoio à Inovação
BNDES: Instrumentos de Apoio à InovaçãoCPqD
 
Câmara de Gestão M2M/IoT
Câmara de Gestão M2M/IoTCâmara de Gestão M2M/IoT
Câmara de Gestão M2M/IoTCPqD
 
Mesa Redonda: Fomento Governamental para o Setor
Mesa Redonda: Fomento Governamental para o SetorMesa Redonda: Fomento Governamental para o Setor
Mesa Redonda: Fomento Governamental para o SetorCPqD
 
Creating Business Value By Enabling the Internet of Things
Creating Business Value By Enabling the Internet of ThingsCreating Business Value By Enabling the Internet of Things
Creating Business Value By Enabling the Internet of ThingsCPqD
 
RFID and NFC Providing the last yards for IoT
RFID and NFC Providing the last yards for IoTRFID and NFC Providing the last yards for IoT
RFID and NFC Providing the last yards for IoTCPqD
 
Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015
Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015
Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015CPqD
 
Fiber Technology Trends for Next Generation Networks
Fiber Technology Trends for Next Generation NetworksFiber Technology Trends for Next Generation Networks
Fiber Technology Trends for Next Generation NetworksCPqD
 
Emerging Trends and Applications for Cost Effective ROADMs
Emerging Trends and Applications for Cost Effective ROADMsEmerging Trends and Applications for Cost Effective ROADMs
Emerging Trends and Applications for Cost Effective ROADMsCPqD
 

Plus de CPqD (20)

Control Plane for High Capacity Networks Public
Control Plane for High Capacity Networks PublicControl Plane for High Capacity Networks Public
Control Plane for High Capacity Networks Public
 
Brazilian Semiconductor Scenario and Opportuni3es
Brazilian Semiconductor Scenario and Opportuni3esBrazilian Semiconductor Scenario and Opportuni3es
Brazilian Semiconductor Scenario and Opportuni3es
 
Cognitive Technique for Software Defined Optical Network (SDON)
Cognitive Technique for Software Defined Optical Network (SDON)Cognitive Technique for Software Defined Optical Network (SDON)
Cognitive Technique for Software Defined Optical Network (SDON)
 
The Dawn of Industry 4.0
The Dawn of Industry 4.0The Dawn of Industry 4.0
The Dawn of Industry 4.0
 
Embedded Electronics for Telecom DSP
Embedded Electronics for Telecom DSPEmbedded Electronics for Telecom DSP
Embedded Electronics for Telecom DSP
 
Troubleshooting Coherent Optical Communication Systems
Troubleshooting Coherent Optical Communication SystemsTroubleshooting Coherent Optical Communication Systems
Troubleshooting Coherent Optical Communication Systems
 
OPTICAL COMMUNICATIONS APPLICATIONS
OPTICAL COMMUNICATIONS APPLICATIONSOPTICAL COMMUNICATIONS APPLICATIONS
OPTICAL COMMUNICATIONS APPLICATIONS
 
Integrated Photonics Advances in Optical Transmission: An Industry View
Integrated Photonics Advances in Optical Transmission: An Industry ViewIntegrated Photonics Advances in Optical Transmission: An Industry View
Integrated Photonics Advances in Optical Transmission: An Industry View
 
Novo modelo de apoio à inovação
Novo modelo de apoio à inovaçãoNovo modelo de apoio à inovação
Novo modelo de apoio à inovação
 
CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...
CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...
CPqD at Optical Communication Ecosystem - Last/Next 10 years and R&D&I opport...
 
Flexible Optical Transmission
Flexible Optical TransmissionFlexible Optical Transmission
Flexible Optical Transmission
 
High Capacity Optical Access Networks
High Capacity Optical Access NetworksHigh Capacity Optical Access Networks
High Capacity Optical Access Networks
 
BNDES: Instrumentos de Apoio à Inovação
BNDES: Instrumentos de Apoio à InovaçãoBNDES: Instrumentos de Apoio à Inovação
BNDES: Instrumentos de Apoio à Inovação
 
Câmara de Gestão M2M/IoT
Câmara de Gestão M2M/IoTCâmara de Gestão M2M/IoT
Câmara de Gestão M2M/IoT
 
Mesa Redonda: Fomento Governamental para o Setor
Mesa Redonda: Fomento Governamental para o SetorMesa Redonda: Fomento Governamental para o Setor
Mesa Redonda: Fomento Governamental para o Setor
 
Creating Business Value By Enabling the Internet of Things
Creating Business Value By Enabling the Internet of ThingsCreating Business Value By Enabling the Internet of Things
Creating Business Value By Enabling the Internet of Things
 
RFID and NFC Providing the last yards for IoT
RFID and NFC Providing the last yards for IoTRFID and NFC Providing the last yards for IoT
RFID and NFC Providing the last yards for IoT
 
Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015
Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015
Apresentação Paulo Curado (CPqD) - RFID Journal Live! Brasil 2015
 
Fiber Technology Trends for Next Generation Networks
Fiber Technology Trends for Next Generation NetworksFiber Technology Trends for Next Generation Networks
Fiber Technology Trends for Next Generation Networks
 
Emerging Trends and Applications for Cost Effective ROADMs
Emerging Trends and Applications for Cost Effective ROADMsEmerging Trends and Applications for Cost Effective ROADMs
Emerging Trends and Applications for Cost Effective ROADMs
 

Dernier

SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 

Dernier (20)

SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 

6 interference management in mimo multicell

  • 1. Interference Management in MIMO Multicell Systems with variable CSIT Giuseppe Abreu g.abreu@jacobs-university.de School of Engineering and Sciences Jacobs University Bremen November 7, 2013
  • 2. Evolution GSM Application Access Latency Switching Time 12 kbps 20 kbps 150 ms Few seconds 3G 1 Mbps 24 kbps 50 ms 500 ms 4G 10 Mbps 300 Mbps 10 ms 200 ms 5G 1 Gbps 10 Gbps 1 ms 10 ms
  • 3. Forecast Mobile traffic volume trend: 1000x in 10 years. Requirements
  • 4. Forecast Mobile traffic volume trend: 1000x in 10 years. The Internet of Things Requirements
  • 5. Forecast Mobile traffic volume trend: 1000x in 10 years. The Internet of Things The Internet of Things ! Requirements
  • 6. Forecast Mobile traffic volume trend: 1000x in 10 years. The Internet of Things The Internet of Things ! The Internet of Things !!! Requirements
  • 7. Forecast Mobile traffic volume trend: 1000x in 10 years. The Internet of Things The Internet of Things ! The Internet of Things !!! Requirements Improve energy efficiency
  • 8. Forecast Mobile traffic volume trend: 1000x in 10 years. The Internet of Things The Internet of Things ! The Internet of Things !!! Requirements Improve energy efficiency Improve QoS
  • 9. Forecast Mobile traffic volume trend: 1000x in 10 years. The Internet of Things The Internet of Things ! The Internet of Things !!! Requirements Improve energy efficiency Improve QoS Improve spectrum efficiency
  • 10. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) Spread-spectrum (WCDMA) LTE (OFDMA) ???
  • 11. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) LTE (OFDMA) ???
  • 12. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) ???
  • 13. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... ???
  • 14. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity”
  • 15. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices
  • 16. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas
  • 17. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference
  • 18. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying)
  • 19. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?)
  • 20. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?) Het-Nets/Cognitive Radio
  • 21. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?) Het-Nets/Cognitive Radio → enough (?)
  • 22. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?) Het-Nets/Cognitive Radio → enough (?) Interference Alignment
  • 23. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?) Het-Nets/Cognitive Radio → enough (?) Interference Alignment → scalability (?)
  • 24. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?) Het-Nets/Cognitive Radio → enough (?) Interference Alignment → scalability (?) Massive MIMO
  • 25. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?) Het-Nets/Cognitive Radio → enough (?) Interference Alignment → scalability (?) Massive MIMO → revolutionary, expensive (!)
  • 26. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?) Het-Nets/Cognitive Radio → enough (?) Interference Alignment → scalability (?) Massive MIMO → revolutionary, expensive (!) CoMP
  • 27. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?) Het-Nets/Cognitive Radio → enough (?) Interference Alignment → scalability (?) Massive MIMO → revolutionary, expensive (!) CoMP → evolutionary, flexible, huge background, maturing...
  • 28. Past and Future Drivers of cellular system improvement 2G: 3G: 4G: 5G: Digitalization (GSM/CDMA) → spectrum Spread-spectrum (WCDMA) → spectrum again... LTE (OFDMA) → and again... “granularity” → devices → antennas Bottlenecked by Interference Cooperation (Relaying) → security (?) Het-Nets/Cognitive Radio → enough (?) Interference Alignment → scalability (?) Massive MIMO → revolutionary, expensive (!) CoMP → evolutionary, flexible, huge background, maturing... Still lots to be done!!
