SlideShare une entreprise Scribd logo
1  sur  61
Télécharger pour lire hors ligne
! Antígenos y anticuerpos
Antígenos y epitopos
Estructura de los anticuerpos
Unión antígeno-anticuerpo
Efectos mediados por anticuerpos
Clases de anticuerpos y efectos biológicos
Determinantes antigénicos de las Igs
La generación de diversidad de los Acs
BCR
La superfamilia de las Igs
Immunogenicidad y antigenicidad
2
Caso del hápteno: por si solo no inmunogénico, pero si con
un carrier
• Antígeno: es toda sustancia que reacciona con los elementos de
defensa de la respuesta inmune, es lo que “detectamos” en el
laboratorio con los anticuerpos y las células inmunes.
• Excepciones
•No toda sustancia es inmunogénica.
•El antígeno no es siempre la substancia inductora de la respuesta
3
antigens by receptors of adaptive immunity, which can lead
to autoimmune disorders. Like antibodies and T-cell recep-
tors, pattern-recognition receptors are proteins. However,
the genes that encode PRRs are present in the germline of the
organism. In contrast, the genes that encode the enormous
diversity of antibodies and TCRs are not present in the
germline. They are generated by an extraordinary process of
ancient—toll-like receptors mediate the recognition and
generation of defensive responses to pathogens in organisms
as widely separated in evolutionary history as humans and
flies. Typically, signals transduced through the TLRs cause
transcriptional activation and the synthesis and secretion of
cytokines, which promote inflammatory responses that
bring macrophages and neutrophils to sites of inflammation.
70 P A R T I I Generation of B-Cell and T-Cell Responses
TABLE 3-6 Reactivity of antisera with various haptens
REACTIVITY WITH
Antiserum against Aminobenzene (aniline) o-Aminobenzoic acid m-Aminobenzoic acid p-Aminobenzoic acid
Aminobenzene ϩ 0 0 0
o-Aminobenzoic acid 0 ϩ 0 0
m-Aminobenzoic acid 0 0 ϩ 0
p-Aminobenzoic acid 0 0 0 +
KEY: 0 ϭ no reactivity; ϩ ϭ strong reactivity
SOURCE: Based on K. Landsteiner, 1962, The Specificity of Serologic Reactions, Dover Press. Modified by J. Klein, 1982,
Immunology: The Science of Self-Nonself Discrimination, John Wiley.
NH2 NH2
COOH
NH2
COOH
NH2
COOH
8536d_ch03_057-075 8/7/02 9:18 AM Page 70 mac79 Mac 79:45_BW:Goldsby et al. / Immunology 5e:
Estructura básica de las Ig
4
CH on the heavy chain.Antibodies are gl
exceptions, the sites of attachment for c
stricted to the constant region. We do n
stand the role played by glycosylation
probably increases the solubility of the
priate glycosylation, or its absence, affe
antibodies are cleared from the serum, a
ciency of interaction between antibody
system and between antibodies and Fc re
Chemical and Enzymatic Meth
Basic Antibody Structure
Our knowledge of basic antibody struct
a variety of experimental observations. W
fraction of serum is separated into high-
weight fractions, antibodies of around
ignated as immunoglobulin G (IgG) ar
molecular-weight fraction. In a key exp
tion of IgG with the enzyme papain p
ments, two of which were identical fragm
was quite different (Figure 4-3). The tw
Antibodies: Structure and Function C
βα
γ
Globulins
Albumin
Absorbance
Migration distance
+ −
FIGURE 4-1 Experimental demonstration that most antibodies are
in the ␥-globulin fraction of serum proteins. After rabbits were im-
munized with ovalbumin (OVA), their antisera were pooled and elec-
trophoresed, which separated the serum proteins according to their
electric charge and mass. The blue line shows the electrophoretic
pattern of untreated antiserum. The black line shows the pattern of
8536d_ch04_076-104 9/6/02 9:02 PM Page 77 mac85 Mac 85:365_smm:Goldsby et al. / Immunology 5e:
Estructura elemental Igs
✦ Bivalentes
✦ Fc y Fab
✦ Dos cadenas pesadas y
dos ligeras
✦ Dominio básico de Ig de
unos 110
✦ Puentes disulfuro
✦ Bisagra
5
polypeptides of molecular weight 50,000 or more. Like the
antibody molecules they constitute, H and L chains are also
called immunoglobulins. Each light chain is bound to a
heavy chain by a disulfide bond, and by such noncovalent in-
teractions as salt linkages, hydrogen bonds, and hydrophobic
bonds, to form a heterodimer (H-L). Similar noncovalent in-
teractions and disulfide bridges link the two identical heavy
and light (H-L) chain combinations to each other to form the
basic four-chain (H-L)2 antibody structure, a dimer of
dimers. As we shall see, the exact number and precise posi-
tions of these interchain disulfide bonds differs among anti-
body classes and subclasses.
The first 110 or so amino acids of the amino-terminal re-
gion of a light or heavy chain varies greatly among antibodies
of different specificity. These segments of highly variable se-
quence are called V regions:VL in light chains andVH in heavy.
All of the differences in specificity displayed by different anti-
a variety of experimental observations. When the ␥-globulin
fraction of serum is separated into high- and low-molecular-
weight fractions, antibodies of around 150,000-MW, des-
ignated as immunoglobulin G (IgG) are found in the low-
molecular-weight fraction. In a key experiment, brief diges-
tion of IgG with the enzyme papain produced three frag-
ments, two of which were identical fragments and a third that
was quite different (Figure 4-3). The two identical fragments
Migration distance
FIGURE 4-1 Experimental demonstration that most antibodies are
in the ␥-globulin fraction of serum proteins. After rabbits were im-
munized with ovalbumin (OVA), their antisera were pooled and elec-
trophoresed, which separated the serum proteins according to their
electric charge and mass. The blue line shows the electrophoretic
pattern of untreated antiserum. The black line shows the pattern of
antiserum that was incubated with OVA to remove anti-OVA anti-
body and then electrophoresed. [Adapted from A. Tiselius and E. A.
Kabat, 1939, J. Exp. Med. 69:119, with copyright permission of the
Rockefeller University Press.]
S S
S S
S S
S S
S S
S S
CHO CHO
COO–
Light chain
κ or λ
CH2CH3
S
SS
S
VH
CH
1
S
S
S
S
VL
CL
S
S
S
S
C
H1
V
H
S
S
S
S
C
L
V
L
S
S
S
S
Heavy chain
µ,γ,α,δ, or ⑀
Hinge
NH 3
+ NH
3 +
NH
3 +NH 3
+
COO–
COO–COO
–
Biological
activity
Antigen
binding
CH2CH3
446
214
FIGURE 4-2 Schematic diagram of structure of immunoglobulins
derived from amino acid sequencing studies. Each heavy and light
chain in an immunoglobulin molecule contains an amino-terminal
Fragmentos típicos de las Igs
6
78 P A R T I I Generation of B-Cell and T-Cell Responses
S
Disulfide
bonds
L chain
L chains
SHHS
Pepsin
digestion
F(ab')2
+
+
Fc fragments
Fc
Fab Fab
Mercaptoethanol
reduction
H chain
H chains
S
S S
S S S S
S S
S S
S S S S
S S
S S
SH
SH
S S S S
Papain
digestion
SHHS
+
SH
SH
+ +
FIGURE 4-3 Prototype structure of IgG, showing chain structure
and interchain disulfide bonds. The fragments produced by various
treatments are also indicated. Light (L) chains are in gray and heavy
(H) chains in blue.
http://bcs.whfreeman.com/immunology6e/content/cat_030/immunoglobulin/start.html
Visión 3
7
across the faces of the ␤ sheets (Figure 4-8). Interactions
form links between identical domains (e.g., CH2/CH2,
CH3/CH3, and CH4/CH4) and between nonidentical do-
mains (e.g., VH/VL and CH1/CL). The structure of the im-
munoglobulin fold also allows for variable lengths and
sequences of amino acids that form the loops connecting
the ␤ strands. As the next section explains, some of the
loop sequences of the VH and VL domains contain variable
amino acids and constitute the antigen-binding site of the
molecule.
FIGURE 4-6 (a) Heavy and light chains are folded into domains,
each containing about 110 amino acid residues and an intrachain
disulfide bond that forms a loop of 60 amino acids. The amino-
erminal domains, corresponding to the V regions, bind to antigen;
CHO
S
S
S
SS
S
S
S
S
S
S
S
S
S
S
S
S
SS
S
S S
S S
CH2
(a) γ, δ, α (b) ␮, ⑀
CH3
CHO
Hinge
261
321
367
425
446
214
200194
144134
22
C
H1
V
H
C
L
V
L
SSSS
SSSS
Biological
activity
No hinge
region
Antigen
binding
88
CH2
CH3
CH4
Additional
domain
effector functions are mediated by the other domains. (b) The ␮ and
⑀ heavy chains contain an additional domain that replaces the hinge
region.
Isotipos Inmunoglobulinas
http://bcs.whfreeman.com/immunology6e/content/cat_030/immunoglobulin/start.html
8
Clase Cadena pesada Subclase Cadena Ligera
IgG gamma gamma-1, 2, 3, 4 kappa o lambda
IgM mu No Kappa o lambda
IgA alfa alfa-1; alfa 2 Kappa o lambda
IgD delta No Kappa o lambda
IgE épsilon No Kappa o lambda
Isotipos Inmunoglobulinas
Formación del lugar de unión al Ag: CDRs
9
82 P A R T I I Generation of B-Cell and T-Cell Responses
FIGURE 4-7 (a) Diagram of an immunoglobulin light chain depict-
(a)
(b)
CL domain
Disulfide bond
β strands
β-strand arrangement
Loops
VL domain
NH2
NH2
COOH
COOH
COOH
CDRs
CDRs
NH2
CDRs (complementarity-determining regions). Heavy-chain do-
Complementariedad
10
Diferentes tipos de unión
Tamaño area de unión, de una cadena lateral de 15 aminoácidos
Antigens C H A P T E R 3 65
FIGURE 3-5 Computer simulation of an interaction between anti-
body and influenza virus antigen, a globular protein. (a) The antigen
(yellow) is shown interacting with the antibody molecule; the variable
region of the heavy chain is red, and the variable region of the light
Antigen Antibody
(a) (b)
chain is blue. (b) The complementarity of the two molecules is re-
vealed by separating the antigen from the antibody by 8 Å. [Based on
x-ray crystallography data collected by P. M. Colman and W. R. Tulip.
From G. J. V. H. Nossal, 1993, Sci. Am. 269(3):22.]
Variabilidad en los CDRs y unión
11
large globular protein antigens or with a number of smaller
antigens including carbohydrates, nucleic acids, peptides,
and small haptens. In addition, complete structures have
been obtained for several intact monoclonal antibodies. X-
ray diffraction analysis of antibody-antigen complexes has
shown that several CDRs may make contact with the antigen,
and a number of complexes have been observed in which all
six CDRs contact the antigen.In general,more residues in the
heavy-chain CDRs appear to contact antigen than in the
light-chain CDRs. Thus the VH domain often contributes
mains of human antibodies with different specificities. Three hyper-
variable (HV) regions, also called complementarity-determining
regions (CDRs), are present in both heavy- and light-chain V do-
mains. As shown in Figure 4-7 (right), the three HV regions in the
ture. The same is true of the heavy-chain V domain. [Based on E. A.
Kabat et al., 1977, Sequence of Immunoglobulin Chains, U.S. Dept.
of Health, Education, and Welfare.]
(a) (b)
FIGURE 4-10 (a) Side view of the three-dimensional structure of
the combining site of an angiotensin II–Fab complex. The peptide is
in red. The three heavy-chain CDRs (H1, H2, H3) and three light-
chain CDRs (L1, L2, L3) are each shown in a different color. All six
CDRs contain side chains, shown in yellow, that are within van der
Waals contact of the angiotensin peptide. (b) Side view of the van
der Waals surface of contact between angiotensin II and Fab frag-
ment. [From K. C. Garcia et al., 1992, Science 257:502; courtesy of
M. Amzel, Johns Hopkins University.]
Visión de la unión de un péptido (angiotensina) a un fragmento Fab.
Dos regiones determinantes de complementariedad de la cadena
ligera (L1 y L2 y tres de la cadena pesada (H1, H2, H3) forman la
cavidad. A la derecha representación volumétrica
Regiones Hipervariables y CDRs
12
84 P A R T I I Generation of B-Cell and T-Cell Responses
Residue position number