  • 29. CoMP’s System Model B coordinating BSs K users per cell One BS per cell Each BS with multiple antennas User may have multiple antennas Embedded power control Desired Signal Interference Signal Inter-cell and intra-cell interference
  • 30. Now let’s get serious...
  • 31. Dissecting CoMP Energy Efficiency Example 1: Power minimization problem [Yu&Lan 2007] minimize α V {vk } subject to |vn |2 ≤ α pn SINRk ≥ γk , given hk K TX : xN ×1 = sk vk k=1 SINRk = RX : yk = hk · x + zk |hk · vk |2 2 2 j=k |hk · vk | + σ
  • 32. Dissecting CoMP Energy Efficiency Example 1: Power minimization problem [Yu&Lan 2007] minimize α V {vk } subject to |vn |2 ≤ α pn SINRk ≥ γk , given hk K TX : xN ×1 = sk vk k=1 SINRk = N= B b=1 RX : yk = hk · x + zk |hk · vk |2 2 2 j=k |hk · vk | + σ Ntb TX antennas → MISO
  • 33. Dissecting CoMP Energy Efficiency Example 1: Power minimization problem [Yu&Lan 2007] minimize α V {vk } subject to |vn |2 ≤ α pn SINRk ≥ γk , given hk K TX : xN ×1 = sk vk k=1 SINRk = B RX : yk = hk · x + zk |hk · vk |2 2 2 j=k |hk · vk | + σ N = b=1 Ntb TX antennas → MISO Fixed pn per-antenna target powers → how (?)
  • 34. Dissecting CoMP Energy Efficiency Example 1: Power minimization problem [Yu&Lan 2007] minimize α V {vk } subject to |vn |2 ≤ α pn SINRk ≥ γk , given hk K TX : xN ×1 = sk vk k=1 SINRk = B RX : yk = hk · x + zk |hk · vk |2 2 2 j=k |hk · vk | + σ N = b=1 Ntb TX antennas → MISO Fixed pn per-antenna target powers → how (?) Per user γk target SINRs → QoS balancing (?)
  • 35. Dissecting CoMP Energy Efficiency Example 1: Power minimization problem [Yu&Lan 2007] minimize α V {vk } subject to |vn |2 ≤ α pn SINRk ≥ γk , given hk K TX : xN ×1 = sk vk k=1 SINRk = B RX : yk = hk · x + zk |hk · vk |2 2 2 j=k |hk · vk | + σ N = b=1 Ntb TX antennas → MISO Fixed pn per-antenna target powers → how (?) Per user γk target SINRs → QoS balancing (?) Perfectly known hk for all users → overhead (!)
  • 36. Dissecting CoMP Energy Efficiency Example 2: Power minimization problem [Song et al. 2007] K minimize p>0,V,U wk p k k=1 subject to SINRk ≥ γk K TX : xN ×1 = given √ pk s k v k k=1 SINRk = Hkj and wk RX : yk = uH · Hkk · x + zk k pk |uH · Hkk · vk |2 k H 2 2 j=k pj |uk · Hkj · vk | + σ
  • 37. Dissecting CoMP Energy Efficiency Example 2: Power minimization problem [Song et al. 2007] K minimize p>0,V,U wk p k k=1 subject to SINRk ≥ γk K TX : xN ×1 = given √ pk s k v k k=1 SINRk = N= B b=1 Hkj and wk RX : yk = uH · Hkk · x + zk k pk |uH · Hkk · vk |2 k H 2 2 j=k pj |uk · Hkj · vk | + σ Ntb TX antennas → MIMO
  • 38. Dissecting CoMP Energy Efficiency Example 2: Power minimization problem [Song et al. 2007] K minimize p>0,V,U wk p k k=1 subject to SINRk ≥ γk K TX : xN ×1 = given √ pk s k v k k=1 SINRk = B Hkj and wk RX : yk = uH · Hkk · x + zk k pk |uH · Hkk · vk |2 k H 2 2 j=k pj |uk · Hkj · vk | + σ N = b=1 Ntb TX antennas → MIMO Fixed pn per-antenna target powers → optimized per user pk Known weight per user wk → how (?)
  • 39. Dissecting CoMP Energy Efficiency Example 2: Power minimization problem [Song et al. 2007] K minimize p>0,V,U wk p k k=1 subject to SINRk ≥ γk K TX : xN ×1 = given √ pk s k v k k=1 SINRk = B Hkj and wk RX : yk = uH · Hkk · x + zk k pk |uH · Hkk · vk |2 k H 2 2 j=k pj |uk · Hkj · vk | + σ N = b=1 Ntb TX antennas → MIMO Fixed pn per-antenna target powers → optimized per user pk Known weight per user wk → how (?) Per user γk target SINRs → QoS balancing (?)
  • 40. Dissecting CoMP Energy Efficiency Example 2: Power minimization problem [Song et al. 2007] K minimize p>0,V,U wk p k k=1 subject to SINRk ≥ γk K TX : xN ×1 = given √ pk s k v k k=1 SINRk = B Hkj and wk RX : yk = uH · Hkk · x + zk k pk |uH · Hkk · vk |2 k H 2 2 j=k pj |uk · Hkj · vk | + σ N = b=1 Ntb TX antennas → MIMO Fixed pn per-antenna target powers → optimized per user pk Known weight per user wk → how (?) Per user γk target SINRs → QoS balancing (?) Perfectly known Hkj for all users → overhead (!)