VL domain
150
12020 10060400 80
Variability
100
50
0
CDR2 CDR3CDR1
Variability
150
1007550250
120
60
30
0
Residue position number
VH domain
CDR1 CDR2 CDR3
FIGURE 4-9 Variability of amino acid residues in the VL and VH do-
mains of human antibodies with different specificities. Three hyper-
variable (HV) regions, also called complementarity-determining
regions (CDRs), are present in both heavy- and light-chain V do-
mains. As shown in Figure 4-7 (right), the three HV regions in the
light-chain V domain are brought into proximity in the folded struc-
ture. The same is true of the heavy-chain V domain. [Based on E. A.
Kabat et al., 1977, Sequence of Immunoglobulin Chains, U.S. Dept.
of Health, Education, and Welfare.]
36d_ch04_076-104 9/6/02 9:02 PM Page 84 mac85 Mac 85:365_smm:Goldsby et al. / Immunology 5e:
Epitopos: estructura proteíca
13
Epitopos continuos y no continuos
14
V I S U A L I Z I N G C O N C E P T S
FIGURE 3-6 Protein antigens usually contain both sequential
and nonsequential B-cell epitopes. (a) Diagram of sperm whale
myoglobin showing locations of five sequential B-cell epitopes
(blue). (b) Ribbon diagram of hen egg-white lysozyme showing
residues that compose one nonsequential (conformational) epi-
tope. Residues that contact antibody light chains, heavy chains, or
both are shown in red, blue, and white, respectively. These
residues are widely spaced in the amino acid sequence but are
brought into proximity by folding of the protein. [Part (a) adapted
from M. Z. Atassi and A. L. Kazim. 1978, Adv. Exp. Med. Biol. 98:9;
part (b) from W. G. Laver et al., 1990, Cell 61:554.]
Heme
(145) 146 −151
COOH
(a) (b)
NH2
15−21 (22)
56−62
113−119
FIGURE 3-5 Computer simulation of an interaction between anti-
body and influenza virus antigen, a globular protein. (a) The antigen
(yellow) is shown interacting with the antibody molecule; the variable
region of the heavy chain is red, and the variable region of the light
chain is blue. (b) The complementarity of the two molecules is re-
vealed by separating the antigen from the antibody by 8 Å. [Based on
x-ray crystallography data collected by P. M. Colman and W. R. Tulip.
From G. J. V. H. Nossal, 1993, Sci. Am. 269(3):22.]
Mioglobina de ballena, los
anticuerpos reaccionan con varios
epitopos a lo largo de la cadena
Lisozima de la albúmina de huevo de
gallina, el epitopo esta formado por aa
de diferentes parte de la cadena
A la formación de los epitopos B contribuyen la estructura
secundaria, terciaria y cuaternaria de las proteínas
Un antisuero contiene múltiples
anticuerpos que reconocen varios
epitopos
!
Interacciones Ag-Ac
Tipos de unión (enlace)
Medida de la afinidad
Naturaleza de la reacción Ag-Ac
✦ Puentes de hidrógeno
✦ Fuerzas electrostáticas (iones)
✦ Interacciones hidrofóbicas
✦ Fuerzas de van der Waals
✦ Todas estas fuerzas actúan a muy corta distancias por
lo que tiene que haber complementaridad estérica (3D)
✦ No hay enlaces covalentes
16
Reacción Ag-Ac
17
Ag + Ac Ag-Ab
k1
k-1
k1
k-1
Constante
afinidad Ka
where k1 is the forward (association) rate constant and kϪ1 is
the reverse (dissociation) rate constant. The ratio k1/kϪ1 is
the association constant Ka (i.e., k1/kϪ1 ϭ Ka), a measure of
affinity. Because Ka is the equilibrium constant for the above
reaction, it can be calculated from the ratio of the molar con-
centration of bound Ag-Ab complex to the molar concentra-
tions of unbound antigen and antibody at equilibrium as
follows:
Ka ϭ
The value of Ka varies for different Ag-Ab complexes and
depends upon both k1, which is expressed in units of
liters/mole/second (L/mol/s), and kϪ1, which is expressed in
units of 1/second. For small haptens, the forward rate con-
stant can be extremely high; in some cases, k1 can be as high
[Ag-Ab]
ᎏ
[Ab][Ag]
the associa
For examp
one fifth th
times great
cein antibo
fold higher
Ag-Ab com
L/mol; high
as 1011
L/m
For som
body comp
The equilib
cal of Ka
En
Ley de acción de masas aplicada a la reacción Ag con
Naturaleza de la reaccion Ag-Ac
18
S U A L I Z I N G C O N C E P T S
ANTIGEN
CH2
ANTIBODY
OH ••• O C CH2 CH2
NH2
Hydrogen bond
CH2 CH2 NH3
+ –O
CH2 CH2C Ionic bond
O
CH2
CH3
CH
CH3 CH3
+H3N
CH2CHCH3
van der Waals
interactionsCH CHCH3
CH CH3
O
O–
CH2 C CH2 Ionic bond
CH3
Hydrophobic
interactions
Bond = enlace
Ejemplos de afinidades
19
Anticuerpos Ligando K1
asociación
K-1
separación
Ka afinidad Kd disociación
Anti-DNP e-DNP-Lisina 8x107 1 1x107 1x10--7
Anti-
fluoresceina
Fluorescein 4x108 5x10-3 1x1011 1x10-11
Anti-BSA BSA 3x105 2x10-3 1,7x108 5,9x10-9
Medida experimental de la afinidad
20
and that is small enough to pass through the semipermeable
membrane is placed in the other compartment (Figure 6-2).
Suitable ligands include haptens,oligosaccharides,and oligo-
peptides. In the absence of antibody, ligand added to com-
partment B will equilibrate on both sides of the membrane
(Figure 6-2a). In the presence of antibody, however, part
will be greater in the compartment containing antibody (Fig-
ure 6-2b). The difference in the ligand concentration in the
two compartments represents the concentration of ligand
bound to the antibody (i.e.,the concentration of Ag-Ab com-
plex). The higher the affinity of the antibody, the more ligand
is bound.
FIGURE 6-2 Determination of antibody affinity by equilibrium dial- sured. (b) Plot of concentration of ligand in each compartment with
(a)
Radiolabeled
ligand
A B A B
(b)
Concentrationofligand,M
100
50
100
50
ControlControl: No antibody present
(ligand equilibrates on both sides equally)
ExperimentalExperimental: Antibody in A
(at equilibrium more ligand in A due to Ab binding)
Ligand bound
by antibody
2 4 6 8
Time, h
Initial state Equilibrium
A B A B
Initial state Equilibrium
DAntibody
A
B
A
B
peptides. In the absence of antibody, ligand added to com-
partment B will equilibrate on both sides of the membrane
(Figure 6-2a). In the presence of antibody, however, part
bound to the antibody (i.e.,the concentration of Ag-Ab com
plex). The higher the affinity of the antibody, the more ligand
is bound.
FIGURE 6-2 Determination of antibody affinity by equilibrium dial- sured. (b) Plot of concentration of ligand in each compartment wit
(a)
Radiolabeled
ligand
A B A B
(b)
Concentrationofligand,M
100
50
100
50
ControlControl: No antibody present
(ligand equilibrates on both sides equally)
ExperimentalExperimental: Antibody in A
(at equilibrium more ligand in A due to Ab binding)
Ligand boun
by antibody
2 4 6 8
Time, h
Initial state Equilibrium
A B A B
Initial state Equilibrium
DAntibody
A
B
A
B
binding = unión,
Avidez y afinidad
✦ Avidez, es la fuerza con la que al Ag se une al
Ac
➡ Además de la afinidad de cada lugar de unión,
depende de la valencia
➡ Es el producto de las afinidades individuales
✦ Es mejor medida de la capacidad total de un Ac
al antígeno
✦ IgM : Ka x10, medir experimentalmente!
21
Efectos mediados por los Acs
22
these areas are now more widely called complementarity de-
termining regions (CDRs). The three heavy-chain and three
light-chain CDR regions are located on the loops that con-
nect the ␤ strands of the VH and VL domains. The remainder
of the VL and VH domains exhibit far less variation; these
stretches are called the framework regions (FRs). The wide
range of specificities exhibited by antibodies is due to varia-
tions in the length and amino acid sequence of the six CDRs
in each Fab fragment. The framework region acts as a scaf-
fold that supports these six loops. The three-dimensional
structure of the framework regions of virtually all antibodies
analyzed to date can be superimposed on one another; in
contrast, the hypervariable loops (i.e., the CDRs) have differ-
ent orientations in different antibodies.
CDRs Bind Antigen
The finding that CDRs are the antigen-binding regions of
antibodies has been confirmed directly by high-resolution
x-ray crystallography of antigen-antibody complexes. Crys-
tallographic analysis has been completed for many Fab
fragments of monoclonal antibodies complexed either with
Antibodies: Structure and Function C H A P T E R 4 83
FIGURE 4-8 Interactions between domains in the separate chains
of an immunoglobulin molecule are critical to its quaternary struc-
ture. (a) Model of IgG molecule, based on x-ray crystallographic
analysis, showing associations between domains. Each solid ball rep-
resents an amino acid residue; the larger tan balls are carbohydrate.
The two light chains are shown in shades of red; the two heavy
chains, in shades of blue. (b) A schematic diagram showing the in-
VL domain
Antigen–binding site
CL domain
Heavy chains
Carbohydrate chain
Carbohydrate
Antigen–binding site
VH domain
(a)
(b)
S S
VH
CL
VL
CΗ2
CΗ3
CΗ1VH
CΗ2
VL
VL domain
VH domain
CH1
CH2
CH3
teracting heavy- and light-chain domains. Note that the CH2/CH2
domains protrude because of the presence of carbohydrate (tan) in
the interior. The protrusion makes this domain more accessible, en-
abling it to interact with molecules such as certain complement
components. [Part (a) from E. W. Silverton et al., 1977, Proc. Nat.
Acad. Sci. U.S.A. 74:5140.]
Go to www.whfreeman.com/immunology Molecular Visualization
8536d_ch04_076-104 9/6/02 9:02 PM Page 83 mac85 Mac 85:365_smm:Goldsby et al. / Immunology 5e:
Fijación de
complemento
Unión a
receptores Fc
✴ Neutralización
✴ Opsonización
✴ Fijación de complemento
✴ Transcitosis (intestino, placenta)
✴ Citotoxicidad celular dependiente de Ac
A A
Estructura Igs diméricas
23
Antibodies: Structure and Function C H A P T E R 4 91
(b) IgD
VL
Cδ1CL
Cδ2
VH
Cδ3
(d) IgA (dimer)
Hinge
region
VL
Cγ1CL
Cγ2
VH
Cγ3
(c) IgE
Cε1
Cε3
VH
Cε4
VL
CL
Cε2
Cµ1
Cµ3
VH
Cµ4
VL
CL
Cµ2
J chain
Disulfide
bond
(e) IgM (pentamer)
J chain
VL
Cα1
Cα2
VH
Cα3
Hinge
region
(a) IgG
CL
8536d_ch04_076-104 9/5/02 6:19 AM Page 91 mac76 mac76:385 Goldsby et al./Immunology5e:
Intravascular & Membrana linfocito B Mastocito92 P A R T I I Generation of B-Cell and T-Cell Responses
IgG3 IgG4IgG2IgG1
Disulfide
bond
FIGURE 4-14 General structure of the four subclasses of human
IgG, which differ in the number and arrangement of the interchain
disulfide bonds (thick black lines) linking the heavy chains. A notable
feature of human IgG3 is its 11 interchain disulfide bonds.
8536d_ch04_076-104 9/5/02 6:19 AM Page 92 mac76 mac76:385 Goldsby et al./Immunology5e:
Estructura Igs poliméricas
24
polypeptide (see Figure 4-13d). The IgA of external secre-
tions, called secretory IgA, consists of a dimer or tetramer, a
cilitating the polymerization of both serum IgA and secre-
tory IgA.The secretory component is a 70,000-MW polypep-
δCL
Cδ2
Cδ3
(d) IgA (dimer)
Hinge
region
γCL
Cγ2
Cγ3
ε
Cε3
Cε4
CL
Cε2
Cµ1
Cµ3
VH
Cµ4
VL
CL
Cµ2
J chain
Disulfide
bond
(e) IgM (pentamer)
J chain
VL
Cα1
Cα2
VH
Cα3
Hinge
region
CL
FIGURE 4-13 General structures of the five major classes of se-
creted antibody. Light chains are shown in shades of pink, disulfide
bonds are indicated by thick black lines. Note that the IgG, IgA, and
IgD heavy chains (blue, orange, and green, respectively) contain four
domains and a hinge region, whereas the IgM and IgE heavy chains
(purple and yellow, respectively) contain five domains but no hinge
region. The polymeric forms of IgM and IgA contain a polypeptide,
called the J chain, that is linked by two disulfide bonds to the Fc re-
gion in two different monomers. Serum IgM is always a pentamer;
most serum IgA exists as a monomer, although dimers, trimers, and
even tetramers are sometimes present. Not shown in these figures
are intrachain disulfide bonds and disulfide bonds linking light and