  • 41. Dissecting CoMP Quality of Service Example 3: Min-max SINR problem [Huang et al. 2011] maximize p>0,V subject to min SINRk ∀k p ≤P vk = 1 given K TX : xN ×1 = √ k=1 SINRk = hk p k s k vk RX : yk = hk · x + zk pk |hk · vk |2 2 2 j=k pj |hj · vk | + σ
  • 42. Dissecting CoMP Quality of Service Example 3: Min-max SINR problem [Huang et al. 2011] maximize p>0,V subject to min SINRk ∀k p ≤P vk = 1 given K TX : xN ×1 = √ k=1 SINRk = N= B b=1 hk p k s k vk RX : yk = hk · x + zk pk |hk · vk |2 2 2 j=k pj |hj · vk | + σ Ntb TX antennas → MISO
  • 43. Dissecting CoMP Quality of Service Example 3: Min-max SINR problem [Huang et al. 2011] maximize p>0,V subject to min SINRk ∀k p ≤P vk = 1 given K TX : xN ×1 = √ k=1 SINRk = B hk p k s k vk RX : yk = hk · x + zk pk |hk · vk |2 2 2 j=k pj |hj · vk | + σ N = b=1 Ntb TX antennas → MISO Fixed pn per-antenna target powers → optimized per user pk
  • 44. Dissecting CoMP Quality of Service Example 3: Min-max SINR problem [Huang et al. 2011] maximize p>0,V subject to min SINRk ∀k p ≤P vk = 1 given K TX : xN ×1 = √ k=1 SINRk = B hk p k s k vk RX : yk = hk · x + zk pk |hk · vk |2 2 2 j=k pj |hj · vk | + σ N = b=1 Ntb TX antennas → MISO Fixed pn per-antenna target powers → optimized per user pk Per user γk target SINRs → minimum QoS
  • 45. Dissecting CoMP Quality of Service Example 3: Min-max SINR problem [Huang et al. 2011] maximize p>0,V subject to min SINRk ∀k p ≤P vk = 1 given K TX : xN ×1 = √ k=1 SINRk = B hk p k s k vk RX : yk = hk · x + zk pk |hk · vk |2 2 2 j=k pj |hj · vk | + σ N = b=1 Ntb TX antennas → MISO Fixed pn per-antenna target powers → optimized per user pk Per user γk target SINRs → minimum QoS Perfectly known hk for all → overhead (!)
  • 46. Dissecting CoMP Quality of Service Example 4: Min-max SINR problem [Cai et al. 2011] maximize p>0,V min ∀k SINRk αk subject to w · p ≤ P , given K TX : xN ×1 = ∈ L |L| < K Hkj , wk and α √ pk s k v k k=1 SINRk = RX : yk = uH · Hkk · x + zk k pk |uH · Hkk · vk |2 k pj |uH · Hkj · vk |2 + σ 2 j=k k
  • 47. Dissecting CoMP Quality of Service Example 4: Min-max SINR problem [Cai et al. 2011] maximize p>0,V min ∀k SINRk αk subject to w · p ≤ P , given K TX : xN ×1 = Hkj , wk and α √ pk s k v k k=1 SINRk = N= B b=1 ∈ L |L| < K RX : yk = uH · Hkk · x + zk k pk |uH · Hkk · vk |2 k pj |uH · Hkj · vk |2 + σ 2 j=k k Ntb TX antennas → MIMO
  • 48. Dissecting CoMP Quality of Service Example 4: Min-max SINR problem [Cai et al. 2011] maximize p>0,V min ∀k SINRk αk subject to w · p ≤ P , given K TX : xN ×1 = Hkj , wk and α √ pk s k v k k=1 SINRk = B ∈ L |L| < K RX : yk = uH · Hkk · x + zk k pk |uH · Hkk · vk |2 k pj |uH · Hkj · vk |2 + σ 2 j=k k N = b=1 Ntb TX antennas → MIMO Fixed pn per-antenna target powers → optimized per user pk Known weight vectors per user wk and scores αk → how (?)
  • 49. Dissecting CoMP Quality of Service Example 4: Min-max SINR problem [Cai et al. 2011] maximize p>0,V min ∀k SINRk αk subject to w · p ≤ P , given K TX : xN ×1 = Hkj , wk and α √ pk s k v k k=1 SINRk = B ∈ L |L| < K RX : yk = uH · Hkk · x + zk k pk |uH · Hkk · vk |2 k pj |uH · Hkj · vk |2 + σ 2 j=k k N = b=1 Ntb TX antennas → MIMO Fixed pn per-antenna target powers → optimized per user pk Known weight vectors per user wk and scores αk → how (?) Perfectly known Hkj for all users → overhead (!)
  • 50. Dissecting CoMP Spectral Efficiency Example 5: Sum-rate maximization problem [Tran et al. 2012] K maximize t,V tk k=1 1/αk subject to SINRk ≥ tk K vk k=1 given 2 −1 ≤P hk , P and α αk log2 (1 + SINRk ) −→ (1 + SINRk )αk −→ tk
  • 51. Dissecting CoMP Spectral Efficiency Example 5: Sum-rate maximization problem [Tran et al. 2012] K maximize t,V tk k=1 1/αk subject to SINRk ≥ tk K vk k=1 given 2 −1 ≤P hk , P and α αk log2 (1 + SINRk ) −→ (1 + SINRk )αk −→ tk N= B b=1 Ntb TX antennas → MISO
  • 52. Dissecting CoMP Spectral Efficiency Example 5: Sum-rate maximization problem [Tran et al. 2012] K maximize t,V tk k=1 1/αk subject to SINRk ≥ tk K vk k=1 given 2 −1 ≤P hk , P and α αk log2 (1 + SINRk ) −→ (1 + SINRk )αk −→ tk B N = b=1 Ntb TX antennas → MISO Fixed pn per-antenna target powers → optimized total pk Known scores αk → how (?)
  • 53. Dissecting CoMP Spectral Efficiency Example 5: Sum-rate maximization problem [Tran et al. 2012] K maximize t,V tk k=1 1/αk subject to SINRk ≥ tk K vk k=1 given 2 −1 ≤P hk , P and α αk log2 (1 + SINRk ) −→ (1 + SINRk )αk −→ tk B N = b=1 Ntb TX antennas → MISO Fixed pn per-antenna target powers → optimized total pk Known scores αk → how (?) Perfectly known hk for all users → overhead (!)
  • 54. Dissecting CoMP Spectral Efficiency Example 6: Sum-rate maximization problem [Park et al. 2013] K maximize V {Vk } subject to k=1 Hjk Vk Vk given 2 wk log2 |INr + (σk I + Φk )−1 Hkk Vk Vk HH | kk 2 2 2 ≤ αjk σj ≤ pk Hjk , w, p and α K H Hkj Vj Vj HH kj Φk = k=1
  • 55. Dissecting CoMP Spectral Efficiency Example 6: Sum-rate maximization problem [Park et al. 2013] K maximize V {Vk } subject to k=1 Hjk Vk Vk given 2 wk log2 |INr + (σk I + Φk )−1 Hkk Vk Vk HH | kk 2 2 2 ≤ αjk σj ≤ pk Hjk , w, p and α K H Hkj Vj Vj HH kj Φk = k=1 N= B b=1 Ntb TX antennas → MIMO
  • 56. Dissecting CoMP Spectral Efficiency Example 6: Sum-rate maximization problem [Park et al. 2013] K maximize V {Vk } subject to k=1 Hjk Vk Vk given 2 wk log2 |INr + (σk I + Φk )−1 Hkk Vk Vk HH | kk 2 2 2 ≤ αjk σj ≤ pk Hjk , w, p and α K H Hkj Vj Vj HH kj Φk = k=1 B b=1 N= Ntb TX antennas → MIMO Fixed pn per-antenna target powers → optimized per user pk Known weights w, target powers pk and scores αk → how (?)
  • 57. Dissecting CoMP Spectral Efficiency Example 6: Sum-rate maximization problem [Park et al. 2013] K maximize V {Vk } subject to k=1 Hjk Vk Vk given 2 wk log2 |INr + (σk I + Φk )−1 Hkk Vk Vk HH | kk 2 2 2 ≤ αjk σj ≤ pk Hjk , w, p and α K H Hkj Vj Vj HH kj Φk = k=1 B b=1 N= Ntb TX antennas → MIMO Fixed pn per-antenna target powers → optimized per user pk Known weights w, target powers pk and scores αk → how (?) Perfectly known Hkj for all users → overhead (!)
  • 58. tion of single beamforming vector) to address the practical issues of decentralized implementation based on local channel information. Utilization of downlink-uplink duality to formulate noise covariance in uplink, GP to characterize downlink power, and an alternating optimization problem in [59], authors solved P3 with per BS power for MIMO systems. Considering conditional eigenvalue problem with affine constraint and non-linear Perron-Frobenius theory, authors in [52] optimized the physical layer link rate functions. Also recently, in [57], a relaxed zero forcing method for MISO and MIMO interference channels is proposed for the rate control problems with centralized and distributed heuristic approach. Comprehensive Review in a Nutshell Table 1: Literature Classification of Works on CoMP MISO † MIMO P1 Instantaneous Perfect CSIT Instantaneous Imperfect CSIT Statistical CSIT [26] [20] [21] [22] [23] [24] [25] [43] [44] [45] [46] [47] [42] [60] Covariance Information [27] [28] [29] [30] [89] [31] [32] [33] [61] [87] P2 P3 [34] [35] [36] [37] [38] [39] [40] [41] [42] [48] [49] [65] [51] [52] [53] [54] [55] [56] [57] [77] [82] [58] [59] [57] [78] [79] † [81] Works on the upper diagonal portion of each cell are on MISO, while those on the lower diagonal are on MIMO. Table 1 summarizes the the key-problems in the literatures, to the best of our knowledge, we have discussed in Section (2.1.1). We have distinguished the key problems into MISO vs. MIMO with different channel variations available at the transmitter. Despite the different tools and analytics present in the perfect channel knowledge at the transmitter side, we have seen a significant need of work to be done in the the multiantenna receiver case. Also, as we progress from left to right of the table, the available literatures diminishes in number. Within the cited literatures, we have pointed few key-holes for the key-problems which we state