heavy chains (see Figure 4-2).
Mucosas y secreciones
Resistente a digestión
Intravascular
Menor afinidad mas valencias- avidez
suficiente
ion of the CDR loops, the
ntly change conformation
tibodies to assume a shape
o that of their epitopes.
mational changes following
mited to the antibody. Al-
4-11, the conformation of
he Fab shows no structural
epitope in the native HIV
at the inhibition of protease
e antibody is a result of its
conformation.
s
egion domains take part in
at are determined by the
ain.
extend the Fab arms of the
ating interaction with anti-
m rotation of the Fab arms.
n domains help to hold the
y virtue of the interchain
Figure 4-6). Also, the CH1
to antibody diversity by al-
ns between VH and VL do-
ociation were driven by the
VH/VL interaction alone. These considerations have impor-
tant implications for building a diverse repertoire of anti-
bodies. As Chapter 5 will show, random rearrangements of
the immunoglobulin genes generate unique VH and VL se-
quences for the heavy and light chains expressed by each B
lymphocyte; association of the VH and VL sequences then
generates a unique antigen-binding site. The presence of CH1
and CL domains appears to increase the number of stable VH
andVL interactions that are possible, thus contributing to the
overall diversity of antibody molecules that can be expressed
by an animal.
HINGE REGION
The ␥, ␦, and ␣ heavy chains contain an extended peptide se-
quence between the CH1 and CH2 domains that has no ho-
mology with the other domains (see Figure 4-8). This region,
called the hinge region, is rich in proline residues and is flex-
ible,giving IgG,IgD,and IgA segmental flexibility.As a result,
the two Fab arms can assume various angles to each other
when antigen is bound. This flexibility of the hinge region
can be visualized in electron micrographs of antigen-anti-
body complexes. For example, when a molecule containing
two dinitrophenol (DNP) groups reacts with anti-DNP anti-
body and the complex is captured on a grid, negatively
stained, and observed by electron microscopy, large com-
plexes (e.g., dimers, trimers, tetramers) are seen. The angle
between the arms of the Y-shaped antibody molecules differs
in the different complexes, reflecting the flexibility of the
hinge region (Figure 4-12).
Cell and T-Cell Responses
N NO2
NO2
25Å
S S
SS
S S
SS
Anti-DNP
mer
DNP
ligand
(b)
stration of the flexibility of the
a) A hapten in which two dini-
by a short connecting spacer
es to form trimers, tetramers,
omplexes. A trimer is shown
ograph of a negatively stained
triangular trimeric structures
are clearly visible. The antibody protein stands out as a light struc-
ture against the electron-dense background. Because of the flexibility
of the hinge region, the angle between the arms of the antibody mol-
ecules varies. [Photograph from R. C. Valentine and N. M. Green,
1967, J. Mol. Biol. 27:615; reprinted by permission of Academic Press
Inc. (London) Ltd.]
IgA
25
Antibodies: Structure and Function C H A P T E R 4 93
FIGURE 4-15 Structure and formation of secretory IgA. (a) Secre-
tory IgA consists of at least two IgA molecules, which are covalently
linked to each other through a J chain and are also covalently linked
with the secretory component. The secretory component contains
Plasma
cell
(a) Structure of secretory IgA
J chain
Secretory
component
(b) Formation of secretory IgA
Dimeric IgA
Poly-Ig
receptor
Vesicle
Enzymatic
cleavage
Secretory
IgA
Epithelial cells
Lumen
Submucosa
tory IgA is formed during transport through mucous membrane
epithelial cells. Dimeric IgA binds to a poly-Ig receptor on the baso-
lateral membrane of an epithelial cell and is internalized by receptor-
mediated endocytosis. After transport of the receptor-IgA complex
8536d_ch04_076-104 9/5/02 6:19 AM Page 93 mac76 mac76:385 Goldsby et al./Immunology5e:
✦Transcitosis
✦Producida por cels plasmatica
de la mucosa y médula ósea.
Cada día se producen de 5 a 15 g
más que todas las otras Igs
✦IgA de la leche materna protege
al recién nacido
✦Varios grados de polimerización
IgE mediadora de las reacciones
alérgicas
26
Immunoglobu
IgD was first discov
myeloma whose m
isotype antisera ag
and IgG. When rab
protein, the resulti
class of antibody a
new class, called Ig
and constitutes ab
serum. IgD, togeth
bound immunoglo
role in the physiolo
ological effector fu
Antigenic D
on Immuno
Since antibodies ar
tion as potent imm
Such anti-Ig antib
B-cell developmen
antigenic determin
molecules fall into
and idiotypic deter
tic portions of the
Isotype
Isotypic determina
Mucins Adhere to bacteria and viruses, thus keeping such microorganisms f
Oligosaccharides Bind to microorganisms and bar them from attaching to mucosal su
SOURCE: Adapted from J. Newman, 1995, How breast milk protects newborns, Sci. Am. 273(6):76.
FIGURE 4-16 Allergen cross-linkage of receptor-bound IgE on
mast cells induces degranulation, causing release of substances
Mast cell
Allergen
Granule
Histamine and
other substances
that mediate
allergic reactions
IgE
Fc receptor
specific for IgE
Degranulation
and release of
granule contents
★El mastocito amplifica la
consecuencias de la reacción
Ag-Ac
★Contribuye a la eliminación de
parásitos
★Media las reacciones alérgicas
27
IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD
Peso molecular 150.000 150.000 150.000 150.000 150.000
600.000
150.000
600.00
900.000 190.000 150.000
Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ
Conc en suero
(mg/dl)
500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03
<100 KU
<10
Vida media 23 23 8 23 6 6 5 2,5 3
Activación
complemento
+ +/- ++ - - - ++ - -
Cruza la placenta + +/- + + - - - - -
Parte del BCR
cel B madura
- - - - - - + - +
Transcitosis
mucosa
- - - - ++ ++ + - -
Degranulación
mastocitos
- - - - - - - + -
Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y
secreciones
Mucosas y
secreciones
Intravasc
ular
Mastocito
s
Linfocitos
Isotipos de las inmunoglobulinas y funciones
28
IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD
Peso molecular 150.000 150.000 150.000 150.000 150.000
600.000
150.000
600.00
900.000 190.000 150.000
Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ
Conc en suero
(mg/dl)
500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03
<100 KU
<10
Vida media 23 23 8 23 6 6 5 2,5 3
Activación
complemento
+ +/- ++ - - - ++ - -
Cruza la placenta + +/- + + - - - - -
Parte del BCR
cel B madura
- - - - - - + - +
Transcitosis
mucosa
- - - - ++ ++ + - -
Degranulación
mastocitos
- - - - - - - + -
Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y
secreciones
Mucosas y
secreciones
Intravasc
ular
Mastocito
s
Linfocitos
Isotipos de las inmunoglobulinas y funciones
29
IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD
Peso molecular 150.000 150.000 150.000 150.000 150.000
600.000
150.000
600.00
900.000 190.000 150.000
Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ
Conc en suero
(mg/dl)
500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03
<100 KU
<10
Vida media 23 23 8 23 6 6 5 2,5 3
Activación
complemento
+ +/- ++ - - - ++ - -
Cruza la placenta + +/- + + - - - - -
Parte del BCR
cel B madura
- - - - - - + - +
Transcitosis
mucosa
- - - - ++ ++ + - -
Degranulación
mastocitos
- - - - - - - + -
Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y
secreciones
Mucosas y
secreciones
Intravasc
ular
Mastocito
s
Linfocitos
Isotipos de las inmunoglobulinas y funciones
30
IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD
Peso molecular 150.000 150.000 150.000 150.000 150.000
600.000
150.000
600.00
900.000 190.000 150.000
Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ
Conc en suero
(mg/dl)
500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03
<100 KU
<10
Vida media 23 23 8 23 6 6 5 2,5 3
Activación
complemento
+ +/- ++ - - - ++ - -
Cruza la placenta + +/- + + - - - - -
Parte del BCR
cel B madura
- - - - - - + - +
Transcitosis
mucosa
- - - - ++ ++ + - -
Degranulación
mastocitos
- - - - - - - + -
Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y
secreciones
Mucosas y
secreciones
Intravasc
ular
Mastocito
s
Linfocitos
Isotipos de las inmunoglobulinas y funciones
31
IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD
Peso molecular 150.000 150.000 150.000 150.000 150.000
600.000
150.000
600.00
900.000 190.000 150.000
Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ
Conc en suero
(mg/dl)
500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03
<100 KU
<10
Vida media 23 23 8 23 6 6 5 2,5 3
Activación
complemento
+ +/- ++ - - - ++ - -
Cruza la placenta + +/- + + - - - - -
Parte del BCR
cel B madura
- - - - - - + - +
Transcitosis
mucosa
- - - - ++ ++ + - -
Degranulación
mastocitos
- - - - - - - + -
Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y
secreciones
Mucosas y
secreciones
Intravasc
ular
Mastocito
s
Linfocitos
Isotipos de las inmunoglobulinas y funciones
32
IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD
Peso molecular 150.000 150.000 150.000 150.000 150.000
600.000
150.000
600.00
900.000 190.000 150.000
Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ
Conc en suero
(mg/dl)
500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03
<100 KU
<10
Vida media 23 23 8 23 6 6 5 2,5 3
Activación
complemento
+ +/- ++ - - - ++ - -
Cruza la placenta + +/- + + - - - - -
Parte del BCR
cel B madura
- - - - - - + - +
Transcitosis
mucosa
- - - - ++ ++ + - -
Degranulación
mastocitos
- - - - - - - + -
Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y
secreciones
Mucosas y
secreciones
Intravasc
ular
Mastocito
s
Linfocitos
Isotipos de las inmunoglobulinas y funciones
33
IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD
Peso molecular 150.000 150.000 150.000 150.000 150.000
600.000
150.000
600.00
900.000 190.000 150.000
Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ
Conc en suero
(mg/dl)
500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03
<100 KU
<10
Vida media 23 23 8 23 6 6 5 2,5 3
Activación
complemento
+ +/- ++ - - - ++ - -
Cruza la placenta + +/- + + - - - - -
Parte del BCR
cel B madura
- - - - - - + - +
Transcitosis
mucosa
- - - - ++ ++ + - -
Degranulación
mastocitos
- - - - - - - + -
Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y
secreciones
Mucosas y
secreciones
Intravasc
ular
Mastocito
s
Linfocitos
Isotipos de las inmunoglobulinas y funciones
34
IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD
Peso molecular 150.000 150.000 150.000 150.000 150.000
600.000
150.000
600.00
900.000 190.000 150.000
Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ
Conc en suero
(mg/dl)
500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03
<100 KU
<10
Vida media 23 23 8 23 6 6 5 2,5 3
Activación
complemento
+ +/- ++ - - - ++ - -
Cruza la placenta + +/- + + - - - - -
Parte del BCR
cel B madura
- - - - - - + - +
Transcitosis
mucosa
- - - - ++ ++ + - -
Degranulación
mastocitos
- - - - - - - + -
Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y
secreciones
Mucosas y
secreciones
Intravasc
ular
Mastocitos Linfocitos
Isotipos de las inmunoglobulinas y funciones
Isotipo, alotipo e idiotipo
35
antibody is routinely used fo
mine the class or subclass of s
ing an immune response or
membrane-bound antibody p
Allotype
Although all members of a spe
type genes, multiple alleles ex
Figure 4-17b). These alleles en
ences, called allotypic determ
not all, members of a species.
typic determinants displayed
allotype. In humans, allotype
all four IgG subclasses, for on
light chain. The ␥-chain allo
markers. At least 25 different G
fied; they are designated by the