  • 59. OK, so what if CSIT is not perfect ?
  • 60. Power Minimization Again From Perfect to Imperfect CSIT K maximize V {vk } subject to vk 2 k=1 SINRk N i=1, i=k given {γ1 , · · · , γK } |hH vk |2 kk |hH vi |2 ki + σ2 ≥ γk
  • 61. Power Minimization Again From Perfect to Imperfect CSIT K maximize V {vk } subject to vk 2 k=1 SINRk N i=1, i=k given |hH vk |2 kk |hH vi |2 ki {γ1 , · · · , γK } ˆ hki = hki + ehki + σ2 ≥ γk
  • 62. Power Minimization Again From Perfect to Imperfect CSIT K maximize V {vk } subject to vk 2 k=1 SINRk N i=1, i=k given |hH vk |2 kk |hH vi |2 ki + σ2 ≥ γk {γ1 , · · · , γK } ˆ hki = hki + ehki Pr (SINRk ≥ γk ) = Pr |hH vk |2 kk N i=1,i=k |hH vi |2 + σ 2 ki ≥ γk ≥ 1 − ρk
  • 63. Power Minimization Again Robust Formulation K maximize V {vk } vk 2 k=1 subject to given Pr |hH vk |2 kk N i=1,i=k |hH vi |2 + σ 2 ki ≥ γk {γ1 , · · · , γK } and {ρ1 , · · · , ρK } ˆ hki = hki + ehki ≥ 1 − ρk
  • 64. Power Minimization Again Robust Formulation K maximize V {vk } vk 2 k=1 subject to given Pr |hH vk |2 kk N i=1,i=k |hH vi |2 + σ 2 ki ≥ γk {γ1 , · · · , γK } and {ρ1 , · · · , ρK } ˆ hki = hki + ehki ehki ∼ CN (0, Qki ) ≥ 1 − ρk
  • 65. Power Minimization Again Robust Formulation K maximize V {vk } vk 2 k=1 subject to given Pr |hH vk |2 kk N i=1,i=k |hH vi |2 + σ 2 ki ≥ γk ≥ 1 − ρk {γ1 , · · · , γK } and {ρ1 , · · · , ρK } ˆ hki = hki + ehki 2 ˆ |hH vi |2 ∼ χ2 (δki ; σki ) 2 ki ehki ∼ CN (0, Qki ) ˆ δki ˆ |hH vi |2 ki 2 H σki = vi Qki vi
  • 66. Statistical SINR Constraint Towards a Closed-form Pr SINRk ≥ γk
  • 67. Statistical SINR Constraint Towards a Closed-form Pr |hH vk |2 kk N i=1,i=k |hH vi |2 + σ 2 ki ≥ γk
  • 68. Statistical SINR Constraint Towards a Closed-form  N Pr |hH vk |2 ≥ γk kk i=1,i=k  |hH vi |2 + γk · σ 2  ki
  • 69. Statistical SINR Constraint Towards a Closed-form  Pr |hH vk |2 ≥ γk kk Xkk  N i=1,i=k |hH vk |2 kk HQ v vk kk k |hH vi |2 + γk · σ 2  ki Xki 2 H σki = vi Qki vi |hH vi |2 ki HQ v vi ki i
  • 70. Statistical SINR Constraint Towards a Closed-form  2 Pr σkk Xkk − γk Xkk  N i=1,i=k |hH vk |2 kk HQ v vk kk k 2 σii Xki ≥ γk · σ 2  Xki 2 H σki = vi Qki vi |hH vi |2 ki HQ v vi ki i
  • 71. Statistical SINR Constraint Towards a Closed-form ∞ 0 N ∞ ... 0 Pr Xkk ≥ ckk ckk = [Kandukuri]  fXki (ti ) dti . . . dtN i=1,i=k γk  2 σ + 2 σkk N i=1,i=k  2 σki ti  S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” IEEE Transactions on Wireless Communications, vol. 1, no. 1, pp. 46–55, Jan 2002.
  • 72. Statistical SINR Constraint Towards a Closed-form ∞ 0 N ∞ ... 0 Pr Xkk ≥ ckk ckk =  fXki (ti ) dti . . . dtN i=1,i=k γk  2 σ + 2 σkk N i=1,i=k  2 σki ti  ckk is non-central χ2 [Kandukuri] S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” IEEE Transactions on Wireless Communications, vol. 1, no. 1, pp. 46–55, Jan 2002.
  • 73. Model of Xkk Non-central and Central Theorem (Cox&Reid): ˜ Let Z ∼ χ2 (δ; σ 2 ) and Z ∼ χ2 (0; σ 2 ), with δ/n small. Then, n n ˜ Pr (Z > γ) ≈ Pr Z > γ 1+ δ n [Cox&Reid] D. R. Cox and N. Reid, “Approximations to noncentral distributions,” The Canadian Journal of Statistics / La Revue Canadienne de Statistique, vol. 15, no. 2, pp. 105–114, 1987.
  • 74. Model of Xkk Non-central and Central Comparison of the CDF of Non-central and Central χ2 Distribution 1 δ = 0.1 Cumulative Distribution Function: Pr(Z ≥ δ) 0.9 0.8 0.7 δ=2 0.6 0.5 0.4 0.3 0.2 0.1 0 0 Non-central χ2 Central χ2 1 2 3 4 5 6 7 8 9 10 Non-centrality Parameter: δ 11 12 13 14 15
  • 75. Statistical SINR Constraint Towards a Closed-form ∞ Pr (SINRk ≥ γk ) ≈ ∞ ... 0 0 ˜ Pr Xkk ≥ N ckk δ 1+ kk 2 fXki (ti ) dti . . . dtN i=1,i=k
  • 76. Statistical SINR Constraint Towards a Closed-form ∞ Pr (SINRk ≥ γk ) ≈ ∞ ... 0 ˜ Xkk ∼ χ2 2 0 N ˜ Pr Xkk ≥ =⇒ ckk δ 1+ kk 2 fXki (ti ) dti . . . dtN i=1,i=k ˜ Pr(Xkk ≥ x) = e−x/2
  • 77. Statistical SINR Constraint Towards a Closed-form ∞ Pr (SINRk ≥ γk ) ≈ ∞ ... 0 ˜ Xkk ∼ χ2 2 0 exp − =⇒ ckk 1+ δkk 2 N fXki (ti ) dti . . . dtN i=1,i=k ˜ Pr(Xkk ≥ x) = e−x/2