the allele number, for example
G4m(4a). Of the two IgA su
class has allotypes, as A2m(
chain has three allotypes, d
␬m(3). Each of these allotypi
ferences in one to four amin
different alleles.
Antibody to allotypic dete
injecting antibodies from one
other member of the same spe
typic determinants. Antibod
sometimes is produced by a m
sponse to paternal allotypic
Antibodies: Structure and
FIGURE 4-17 Antigenic determinants of immunoglobulins. For
(a) Isotypic determinants
Mouse IgG1 Mouse IgM
γ1 µ
κ
(b) Allotypic determinants
Mouse IgG1
(strain A)
Mouse IgG1
(strain B)
γ1
κ
(c) Idiotypic determinants
Mouse IgG1
against antigen a
κ
κ
γ1
κ
Mouse IgG1
against antigen b
γ1
Idiotopes
κ
γ1
Idiotopes
Variantes presentes en
cada indivíduo
Variantes entre individuos
Reacciones transfusionales
menores
Variantes entre clonas
Problema terapia con
anticuerpos monoclonales
! La pregunta
¿Como se genera una variedad tan elevada de anticuerpos a partir de
un número limitado de genes?
Las respuestas
Hipotesis instructiva
Hipotesis genética
Base del experimento de Tonegawa
37
separated by size and analyzed for their ability to hybridize
with a radiolabeled mRNA probe. Two separate restriction
fragments from the embryonic DNA hybridized with the
mRNA, whereas only a single restriction fragment of the
adult myeloma DNA hybridized with the same probe. Tone-
gawa and Hozumi suggested that, during differentiation of
lymphocytes from the embryonic state to the fully differenti-
ated plasma-cell stage (represented in their system by the
shows the detection of rearrangement at the ␬ light-chain lo-
cus by comparing the fragments produced by digestion of
DNA from a clone of B-lineage cells with the pattern ob-
tained by digestion of non-B cells (e.g., sperm or liver cells).
The rearrangement of aV gene deletes an extensive section of
germ-line DNA, thereby creating differences between re-
arranged and unrearranged Ig loci in the distribution and
number of restriction sites. This results in the generation of
FIGURE 5-2 Experimental basis for diagnosis of rearrangement at
an immunoglobulin locus. The number and size of restriction frag-
are separated in the germ line. Consequently, fragments dependent
on the presence of this segment for their generation are absent from
3′5′
Vn
RE
V2
RE
J C
V1
RE RE RE
3′5′
Vn
RE
V2
RE
V1
RE RE
RE
Germ line Rearranged
Germ line Rearranged
Deleted
Rearrangement
J C
Probe Probe
RE digestion RE digestion
Southern
blot
sonda
Base del experimento de Tonegawa
38
separated by size and analyzed for their ability to hybridize
with a radiolabeled mRNA probe. Two separate restriction
fragments from the embryonic DNA hybridized with the
mRNA, whereas only a single restriction fragment of the
adult myeloma DNA hybridized with the same probe. Tone-
gawa and Hozumi suggested that, during differentiation of
lymphocytes from the embryonic state to the fully differenti-
ated plasma-cell stage (represented in their system by the
shows the detection of rearrangement at the ␬ light-chain lo-
cus by comparing the fragments produced by digestion of
DNA from a clone of B-lineage cells with the pattern ob-
tained by digestion of non-B cells (e.g., sperm or liver cells).
The rearrangement of aV gene deletes an extensive section of
germ-line DNA, thereby creating differences between re-
arranged and unrearranged Ig loci in the distribution and
number of restriction sites. This results in the generation of
FIGURE 5-2 Experimental basis for diagnosis of rearrangement at
an immunoglobulin locus. The number and size of restriction frag-
are separated in the germ line. Consequently, fragments dependent
on the presence of this segment for their generation are absent from
3′5′
Vn
RE
V2
RE
J C
V1
RE RE RE
3′5′
Vn
RE
V2
RE
V1
RE RE
RE
Germ line Rearranged
Germ line Rearranged
Deleted
Rearrangement
J C
Probe Probe
RE digestion RE digestion
Southern
blot
sonda
signal sequence
I Cutting of the hairpin to generate sites for the addition
of P-region nucleotides, followed by the trimming of a
few nucleotides from the coding sequence by a single-
strand endonuclease
I Addition of up to 15 nucleotides, called N-region
nucleotides, at the cut ends of the V, D, and J coding
sequences of the heavy chain by the enzyme terminal
deoxynucleotidyl transferase
I Repair and ligation to join the coding sequences and to
join the signal sequences, catalyzed by normal double-
strand break repair (DSBR) enzymes
Recombination results in the formation of a coding joint,
falling between the coding sequences, and a signal joint, be-
tween the RSSs. The transcriptional orientation of the gene
segments to be joined determines the fate of the signal joint
and intervening DNA. When the two gene segments are in
the same transcriptional orientation, joining results in dele-
tion of the signal joint and intervening DNA as a circular ex-
cision product (Figure 5-8). Less frequently, the two gene
segments have opposite orientations. In this case joining oc-
curs by inversion of the DNA, resulting in the retention of
3′
VκL Jκ
Coding joint
5′ 3′
Signal joint
Signal
joint Coding
joint
Single-strand
DNA cleavage
by RAG-1/2
Hairpin formation
and double-strand
DNA break by
RAG-1/2
Random cleavage
of hairpin by
endonuclease generates
sites for the addition
of P-nucleotides
Optional addition
to H-chain segments
of N-nucleotides by TdT
Repair and ligation
of coding and
signal sequences
to form joints by
DSBR enzymes
2
3
4
5
= Two-turn RSS
= One-turn RSS
+
FIGURE 5-7 Model depicting the general process of recombina-
tion of immunoglobulin gene segments is illustrated with V␬ and J␬.
(a) Deletional joining occurs when the gene segments to be joined
have the same transcriptional orientation (indicated by horizontal
blue arrows). This process yields two products: a rearranged VJ unit
that includes the coding joint, and a circular excision product con-
sisting of the recombination signal sequences (RSSs), signal joint,
and intervening DNA. (b) Inversional joining occurs when the gene
segments have opposite transcriptional orientations. In this case, the
FIGURE 5-8 Circular DNA isolated from thymocytes in which the
DNA encoding the chains of the T-cell receptor (TCR) undergoes re-
Pregunta ¿Cómo se genera la
enorme variedad de anticuerpos?
✦ Respuesta, combinando elementos, como en un
alfabeto
✦ Se comprende cuando se analiza la estructura
de los genes de las Igs
✦ Hay un elemento de azar
39
Mecánica de la
reordenación
40
two signal sequences and the adjacent coding sequences
(gene segments) are brought into proximity
I Cleavage of one strand of DNA by RAG-1 and RAG-2 at
the junctures of the signal sequences and coding sequences
I A reaction catalyzed by RAG-1 and RAG-2 in which the
free 3Ј-OH group on the cut DNA strand attacks the
phosphodiester bond linking the opposite strand to the
signal sequence, simultaneously producing a hairpin
structure at the cut end of the coding sequence and a
flush, 5Ј-phosphorylated, double-strand break at the
signal sequence
I Cutting of the hairpin to generate sites for the addition
of P-region nucleotides, followed by the trimming of a
few nucleotides from the coding sequence by a single-
strand endonuclease
I Addition of up to 15 nucleotides, called N-region
nucleotides, at the cut ends of the V, D, and J coding
sequences of the heavy chain by the enzyme terminal
deoxynucleotidyl transferase
I Repair and ligation to join the coding sequences and to
join the signal sequences, catalyzed by normal double-
strand break repair (DSBR) enzymes
Recombination results in the formation of a coding joint,
falling between the coding sequences, and a signal joint, be-
tween the RSSs. The transcriptional orientation of the gene
segments to be joined determines the fate of the signal joint
and intervening DNA. When the two gene segments are in
the same transcriptional orientation, joining results in dele-
tion of the signal joint and intervening DNA as a circular ex-
cision product (Figure 5-8). Less frequently, the two gene
segments have opposite orientations. In this case joining oc-
curs by inversion of the DNA, resulting in the retention of
(a) Deletional joining
3′5′
Vκ Jκ
RSS
3′5′
Vκ Jκ
(b) Inversional joining
3′
5′
3′
Recognition of RSSs
by RAG-1/2 and synapsis
VκL Jκ
Coding joint
5′ 3′
Signal joint
Signal
joint Coding
joint
Single-strand
DNA cleavage
by RAG-1/2
Hairpin formation
and double-strand
DNA break by
RAG-1/2
Random cleavage
of hairpin by
endonuclease generates
sites for the addition
of P-nucleotides
Optional addition
to H-chain segments
of N-nucleotides by TdT
Repair and ligation
of coding and
signal sequences
to form joints by
DSBR enzymes
1
2
3
4
5
= Two-turn RSS
= One-turn RSS
L L
+
FIGURE 5-7 Model depicting the general process of recombina-
Dependiendo de la orientación RSS se
genera o no un circulo de DNA (TREC)
tween the RSSs. The transcriptional orientation of the gene
segments to be joined determines the fate of the signal joint
and intervening DNA. When the two gene segments are in
the same transcriptional orientation, joining results in dele-
tion of the signal joint and intervening DNA as a circular ex-
cision product (Figure 5-8). Less frequently, the two gene
segments have opposite orientations. In this case joining oc-
curs by inversion of the DNA, resulting in the retention of
5′ 3′
Signal
joint Coding
joint
-nucleotides
ional addition
H-chain segments
N-nucleotides by TdT
air and ligation
oding and
al sequences
orm joints by
R enzymes
= Two-turn RSS
= One-turn RSS
ng the general process of recombina-
e segments is illustrated with V␬ and J␬.
when the gene segments to be joined
al orientation (indicated by horizontal
elds two products: a rearranged VJ unit
t, and a circular excision product con-
signal sequences (RSSs), signal joint,
Opciones de la unión de segmentos
41
addition, and flexibility in joining the coding sequences. The
introduction of randomness in the joining process helps gen-
erate antibody diversity by contributing to the hypervariabil-
ity of the antigen-binding site. (This phenomenon is covered
in more detail below in the section on generation of antibody
diversity.)
marrow as mature
Allelic Exclusio
Antigenic Spec
B cells, like all soma
ternal and paterna
Jκ
Vκ
C A C T G T G G T G G A C T A G G
G A G G A T G C T C C C A C A G T G
RSS
RSS
2
3
4
5
G A G G A T G C G A C T A G G
Glu Asp Ala Thr Arg
1
G A G G A T G G G A C T A G G
Glu Asp Gly Thr Arg
G A G G A T T G G A C T A G G
Glu Asp Trp Thr Arg
Productive
rearrangements
2
3
G A G G A T G C G G A C T A G G
Glu Asp Ala Asp Stop
G A G G T G G A C T A G G
Glu Val Asp Stop
Nonproductive
rearrangements
4
5
1
Joining
flexibility
FIGURE 5-9 Junctional flexibility in the joining of immunoglobulin
gene segments is illustrated with V␬ and J␬. In-phase joining (arrows
κ λ H
**
Paternal
chromosomes
Maternal
chromosomes
Maternal H ch
Maternal
κ chain
FIGURE 5-10 Beca
heavy- and light-chain
expressed per cell. Th
antigenic specificity. T
Reordenamientos productivos
Reordenamientos fallidos
Imprecisión de unión:
nucleotidos P y N
Reordenamiento en la otra
copia del cromosoma
Exclusión alélica
42
he section on generation of antibody B cells, like all somatic cells, are diploid and contain both ma-
ternal and paternal chromosomes. Even though a B cell is
Jκ
G T G G T G G A C T A G G
T C C C A C A G T G
RSS
2
4
5
G A G G A T G C G A C T A G G
Glu Asp Ala Thr Arg
1
G A G G A T G G G A C T A G G
Glu Asp Gly Thr Arg
G A G G A T T G G A C T A G G
Glu Asp Trp Thr Arg
2
3
G A G G A T G C G G A C T A G G
Glu Asp Ala Asp Stop
G A G G T G G A C T A G G
Glu Val Asp Stop
4
5
1
Joining
flexibility
exibility in the joining of immunoglobulin
d with V␬ and J␬. In-phase joining (arrows
productive rearrangement, which can be
κκ λλ HH
κ λ H
** * *
κ λ H
Paternal
chromosomes
Gene rearrangement
Maternal
chromosomes
Maternal H chain
Maternal
κ chain
Maternal
H chain
Paternal
λ chain
FIGURE 5-10 Because of allelic exclusion, the immunoglobulin
heavy- and light-chain genes of only one parental chromosome are
expressed per cell. This process ensures that B cells possess a single
antigenic specificity. The allele selected for rearrangement is chosen
randomly. Thus the expressed immunoglobulin may contain one ma-
Asegura que cada clona de células B expresa una sola especie de
molécula de Ig
43
Diversidad de los anticuerpos por combinación al azar de
segmentos génicos
Diversidad de los anticuerpos por combinación al azar de
segmentos génicos
Diversidad de los anticuerpos por combinación al azar de
segmentos génicos
Diversidad de los anticuerpos por combinación al azar de
segmentos génicos
Cadena pesada Cadena ligeraCadena ligera
Segmento kappa lambda
V 48 41 34
D 23 0 0
J 6 5 5
Combinaciones 48x23x6=6624 41x5=205 34x5=170
Total 6624x(205+170)=2,48x1066624x(205+170)=2,48x1066624x(205+170)=2,48x106
Mecanismo de generación de
diversidad
✦ Múltiples de segmentos génicos (variabilidad
individual)
✦ Combinación aleatoria de segmentos V-(D)-J
✦ Combinación de cadenas pesadas y ligeras
✦ Flexibilidad punto de unión
✦ Adición de nucleotidos P y N (TdT transferasa
terminal de dinucleótidos)
✦ Hipermutación somática
44
Hipermutación somática
45
Organization and Expression of Immunoglobulin Genes C H A P T E R 5 121
FIGURE 5-14 Experimental evidence for somatic mutation in vari- quency of mutation (1) increases in the course of the primary re-
Heavy–chain V regions
Day7
Primary
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ3
γ1
γ1
µ
µ
µ
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
γ1
CDR1 CDR3CDR2CDR1 CDR2 CDR3
J3
3.7
(D)
Hybridoma
clone
subclass
Light–chain V regions Kd × 10–7M
J5
Day14SecondaryTertiary
2.8
2.8
2.8
3.6
4.0
3.3
0.5
6.0
4.0
0.9
3.4
0.7
0.4
0.1
0.2
1.4
0.6
0.9
0.02
1.1
0.1
0.4
≤ 0.02
1.0
≤ 0.03
≤ 0.03
≤ 0.03
0.15
0.2
J4
J4
J4
J2
J2
J2
J4
J4
J2
J4
J4
J4
J4
J4
Hipermutación somática
✦ Frecuencia de mutaciones en el genoma 1/108
nucleótidos por división
✦ Región VDJ 1/103 -> 1 en las dos regiones V por cada
dos divisiones celulares
✦ En los anticuerpos hay una concentración de
mutaciones somáticas en las zonas que codifican la
regiones determinantes de complementariedad
(CDRs) de los segmentos V de las cadenas ligera y
pesada
46
47
La respuesta B en el centro germinal
✦ Las FDC contienen Ics con Ag
en su superficie y producen
CXCL13 que atrae a las células
B
✦ Los linfocitos B (centrocitos)
que maduran junto a las FDC
forman la zona clara mientras
que los que proliferan
rápidamente constituyen la
zona oscura (centroblastos)
✦ A nivel molecular tiene lugar
la hipermutación somática y
la maduración por afinidad
bajo la influencia de las
células Th y el cambio de
isotipo
✦
Manto
Centrocitos
TCD4+
linfosT
Centroblastos
Zona Clara
CD21, FDC
L
DCentroblastos
FDC
L
D
Centrocitos
Fases respuesta inmune
✦ Primeros 5-7 días, inmunidad innata
✦ 7 en adelante adaptativa primaria (específica)
✦ Nueva exposición, respuesta secundaria
IgM Ig
IgM e IgD: procesamiento alternativos
50
Organization and Expression of Immunoglobulin Genes C H A P T E R 5 125
FIGURE 5-17 Expression of membrane forms of ␮ and ␦ heavy
chains by alternative RNA processing. (a) Structure of rearranged
adenylation at site 2 and splicing. (c) Structure of ␦m transcript and
␦m mRNA resulting from polyadenylation at site 4 and splicing.
3′
(a) H-chain primary transcript
VDJ
J M1
5′
M2µ1 µ2 µ3 µ4
Poly-A
site 1
Poly-A
site 2
Cµ
δ1
Cδ
M1M2
Poly-A
site 4
Poly-A
site 3
δ2 δ3
∼6.5
kb
S SL
(A)n
J S
(A)n
µ1 µ2 µ3 µ4
Splicing
M1 M2
M1 M2
µm transcript 5′
VDJ
µm mRNA 5′
VDJ
(b) Polyadenylation of primary transcript at site 2 µm←
Cµ
L
L
(A)n
Splicing
M2
VDJ
δ1 δ2 δ3
(c) Polyadenylation of primary transcript at site 4 ← δm
VDJ
5′ (A)n
M1
δm transcript
δm mRNA
Cµ Cδ
J M1 M2µ1 µ2 µ3 µ4 δ1 δ2 δ3S S M1M2
L
L
Generación formas de membrana o secretadas
51GURE 5-16 Expression of secreted and membrane forms of
heavy chain by alternative RNA processing. (a) Amino acid
(b)
Primary
H-chain
transcript
VDJ
J
(A)n
Poly-A
site 1
Poly-A
site 2
Cµ Cδ
Poly-A
site 3
Poly-A
site 4
Polyadenylation
RNA transcript for secreted µ
D J µ1 µ2 µ3 µ4
µ1 µ2 µ3 µ4 S
JV S
(A)n
RNA transcript for membrane µ
D J µ1 µ2 µ3 µ4JV S
(A)n
D µ1 µ2 µ3 µ4JV S
(A)n
D µ1 µ2 µ3 µ4JV
RNA splicing
mRNA encoding secreted µ chain mRNA encoding membrane µ chain
M1 M2
M1 M2
M1 M2
Site 1 Site 2
L
L
L
L
L
V
KCytoplasm
Secreted µ Membrane µ
COOH COOH
COOH
597
+ 597
sequences are identical in both forms. (b) Structure of the pri-
mary transcript of a rearranged heavy-chain gene showing the C␮
Cambio de isotipo
52
122 P A R T I I Generation of B-Cell and T-Cell Responses
FIGURE 5-15 Proposed mechanism for class switching induced Identification of the indicated circular excision products containing
5′ 3′
Cµ Cγ3V D J Cδ Cγ1 Cγ2b
Sγ2b
Cγ2a
Sγ2a
Cε
Sε
Cα
Sα
3′
Sγ1Sγ3Sµ
Sγ1
5′Sγ1
3′Sγ15′Sµ
3′Sµ
Recombination at
Sµ and Sγ1
DNA looping
Sγ3
CδCγ3
Cµ
Sγ3
CδCγ3
Cµ
5′Sε
3′Sγ1
Sγ2a
Cγ2a
Cγ2b
Sγ2b
5′ 3′ +
+
V D J Cγ1 Cγ2b
Sγ2b
Cγ2a
Sγ2a
Cε
Sε
Cα
Sα
DNA looping and recombination
at Sγ1 and Sε
5′ 3′
V D J Cε Cα
Sα
5′
V D J
Sµ
Cγ1
Cγ1
Cγ2b
Sγ2b
Cγ2a
Sγ2a
Cε
Sε
Cα
Sα
L
L
L
L
• Durante la maduración de la
respuesta
• Dirigida por citocinas
• Orientada a la función biológica
del Ac
looping = formación de
antibody is routinely used for research purposes to deter-
mine the class or subclass of serum antibody produced dur-
ing an immune response or to characterize the class of
membrane-bound antibody present on B cells.
Allotype
Although all members of a species inherit the same set of iso-
type genes, multiple alleles exist for some of the genes (see
Figure 4-17b). These alleles encode subtle amino acid differ-
ences, called allotypic determinants, that occur in some, but
not all, members of a species. The sum of the individual allo-
typic determinants displayed by an antibody determines its
allotype. In humans, allotypes have been characterized for
all four IgG subclasses, for one IgA subclass, and for the ␬
light chain. The ␥-chain allotypes are referred to as Gm
markers. At least 25 different Gm allotypes have been identi-
fied; they are designated by the class and subclass followed by
the allele number, for example, G1m(1), G2m(23), G3m(11),
G4m(4a). Of the two IgA subclasses, only the IgA2 sub-
class has allotypes, as A2m(1) and A2m(2). The ␬ light
chain has three allotypes, designated ␬m(1), ␬m(2), and
␬m(3). Each of these allotypic determinants represents dif-
ferences in one to four amino acids that are encoded by
different alleles.
Antibody to allotypic determinants can be produced by
injecting antibodies from one member of a species into an-
other member of the same species who carries different allo-
typic determinants. Antibody to allotypic determinants
sometimes is produced by a mother during pregnancy in re-
sponse to paternal allotypic determinants on the fetal im-
munoglobulins. Antibodies to allotypic determinants can
also arise from a blood transfusion.
Idiotype
The unique amino acid sequence of the VH and VL domains
of a given antibody can function not only as an antigen-bind-
ing site but also as a set of antigenic determinants. The idio-
typic determinants arise from the sequence of the heavy- and
light-chain variable regions. Each individual antigenic deter-
minant of the variable region is referred to as an idiotope
(see Figure 4-17c). In some cases an idiotope may be the ac-
tual antigen-binding site, and in some cases an idiotope may
comprise variable-region sequences outside of the antigen-
URE 4-17 Antigenic determinants of immunoglobulins. For
ype of determinant, the general location of determinants within
ntibody molecule is shown (left) and two examples are illus-
(center and right). (a) Isotypic determinants are constant-
n determinants that distinguish each Ig class and subclass
n a species. (b) Allotypic determinants are subtle amino acid
ences encoded by different alleles of isotype genes. Allotypic
ences can be detected by comparing the same antibody class
g different inbred strains. (c) Idiotypic determinants are gen-
d by the conformation of the amino acid sequences of the
- and light-chain variable regions specific for each antigen. Each
dual determinant is called an idiotope, and the sum of the indi-
idiotopes is the idiotype.
otypic determinants
Mouse IgG1 Mouse IgM
γ1 µ
κ
lotypic determinants
Mouse IgG1
(strain A)
Mouse IgG1
(strain B)
γ1
κ
iotypic determinants
Mouse IgG1
against antigen a
κ
κ
γ1
κ
Mouse IgG1
against antigen b
γ1
Idiotopes
κ
γ1
Idiotopes
Secreción de las Igs
53
Regulation of Ig-Gene Transcription
The immunoglobulin genes are expressed only in B-lineage
cells, and even within this lineage, the genes are expressed at
different rates during different developmental stages.As with
other eukaryotic genes, three major classes of cis regulatory
sequences in DNA regulate transcription of immunoglobu-
lin genes:
I Promoters: relatively short nucleotide sequences,
extending about 200 bp upstream from the transcription
initiation site, that promote initiation of RNA
transcription in a specific direction
I Enhancers: nucleotide sequences situated some distance
upstream or downstream from a gene that activate
transcription from the promoter sequence in an
orientation-independent manner
I Silencers: nucleotide sequences that down-regulate
transcription, operating in both directions over a
distance.
The locations of the three types of regulatory elements in
germ-line immunoglobulin DNA are shown in Figure 5-19.
All of these regulatory elements have clusters of sequence
motifs that can bind specifically to one or more nuclear pro-
teins.
Each VH and VL gene segment has a promoter located just
upstream from the leader sequence. In addition, the J␬
cluster and each of the DH genes of the heavy-chain locus
are preceded by promoters. Like other promoters, the
immunoglobulin promoters contain a highly conserved AT-
rich sequence called the TATA box, which serves as a site for
the binding of a number of proteins that are necessary for the
initiation of RNA transcription. The actual process of tran-
scription is performed by RNA polymerase II, which starts
transcribing DNA from the initiation site, located about 25
bp downstream of the TATA box. Ig promoters also contain
an essential and conserved octamer that confers B-cell speci-
ficity on the promoter. The octamer binds two transcription
factors, oct-1, found in many cell types, and oct-2, found
only in B cells.
While much remains to be learned about the function of
enhancers, they have binding sites for a number of proteins,
Secreted Ig
Secretory
vesicles
Heavy-chain
translation
Light-chain
translation
Leader
Nascent
Ig (leader
cleaved)
RER
Cis Golgi
Trans Golgi
Trans Golgi
reticulum
Oligosaccharides
Membrane Ig
Fusion with
membrane
Secretory vesicle
Transmembrane
segment
FIGURE 5-18 Synthesis, assembly, and secretion of the im-
Las cadenas se sintetizan y las molécula
de anticuerpo se monta en RER
Los anticuerpos se glicosilan en el
aparato de Golgi
En las células plasmáticas neoplásicas
puede fallar la coordinación y generarse
cadenas ligeras libres: proteínas de