  • 78. Statistical SINR Constraint Towards a Closed-form ∞ Pr (SINRk ≥ γk ) ≈ ∞ ... 0 − =e 0 exp − γk σ 2 δ σ 2 (1+ kk ) 2 kk δkk 2 1+ N i=1, i=k αki = ckk N fXki (ti ) dti . . . dtN i=1,i=k ∞ 0 exp (−αki ti )fXki (ti ) dti 2 γk σki 2 σkk (1 + δkk 2 )
  • 79. Statistical SINR Constraint Towards a Closed-form ∞ Pr (SINRk ≥ γk ) ≈ ∞ ... 0 − =e 0 exp − γk σ 2 δ σ 2 (1+ kk ) 2 kk =e γk σ 2 2 (1+ δkk ) σ 2 kk δkk 2 1+ N 0 exp (−αki ti )fXki (ti ) dti N E[e−αki ti ] i=1, i=k αki = fXki (ti ) dti . . . dtN i=1,i=k ∞ i=1, i=k − N ckk 2 γk σki 2 σkk (1 + δkk 2 )
  • 80. Statistical SINR Constraint Towards a Closed-form − Pr (SINRk ≥ γk ) ≈ e γk σ 2 2 (1+ δkk ) σ 2 kk N i=1,i=k E[e−αki ti ]
  • 81. Statistical SINR Constraint Towards a Closed-form − Pr (SINRk ≥ γk ) ≈ e Z∼ χ2 (δ) 2 γk σ 2 2 (1+ δkk ) σ 2 kk N E[e−αki ti ] i=1,i=k =⇒ sZ E[e ] = exp sδ 1−2s 1 − 2s
  • 82. Statistical SINR Constraint Towards a Closed-form − Pr (SINRk ≥ γk ) ≈ e =e Z∼ γk σ 2 2 (1+ δkk ) σ 2 kk N E[e−αki ti ] i=1,i=k γk σ 2 − δ σ 2 (1+ kk ) 2 kk χ2 (δ) 2 =⇒ exp N i=1,i=k N i=1,i=k (1 sZ E[e ] = exp αki δ − (1+2αki ) ki + 2αki ) sδ 1−2s 1 − 2s
  • 83. Statistical SINR Constraint Towards a Closed-form − Pr (SINRk ≥ γk ) ≈ e =e γk σ 2 2 (1+ δkk ) σ 2 kk N E[e−αki ti ] i=1,i=k γk σ 2 − δ σ 2 (1+ kk ) 2 kk − =e γk σ 2 δ σ 2 (1+ kk ) 2 kk N i=1,i=k exp N i=1,i=k (1 N Z∼ =⇒ sZ + 2αki ) exp − i=1,i=k χ2 (δ) 2 αki δ − (1+2αki ) ki E[e ] = 2 σkk (1+ 1+ exp γk pki δkk 2 )+2γk σki 2 2 γk σki 2 (1+δ /2) σkk kk sδ 1−2s 1 − 2s
  • 84. Statistical SINR Constraint Towards a Closed-form Pr (SINRk ≥ γk ) ≈e − γk σ 2 vH Akk vk k N i=1, i=k exp ˆ −γk |hH vi |2 ki vH Akk vk +γk vH Qki vi i k γ vH Q v 1+ kHi ki i v Akk vk k
  • 85. Statistical SINR Constraint Towards a Closed-form Pr (SINRk ≥ γk ) ≈e − γk σ 2 vH Akk vk k N i=1, i=k Akk exp ˆ −γk |hH vi |2 ki vH Akk vk +γk vH Qki vi i k γ vH Q v 1+ kHi ki i v Akk vk k ˆ ˆ Qkk + hkk hH kk
  • 86. Statistical SINR Constraint Towards a Closed-form Pr (SINRk ≥ γk ) ≈e − γk σ 2 vH Akk vk k N i=1, i=k Akk exp ˆ −γk |hH vi |2 ki vH Akk vk +γk vH Qki vi i k γ vH Q v 1+ kHi ki i v Akk vk k ˆ ˆ Qkk + hkk hH kk ≥ 1 − ρk
  • 87. Statistical SINR Constraint Towards a Closed-form  γ σ2 − Hk v Akk vk k  log e N i=1, i=k exp ˆ −γk |hH vi |2 ki vH Akk vk +γk vH Qki vi i k γ vH Q v 1+ kHi ki i v Akk vk k Akk ˆ ˆ Qkk + hkk hH kk    ≥ log(1 − ρk )
  • 88. Statistical SINR Constraint Towards a Closed-form ˆ N N γk |hH vi |2 γk vH Qki vi γk σ 2 ki ln 1+ Hi + + H H H vk Akk vk i=1, vk Akk vk +γk vi Qki vi i=1, vk Akk vk i=k i=k Akk ˆ ˆ Qkk + hkk hH kk ≤− ln(1−ρk )
  • 89. Statistical SINR Constraint Towards a Closed-form ˆ N N γk |hH vi |2 γk vH Qki vi γk σ 2 ki ln 1+ Hi + + H H H vk Akk vk i=1, vk Akk vk +γk vi Qki vi i=1, vk Akk vk i=k i=k Akk ˆ ˆ Qkk + hkk hH kk N i=1 N ln(1 + xi ) ≤ xi i=1 ≤− ln(1−ρk )
  • 90. Statistical SINR Constraint Towards a Closed-form γk σ 2 H vk Akk vk N + i=1, i=k ˆ γk |hH vi |2 ki H H vk Akk vk +γk vi Qki vi Akk + ˆ ˆ Qkk + hkk hH kk N i=1 H γk vi Qki vi H vk Akk vk N ln(1 + xi ) ≤ xi i=1 ≤ − ln(1 − ρk )
  • 91. Statistical SINR Constraint Towards a Closed-form γk σ 2 H vk Akk vk N + i=1, i=k ˆ γk |hH vi |2 ki H H vk Akk vk +γk vi Qki vi Akk + ˆ ˆ Qkk + hkk hH kk N i=1 H γk vi Qki vi H vk Akk vk N ln(1 + xi ) ≤ xi i=1 ≤ − ln(1 − ρk )
  • 92. Statistical SINR Constraint Towards a Closed-form γk σ 2 H vk Akk vk N + i=1, i=k ˆ γk |hH vi |2 ki H H vk Akk vk +γk vi Qki vi Akk ˆ ˆ Qkk + hkk hH kk N i=1 ≤ − ln(1 − ρk ) N ln(1 + xi ) ≤ xi i=1
  • 93. Statistical SINR Constraint Towards a Closed-form γk σ 2 H vk Akk vk N + i=1, i=k ˆ γk |hH vi |2 ki H H vk Akk vk +γk vi Qki vi Akk ˆ ˆ Qkk + hkk hH kk N i=1 ≤ − ln(1 − ρk ) N ln(1 + xi ) ≤ xi i=1
  • 94. Statistical SINR Constraint Towards a Closed-form σ2 + N i=1,i=k H ˆ |hH vi |2 + vi Qki vi ki H vk Akk vk ≤ − ln(1 − ρk ) γk
  • 95. Statistical SINR Constraint Towards a Closed-form H vk Akk vk σ2 + N i=1,i=k H ˆ |hH vi |2 + vi Qki vi ki ≥ −γk ln(1 − ρk )