Bences-Jones
Receptor de la célula B
54
composed of mIg and disulfide-linked heterodimers called
Ig-␣/Ig-␤. Molecules of this heterodimer associate with an
mIg molecule to form a BCR (Figure 4-18). The Ig-␣ chain
centa
body
neutr
ural k
by wh
system
muni
of an
phage
efficie
comp
as op
antige
gener
induc
lular r
Th
poly
immu
tamer
neon
fetus
of IgG
of the
IgA, a
that b
eties o
classe
of the
result
result
cepto
volves
FIGURE 4-18 General structure of the B-cell receptor (BCR). This
antigen-binding receptor is composed of membrane-bound im-
S S
S
S
S
S
S
S
S
S
S
S
S
S
S
SS
S
S
SS
S
S
S
S
S
S
S
S
S
S S
S
S
S
S
mIg
S
S
S
S
Ig-αIg-β
48-aa tail 6l-aa tail
Cytoplasmic tails
Plasma
membrane
Igα e Igβ hacen posible la
señalización por la ocupación
de la Ig de membrana
man ␬ locus, about half
with respect to J␬ and
y Be
e
egment recombination
at are formed between
e double-strand DNA
ments are introduced
uences and coding se-
he coding sequences is
V-J and V-D-J coding
chanisms: variation in
ucleotides, variation in
iation in N-nucleotide
coding sequences. The
ning process helps gen-
g to the hypervariabil-
henomenon is covered
generation of antibody
segments may be joined out of phase, so that the triplet read-
ing frame for translation is not preserved. In such a nonpro-
ductive rearrangement, the resulting VJ or VDJ unit is likely
to contain numerous stop codons, which interrupt transla-
tion (Figure 5-9). When gene segments are joined in phase,
the reading frame is maintained. In such a productive re-
arrangement, the resulting VJ or VDJ unit can be translated
in its entirety, yielding a complete antibody.
If one allele rearranges nonproductively, a B cell may still
be able to rearrange the other allele productively. If an in-
phase rearranged heavy-chain and light-chain gene are not
produced, the B cell dies by apoptosis. It is estimated that
only one in three attempts at VL-JL joining, and one in three
subsequent attempts at VH-DHJH joining, are productive. As
a result, less than 1/9 (11%) of the early-stage pre-B cells in
the bone marrow progress to maturity and leave the bone
marrow as mature immunocompetent B cells.
Allelic Exclusion Ensures a Single
Antigenic Specificity
B cells, like all somatic cells, are diploid and contain both ma-
ternal and paternal chromosomes. Even though a B cell is
Jκ
G A C T A G G
A G T G
SS
G C G A C T A G G
Ala Thr Arg
G G G A C T A G G
Gly Thr Arg
T G G A C T A G G
Trp Thr Arg
G C G G A C T A G G
Ala Asp Stop
G A C T A G G
Asp Stop
Joining
flexibility
ining of immunoglobulin
κκ λλ HH
κ λ H
** * *
κ λ H
Paternal
chromosomes
Gene rearrangement
Maternal
chromosomes
Maternal H chain
Maternal
κ chain
Maternal
H chain
Paternal
λ chain
FIGURE 5-10 Because of allelic exclusion, the immunoglobulin
heavy- and light-chain genes of only one parental chromosome are
expressed per cell. This process ensures that B cells possess a single
Receptores Fc
55
Antibodies: Structure and Function C H A P T E R 4 97
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
β2m
FcγRI
FcRN
Poly IgR
S
S
S
S
S
S
FcγRII
γγ
CD64
CD32
S
S
S
S
γγ
CD16
FcγRIIIA
β
S
S
S
S
γγ
Fc⑀RI
S
S
S
S
βγγ
CD89
FcαR
FIGURE 4-19 The structure of a number of human Fc-receptors.
The Fc-binding polypeptides are shown in blue and, where present,
accessory signal-transducing polypeptides are shown in green. The
loops in these structures represent portions of the molecule with
the characteristic immunoglobulin-fold structure. These molecules
appear on the plasma membrane as cell-surface antigens and, as in-
dicated in the figure, many have been assigned CD designations (for
clusters of differentiation; see Appendix). [Adapted from M. Daeron,
1999, in The Antibodies, vol. 5, p. 53. Edited by M. Zanetti and J. D.
Capra.]
536d_ch04_076-104 9/6/02 9:02 PM Page 97 mac85 Mac 85:365_smm:Goldsby et al. / Immunology 5e:
Activadores, inhibidores, moduladores,
Receptores Fc
56
Nature Reviews | Immunology
Common -chain
Cell membrane
Immunoglobulin
domain
Name
Function Activating Inhibitory
Structure
Fc RI
Not expressed Not expressed
Not expressed
Not expressed Not expressed
Not expressed
Not expressed
Monocyte, DC
and macrophage
Monocyte, DC, platelet
and macrophage
Monocyte, DC
and macrophage
Monocyte, DC
and macrophage
NK cell NK cell
B cell and
plasma cell
Neutrophil and
eosinophil
Neutrophil, mast
cell and eosinophil
Neutrophil, basophil
and mast cell
Neutrophil
Fc RIIA Fc RIIIA Fc RIIIB
GPI anchor
Fc RIIBFc RIIC
IgG1 IgG2,
IgG3 and IgG4
IgG1 and IgG3
IgG2 IgG4
IgG1 IgG3
IgG4 IgG2
IgG1 IgG2 and
IgG3 IgG4
IgG1 and IgG3
IgG2 and IgG4
IgG1 IgG3
IgG4 IgG2
Lymphoid
Myeloid
Granulocyte
IgG binding affinity
ITIM
Expression
ITAM
Acute-phase proteins
A group of proteins, the plasma
concentration of which changes
in response to trauma,
inflammation and infection.
C-reative protein is the
prototypical acute-phase
protein and binds
phosphocholine on pathogens
Figure 1 | Structure, cellular distribution and IgG isotype-binding affinity of human activating and inhibitory
FcγRs. Human Fc receptors for IgG (FcγRs) differ in function, affinity for the Fc fragment of antibody and in cellular
distribution. There are five activating FcγRs: the high-affinity receptor FcγRI, which can bind monomeric IgG, and
four low-affinity receptors (FcγRIIA, FcγRIIC, FcγRIIIA and FcγRIIIB), which bind only immune-complexed IgG.
Cross-linking of activating FcγRs by immune complexes results in the phosphorylation of immunoreceptor
tyrosine-based activating motifs (ITAMs) that are present either in the cytoplasmic domain of the receptor (FcγRIIA
and FcγRIIC), or in the associated FcR common γ-chain (FcγRI and FcγRIIIA), resulting in an activating signalling
cascade. FcγRIIIB is a glycosylphosphatidylinositol (GPI)-linked receptor that has no cytoplasmic domain. FcγRIIB
is the only inhibitory FcγR. It is a low affinity receptor that binds immune-complexed IgG and contains an
immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain. FcγRIIB cross-linking by immune
REVIEWSFOCUS ON THERAPEUTIC ANTIBODIES
Nature Reviews | Immunology
CD4+
T cell
CD4+
T cell
CD8+
T cell
B cell
Fc RIIB
Fc R
Fc R
T cell-
dependent
a Humoral immunity b Antigen presentation by DCs c Innate immunity
d Hypersensitivity
Inhibition of
activating signals
Suppression of
antigen presentation
Immune
complex
trapping
Fc R-mediated
phagocytosis, superoxide
production, adhesion,
rolling and migration?
Fc R-mediated
phagocytosis, superoxide
production and cytokine
release
IgE-mediated
degranulation,
IL-4 production and
histamine release
SCF-induced
proliferation
TLR-mediated
activation
CD40L
Inhibition
of DC
maturation
Immature
DC
Neutrophil
Macrophage
FDC
CD40
CD40
CD28
CD86
Suppression
of antigen
internalization
and presentation
MHC
class II
MHC
class II
TCR
IgG BCR
Apoptosis
Antigen uptake
Presentation of intact
antigen to B cells?
Germinal centre
Plasma
cell
Mast cell
IgE
Figure 2 | The functions of FcγRIIB. a | Fc receptor IIB for IgG (FcγRIIB) has an important role in controlling
humoral immunity by regulating B cell activation, localization of B cells in the germinal centres, as well as plasma cell
REVIEWSREVIEWS
Las múltiples facetas de la inhibición por
FcgammaRIIB
Nature Reviews | Immunology
CD4+
T cell
CD4+
T cell
CD8+
T cell
B cell
Fc RIIB
Fc R
Fc R
T cell-
dependent
a Humoral immunity b Antigen presentation by DCs c Innate immunity
d Hypersensitivity
Inhibition of
activating signals
Suppression of
antigen presentation
Immune
complex
trapping
Fc R-mediated
phagocytosis, superoxide
production, adhesion,
rolling and migration?
Fc R-mediated
phagocytosis, superoxide
production and cytokine
release
IgE-mediated
degranulation,
IL-4 production and
histamine release
SCF-induced
proliferation
TLR-mediated
activation
CD40L
Inhibition
of DC
maturation
Immature
DC
Neutrophil
Macrophage
FDC
CD40
CD40
CD28
CD86
Suppression
of antigen
internalization
and presentation
MHC
class II
MHC
class II
TCR
IgG BCR
Apoptosis
Antigen uptake
Presentation of intact
antigen to B cells?
Germinal centre
Plasma
cell
Mast cell
IgE
Figure 2 | The functions of FcγRIIB. a | Fc receptor IIB for IgG (FcγRIIB) has an important role in controlling
humoral immunity by regulating B cell activation, localization of B cells in the germinal centres, as well as plasma cell
REVIEWSREVIEWS
Las múltiples facetas de la inhibición por
FcgammaRIIB
Nature Reviews | Immunology
CD4+
T cell
CD4+
T cell
CD8+
T cell
B cell
Fc RIIB
Fc R
Fc R
T cell-
dependent
a Humoral immunity b Antigen presentation by DCs c Innate immunity
d Hypersensitivity
Inhibition of
activating signals
Suppression of
antigen presentation
Immune
complex
trapping
Fc R-mediated
phagocytosis, superoxide
production, adhesion,
rolling and migration?
Fc R-mediated
phagocytosis, superoxide
production and cytokine
release
IgE-mediated
degranulation,
IL-4 production and
histamine release
SCF-induced
proliferation
TLR-mediated
activation
CD40L
Inhibition
of DC
maturation
Immature
DC
Neutrophil
Macrophage
FDC
CD40
CD40
CD28
CD86
Suppression
of antigen
internalization
and presentation
MHC
class II
MHC
class II
TCR
IgG BCR
Apoptosis
Antigen uptake
Presentation of intact
antigen to B cells?
Germinal centre
Plasma
cell
Mast cell
IgE
Figure 2 | The functions of FcγRIIB. a | Fc receptor IIB for IgG (FcγRIIB) has an important role in controlling
humoral immunity by regulating B cell activation, localization of B cells in the germinal centres, as well as plasma cell
REVIEWSREVIEWS
Las múltiples facetas de la inhibición por
FcgammaRIIB
El efecto de IVIG en las enfermedades
autoinmunes
✦ Dependientes de Fab:
✦ ant-idiotipo
✦ modulación de citocinas
✦ neutralización de C3a y C5a
✦ Aumento de expresión de FCgammaRIIB en
Macrófagos
✦ Efectos a través de CSF
✦ Efectos dependiento del nivel de glicosilación
✦ Polimorfismos FcgammaRIIB → SLE
FcγRIIB as a therapeutic target. A monoclonal anti-
body against FcγRIIB (hu2B6-3.5; MacroGenics)
has been used to direct monocyte- or macrophage-
induced cytotoxicity against B cell lymphoma cells150
and plasma cells from patients with systemic light-
antibodies could co-ligate specific antigen and FcγRIIB
raises the prospect of autoantigen-specific suppression
of humoral immunity.
The soluble FcγRIIB3 isoform has been shown to
inhibit the effects of immune complexes in vitro24,26
. A
Table 1 | Current and future therapeutic exploitation of FcγRIIB
Therapeutic strategy Clinical effect Refs
Modulation of FcγRIIB
expression on effector cells
IVIG indirectly increases FcγRIIB expression on ‘effector’ cells 138,139
Infliximab (Remicade; Centocor/Merck) blocks TNF, leading to
increased FcγRIIB expression on monocytes
142
Modulation of IgG-binding to
FcγRIIB
Decrease in affinity of depleting monoclonal antibodies for FcγRIIB
increases efficacy
45,47
Use of FcγRIIB as a direct
therapeutic target
Monoclonal antibody directed against FcγRIIB allowing co-crosslinking
of FcγRIIB may induce apoptosis of B cells and plasma cells in
lymphoma, myeloma or autoimmunity
40,150,151
A bispecific antibody that binds antigen-specific BCR and FcγRIIB
potentially allows targeted inhibition of autoreactive B cells
–
Therapeutic antibody targeting IgE receptor can inhibit mast cell
degranulation and may be useful in the treatment of allergy
152–155
Soluble FcγRIIB may inhibit immune complex-mediated immune
activation and has shown efficacy in a mouse model of SLE
156
BCR, B cell receptor; FcγR, Fc receptor for IgG; IVIG, intravenous immunoglobulin; SLE, systemic lupus erythematosus; TNF, tumour
necrosis factor.
WSWS

Contenu connexe

Tendances

Prueba IFAT (inmunofluorescencia directa e indirecta)
Prueba IFAT (inmunofluorescencia directa e indirecta)Prueba IFAT (inmunofluorescencia directa e indirecta)
Prueba IFAT (inmunofluorescencia directa e indirecta)Luis Perez
 
CLASE #5-COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD-LINFOCITOS B-COMPLEMENTO (INMU...
CLASE #5-COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD-LINFOCITOS B-COMPLEMENTO (INMU...CLASE #5-COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD-LINFOCITOS B-COMPLEMENTO (INMU...
CLASE #5-COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD-LINFOCITOS B-COMPLEMENTO (INMU...Botica Farma Premium
 
Inmunologia reacciones-de precipitacion
Inmunologia  reacciones-de precipitacionInmunologia  reacciones-de precipitacion
Inmunologia reacciones-de precipitacionIPN
 
Aglutinación
AglutinaciónAglutinación
Aglutinacióncmihalez
 
Sintesis De Inmunoglobulinas
Sintesis De InmunoglobulinasSintesis De Inmunoglobulinas
Sintesis De InmunoglobulinasJose Ramirez
 
Reacción antígeno anticuerpo
Reacción antígeno anticuerpoReacción antígeno anticuerpo
Reacción antígeno anticuerpoCat Lunac
 
Linfocitos Th1 Y Th2
Linfocitos Th1 Y Th2Linfocitos Th1 Y Th2
Linfocitos Th1 Y Th2Luis Fernando
 
Streptococcus y Enterococcus
Streptococcus y EnterococcusStreptococcus y Enterococcus
Streptococcus y EnterococcusIPN
 
Laboratorio 3-pruebasbioqumicas
Laboratorio 3-pruebasbioqumicasLaboratorio 3-pruebasbioqumicas
Laboratorio 3-pruebasbioqumicasKimberly Campos
 

Tendances (20)

PRUEBAS INMUNOLÓGICAS DE LABORATORIO
PRUEBAS INMUNOLÓGICAS DE LABORATORIOPRUEBAS INMUNOLÓGICAS DE LABORATORIO
PRUEBAS INMUNOLÓGICAS DE LABORATORIO
 
Genetica viral
Genetica viralGenetica viral
Genetica viral
 
Prueba IFAT (inmunofluorescencia directa e indirecta)
Prueba IFAT (inmunofluorescencia directa e indirecta)Prueba IFAT (inmunofluorescencia directa e indirecta)
Prueba IFAT (inmunofluorescencia directa e indirecta)
 
Listeria
ListeriaListeria
Listeria
 
CLASE #5-COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD-LINFOCITOS B-COMPLEMENTO (INMU...
CLASE #5-COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD-LINFOCITOS B-COMPLEMENTO (INMU...CLASE #5-COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD-LINFOCITOS B-COMPLEMENTO (INMU...
CLASE #5-COMPLEJO MAYOR DE HISTOCOMPATIBILIDAD-LINFOCITOS B-COMPLEMENTO (INMU...
 
Inmunologia reacciones-de precipitacion
Inmunologia  reacciones-de precipitacionInmunologia  reacciones-de precipitacion
Inmunologia reacciones-de precipitacion
 
Aglutinación
AglutinaciónAglutinación
Aglutinación
 
Método ELISA
Método ELISAMétodo ELISA
Método ELISA
 
Inmunodifusion
InmunodifusionInmunodifusion
Inmunodifusion
 
Inmunodifusion radial
Inmunodifusion radialInmunodifusion radial
Inmunodifusion radial
 
Inmunohematología
InmunohematologíaInmunohematología
Inmunohematología
 
Sintesis De Inmunoglobulinas
Sintesis De InmunoglobulinasSintesis De Inmunoglobulinas
Sintesis De Inmunoglobulinas
 
1 Inmunohematologia
1 Inmunohematologia1 Inmunohematologia
1 Inmunohematologia
 
Reacción antígeno anticuerpo
Reacción antígeno anticuerpoReacción antígeno anticuerpo
Reacción antígeno anticuerpo
 
Linfocitos T CD4+
Linfocitos T CD4+Linfocitos T CD4+
Linfocitos T CD4+
 
Linfocitos Th1 Y Th2
Linfocitos Th1 Y Th2Linfocitos Th1 Y Th2
Linfocitos Th1 Y Th2
 
Streptococcus y Enterococcus
Streptococcus y EnterococcusStreptococcus y Enterococcus
Streptococcus y Enterococcus
 
Métodos diagnósticos para las inmunodeficiencias primarias
Métodos diagnósticos para las inmunodeficiencias primariasMétodos diagnósticos para las inmunodeficiencias primarias
Métodos diagnósticos para las inmunodeficiencias primarias
 
Laboratorio 3-pruebasbioqumicas
Laboratorio 3-pruebasbioqumicasLaboratorio 3-pruebasbioqumicas
Laboratorio 3-pruebasbioqumicas
 
Inmunoglobulinas
InmunoglobulinasInmunoglobulinas
Inmunoglobulinas
 

En vedette

2014新女光(2)
2014新女光(2)2014新女光(2)
2014新女光(2)CBCWD
 
2014新女光(4)
2014新女光(4)2014新女光(4)
2014新女光(4)CBCWD
 
La entrevista clínica en la evaluación psicológica
La entrevista clínica en la evaluación psicológicaLa entrevista clínica en la evaluación psicológica
La entrevista clínica en la evaluación psicológicatania martinez narvaez
 
Inmunoglobulinas
InmunoglobulinasInmunoglobulinas
Inmunoglobulinasjmarrugo
 
Kepler and the Elliptic Orbits by Marta Ibáñez Díaz-Peco
Kepler and the Elliptic Orbits by Marta Ibáñez Díaz-PecoKepler and the Elliptic Orbits by Marta Ibáñez Díaz-Peco
Kepler and the Elliptic Orbits by Marta Ibáñez Díaz-PecoNarciso Marín
 
Βαφτιστική φωτογραφία
Βαφτιστική φωτογραφίαΒαφτιστική φωτογραφία
Βαφτιστική φωτογραφίαDimitra Mylonaki
 