  • 96. Statistical SINR Constraint Towards a Closed-form H vk Akk vk σ2 N + i=1,i=k H ˆ |hH vi |2 + vi Qki vi ki ≥ −γk ln(1 − ρk ) ηk
  • 97. Power Minimization Again Robust Formulation with Closed-form Constraint K maximize V {vk } subject to vk 2 k=1 Pr |hH vk |2 kk N i=1,i=k |hH vi |2 + σ 2 ki ≥ γk given {γ1 , · · · , γK } and {ρ1 , · · · , ρK } given hki ≥ 1 − ρk
  • 98. Power Minimization Again Robust Formulation with Closed-form Constraint K maximize V {vk } subject to vk 2 k=1 σ2 + N H ˆH 2 i=1,i=k |hki vi | +vi Qki vi HA v vk kk k ≤ − ln(1 − ρk ) γk given {γ1 , · · · , γK } and {ρ1 , · · · , ρK } given ˆ hki and Qki
  • 99. Now, how do we solve this ?
  • 101. Semi-Definite Programming K minimize V {vk } vk 2 k=1 N subject to |hH vk |2 − γk kk given hk i=1, i=k |hH vi |2 ≥ γk σ 2 ki
  • 102. Semi-Definite Programming K minimize V {vk } vk 2 k=1 N subject to |hH vk |2 − γk kk given Vk i=1, i=k |hH vi |2 ≥ γk σ 2 ki hk H vk vk (Positive Semi-Definite Matrix)
  • 103. Semi-Definite Programming K minimize {Vk } 0 Tr(Vk ) k=1 N subject to |hH vk |2 − γk kk given Vk i=1, i=k |hH vi |2 ≥ γk σ 2 ki hk H vk vk (Positive Semi-Definite Matrix)
  • 104. Semi-Definite Programming K minimize {Vk } 0 Tr(Vk ) k=1 N subject to |hH vk |2 − γk kk given i=1, i=k |hH vi |2 ≥ γk σ 2 ki hk Vk H vk vk (Positive Semi-Definite Matrix) Hi hki hH ki (Positive Semi-Definite Matrix)
  • 105. Semi-Definite Programming K minimize {Vk } 0 Tr(Vk ) k=1 N subject to Tr(Vk Hk ) − γk given Hk i=1, i=k Tr(Vi Hi ) ≥ γk σ 2 0 Vk H vk vk (Positive Semi-Definite Matrix) Hi hki hH ki (Positive Semi-Definite Matrix)
  • 106. Power Minimization with Imperfect CSIT SDP Formulation K minimize V {vk } subject to vk 2 k=1 σ2 + H vk Akk vk N H ˆH 2 i=1,i=k |hki vi | +vi Qki vi ≥ γk − ln(1 − ρk ) 1 ηk
  • 107. Power Minimization with Imperfect CSIT SDP Formulation K minimize {Vk } 0 subject to Tr(Vk ) k=1 σ2 + H vk Akk vk N H ˆH 2 i=1,i=k |hki vi | +vi Qki vi ≥ γk − ln(1 − ρk ) 1 ηk
  • 108. Power Minimization with Imperfect CSIT SDP Formulation K minimize {Vk } 0 Tr(Vk ) k=1 N subject to H ηk vk Akk vk ≥ σ 2 + i=1,i=k H ˆ |hH vi |2 + vi Qki vi ki
  • 109. Power Minimization with Imperfect CSIT SDP Formulation K minimize {Vk } 0 Tr(Vk ) k=1 N ˆ ˆ subject to Tr Vk (hkk hH + Qkk ) ≥ σ 2 + kk ˆ ˆ Tr Vi (hki hH + Qki ) ki i=1,i=k
  • 110. Second-Order Cone Programming K minimize V {vk } vk 2 k=1 N subject to |hH vk |2 − γk kk given hk i=1, i=k |hH vi |2 ≥ γk σ 2 ki
  • 111. Second-Order Cone Programming K minimize V {vk } vk 2 k=1 N subject to |hH vk |2 − γk kk given V i=1, i=k |hH vi |2 ≥ γk σ 2 ki hk [v1 , · · · , vK ] (Beamforming Matrix)
  • 112. Second-Order Cone Programming minimize V Tr(VH · V) N subject to |hH vk |2 − γk kk given V i=1, i=k |hH vi |2 ≥ γk σ 2 ki hk [v1 , · · · , vK ] (Beamforming Matrix)
  • 113. Second-Order Cone Programming minimize V subject to given V Tr(VH · V) 1 1+ γk |hH vk |2 kk hH V kk ≥ σ2 2 hk [v1 , · · · , vK ] (Beamforming Matrix)
  • 114. Second-Order Cone Programming minimize α V subject to given V 1 1+ γk |hH vk |2 kk hH V kk ≥ σ2 2 Tr(VH · V) ≤ α hk [v1 , · · · , vK ] (Beamforming Matrix)
  • 115. Power Minimization with Imperfect CSIT SOCP Formulation minimize α V subject to hH V kk hH U ki σ2 ˆ ηk |hH vk |2 ≥ kk 2 Tr(VH · V) ≤ α ˆ hk and Qki given V [v1 , · · · , vK ] Uk (Beamforming Matrix) [uk1 , · · · , ukK ] uki ˆ hH Qki ki
  • 117. CoMP with Imperfect CSIT Higher Channel Estimation Error Performance of the Proposed Scheme with Low Ch. Estimation Error 30 SDP method SOCP method Perfect CSI 25 Minimum Power Required in dB 20 15 ρ = 0.05 10 ρ = 0.1 5 ρ = 0.3 0 −5 −10 −15 −20 0 2 4 6 Target SINR in dB 8 10 12
  • 118. CoMP with CSIT Higher Channel Estimation Error Performance of the Proposed Scheme with High Ch. Estimation Error 30 15 wi (in dB) SDP Method SDP Method Perfect CSIT 20 2 25 Minimum Required Power: 10 ρ = 0.05 ρ = 0.1 5 0 ρ = 0.3 −5 −10 −15 −20 −4 −2 0 2 4 Target SINR: γ (in dB) 6 8 10