Neumonitis por Hipersensibilidad
Neumonitis por HipersensibilidadNeumonitis por Hipersensibilidad
Neumonitis por HipersensibilidadGrupo 2 Ulat
 
18 generalidades de las inmunoglobulinas
18   generalidades de las inmunoglobulinas18   generalidades de las inmunoglobulinas
18 generalidades de las inmunoglobulinasSergio Morales
 
Συγγραφή κόμικ
Συγγραφή κόμικΣυγγραφή κόμικ
Συγγραφή κόμικDimitra Mylonaki
 
Silvia.
Silvia.Silvia.
Silvia.School
 
1191016555 incidenciapa
1191016555 incidenciapa1191016555 incidenciapa
1191016555 incidenciapaAlba mary
 

En vedette (19)

Inmunoglobulinas
InmunoglobulinasInmunoglobulinas
Inmunoglobulinas
 
2014新女光(2)
2014新女光(2)2014新女光(2)
2014新女光(2)
 
Imagens boas vindas
Imagens boas vindasImagens boas vindas
Imagens boas vindas
 
Karl Gauss
Karl GaussKarl Gauss
Karl Gauss
 
2014新女光(4)
2014新女光(4)2014新女光(4)
2014新女光(4)
 
Easter in Greece
Easter in GreeceEaster in Greece
Easter in Greece
 
La entrevista clínica en la evaluación psicológica
La entrevista clínica en la evaluación psicológicaLa entrevista clínica en la evaluación psicológica
La entrevista clínica en la evaluación psicológica
 
Materials Development
Materials DevelopmentMaterials Development
Materials Development
 
Inmunoglobulinas
InmunoglobulinasInmunoglobulinas
Inmunoglobulinas
 
Tromboembolismo pulmonar
Tromboembolismo pulmonarTromboembolismo pulmonar
Tromboembolismo pulmonar
 
Kepler and the Elliptic Orbits by Marta Ibáñez Díaz-Peco
Kepler and the Elliptic Orbits by Marta Ibáñez Díaz-PecoKepler and the Elliptic Orbits by Marta Ibáñez Díaz-Peco
Kepler and the Elliptic Orbits by Marta Ibáñez Díaz-Peco
 
Βαφτιστική φωτογραφία
Βαφτιστική φωτογραφίαΒαφτιστική φωτογραφία
Βαφτιστική φωτογραφία
 
Neumonitis por Hipersensibilidad
Neumonitis por HipersensibilidadNeumonitis por Hipersensibilidad
Neumonitis por Hipersensibilidad
 
Patinadores
PatinadoresPatinadores
Patinadores
 
18 generalidades de las inmunoglobulinas
18   generalidades de las inmunoglobulinas18   generalidades de las inmunoglobulinas
18 generalidades de las inmunoglobulinas
 
Συγγραφή κόμικ
Συγγραφή κόμικΣυγγραφή κόμικ
Συγγραφή κόμικ
 
Ilusin2
Ilusin2Ilusin2
Ilusin2
 
Silvia.
Silvia.Silvia.
Silvia.
 
1191016555 incidenciapa
1191016555 incidenciapa1191016555 incidenciapa
1191016555 incidenciapa
 

Similaire à Antigens, antibodies, and the immune response

Immunoglobulins: structure, functions & types
Immunoglobulins: structure, functions & typesImmunoglobulins: structure, functions & types
Immunoglobulins: structure, functions & typesFarheen Ansari
 
Antibody Structure & Function
Antibody Structure & FunctionAntibody Structure & Function
Antibody Structure & Functionraj kumar
 
Antibody Structure &amp; Function
Antibody Structure &amp; FunctionAntibody Structure &amp; Function
Antibody Structure &amp; Functionraj kumar
 
Structure and function of immunoglobulins(antibodies) Likhith K
Structure and function of immunoglobulins(antibodies) Likhith KStructure and function of immunoglobulins(antibodies) Likhith K
Structure and function of immunoglobulins(antibodies) Likhith KLIKHITHK1
 
Antibodies (immunoglobulin)
Antibodies (immunoglobulin)Antibodies (immunoglobulin)
Antibodies (immunoglobulin)UMAMAHISHAQ
 
immunoglobuinstheirfunctions-150920084551-lva1-app6892.pdf
immunoglobuinstheirfunctions-150920084551-lva1-app6892.pdfimmunoglobuinstheirfunctions-150920084551-lva1-app6892.pdf
immunoglobuinstheirfunctions-150920084551-lva1-app6892.pdfOsmanHassan35
 
Immunoglobuins & their functions
Immunoglobuins & their functionsImmunoglobuins & their functions
Immunoglobuins & their functionsDr. Roshni Maurya
 
Immunoglobulins and its diversity
Immunoglobulins and its diversityImmunoglobulins and its diversity
Immunoglobulins and its diversityVanshika Srivastava
 
Epitopes and structure of antibodies.pptx
Epitopes and structure of antibodies.pptxEpitopes and structure of antibodies.pptx
Epitopes and structure of antibodies.pptxjolly53
 
Antibody1111111111111111111
Antibody1111111111111111111Antibody1111111111111111111
Antibody1111111111111111111braveheart1212
 
Antibody therapy and engineering
Antibody therapy and engineeringAntibody therapy and engineering
Antibody therapy and engineeringGrace Felciya
 
1. Structure of Immunoglobulin.pptx
1. Structure of Immunoglobulin.pptx1. Structure of Immunoglobulin.pptx
1. Structure of Immunoglobulin.pptxssuserf90b9b
 
Antibody structure , functions and classification
Antibody structure , functions and classificationAntibody structure , functions and classification
Antibody structure , functions and classificationPuneetKohli19
 

Similaire à Antigens, antibodies, and the immune response (20)

G.2014-immuno~ (3.antibody-lyj)
 G.2014-immuno~ (3.antibody-lyj) G.2014-immuno~ (3.antibody-lyj)
G.2014-immuno~ (3.antibody-lyj)
 
Dako handbook
Dako handbookDako handbook
Dako handbook
 
Immunoglobulins: structure, functions & types
Immunoglobulins: structure, functions & typesImmunoglobulins: structure, functions & types
Immunoglobulins: structure, functions & types
 
Antibody Structure & Function
Antibody Structure & FunctionAntibody Structure & Function
Antibody Structure & Function
 
Antibody Structure &amp; Function
Antibody Structure &amp; FunctionAntibody Structure &amp; Function
Antibody Structure &amp; Function
 
Structure and function of immunoglobulins(antibodies) Likhith K
Structure and function of immunoglobulins(antibodies) Likhith KStructure and function of immunoglobulins(antibodies) Likhith K
Structure and function of immunoglobulins(antibodies) Likhith K
 
Immunoglobulin
ImmunoglobulinImmunoglobulin
Immunoglobulin
 
Antibodies
AntibodiesAntibodies
Antibodies
 
Antibodies (immunoglobulin)
Antibodies (immunoglobulin)Antibodies (immunoglobulin)
Antibodies (immunoglobulin)
 
Antibodies
AntibodiesAntibodies
Antibodies
 
immunoglobuinstheirfunctions-150920084551-lva1-app6892.pdf
immunoglobuinstheirfunctions-150920084551-lva1-app6892.pdfimmunoglobuinstheirfunctions-150920084551-lva1-app6892.pdf
immunoglobuinstheirfunctions-150920084551-lva1-app6892.pdf
 
Immunoglobuins & their functions
Immunoglobuins & their functionsImmunoglobuins & their functions
Immunoglobuins & their functions
 
Immunoglobulins and its diversity
Immunoglobulins and its diversityImmunoglobulins and its diversity
Immunoglobulins and its diversity
 
Antibodies
AntibodiesAntibodies
Antibodies
 
Epitopes and structure of antibodies.pptx
Epitopes and structure of antibodies.pptxEpitopes and structure of antibodies.pptx
Epitopes and structure of antibodies.pptx
 
Antibody1111111111111111111
Antibody1111111111111111111Antibody1111111111111111111
Antibody1111111111111111111
 
Antibody.pptx
Antibody.pptxAntibody.pptx
Antibody.pptx
 
Antibody therapy and engineering
Antibody therapy and engineeringAntibody therapy and engineering
Antibody therapy and engineering
 
1. Structure of Immunoglobulin.pptx
1. Structure of Immunoglobulin.pptx1. Structure of Immunoglobulin.pptx
1. Structure of Immunoglobulin.pptx
 
Antibody structure , functions and classification
Antibody structure , functions and classificationAntibody structure , functions and classification
Antibody structure , functions and classification
 

Plus de cursohemoderivados

2016 alternativas terapéuticas para la urgencia hemorragica
2016 alternativas terapéuticas para la urgencia hemorragica2016 alternativas terapéuticas para la urgencia hemorragica
2016 alternativas terapéuticas para la urgencia hemorragicacursohemoderivados
 
Programa_ XVIII curso de farmacoterapia 2014 (4)
Programa_ XVIII curso de farmacoterapia 2014 (4)Programa_ XVIII curso de farmacoterapia 2014 (4)
Programa_ XVIII curso de farmacoterapia 2014 (4)cursohemoderivados
 
Tratamiento de hemorrágia grave
Tratamiento de hemorrágia graveTratamiento de hemorrágia grave
Tratamiento de hemorrágia gravecursohemoderivados
 
Utilización de Concentrados de Fibrinógeno...
Utilización de Concentrados de Fibrinógeno...Utilización de Concentrados de Fibrinógeno...
Utilización de Concentrados de Fibrinógeno...cursohemoderivados
 
Aspectos prácticos de la participación de los servicios de farmacia...
Aspectos prácticos de la participación de los servicios de farmacia...Aspectos prácticos de la participación de los servicios de farmacia...
Aspectos prácticos de la participación de los servicios de farmacia...cursohemoderivados
 
Participación del Servicio de Farmacia en el uso de inmunoglobulinas en pedia...
Participación del Servicio de Farmacia en el uso de inmunoglobulinas en pedia...Participación del Servicio de Farmacia en el uso de inmunoglobulinas en pedia...
Participación del Servicio de Farmacia en el uso de inmunoglobulinas en pedia...cursohemoderivados
 
Aspectos éticos del tratamiento con hemoderivados
Aspectos éticos del tratamiento con hemoderivadosAspectos éticos del tratamiento con hemoderivados
Aspectos éticos del tratamiento con hemoderivadoscursohemoderivados
 
Hemoderivados (V): Productos de origen recombinante
Hemoderivados (V): Productos de origen recombinanteHemoderivados (V): Productos de origen recombinante
Hemoderivados (V): Productos de origen recombinantecursohemoderivados
 
Hemoderivados (IV): Otros hemoderivados de interés terapéutico...
Hemoderivados (IV): Otros hemoderivados de interés terapéutico...Hemoderivados (IV): Otros hemoderivados de interés terapéutico...
Hemoderivados (IV): Otros hemoderivados de interés terapéutico...cursohemoderivados
 
Utilización de hemoderivados en enfermedades rara o de baja prevalencia...
Utilización de hemoderivados en enfermedades rara o de baja prevalencia...Utilización de hemoderivados en enfermedades rara o de baja prevalencia...
Utilización de hemoderivados en enfermedades rara o de baja prevalencia...cursohemoderivados
 
Hemoderivados (III): Albúmina
Hemoderivados (III): AlbúminaHemoderivados (III): Albúmina
Hemoderivados (III): Albúminacursohemoderivados
 
Coagulopatías adquiridas. Indicaciones y criterios de utilización; seguridad ...
Coagulopatías adquiridas. Indicaciones y criterios de utilización; seguridad ...Coagulopatías adquiridas. Indicaciones y criterios de utilización; seguridad ...
Coagulopatías adquiridas. Indicaciones y criterios de utilización; seguridad ...cursohemoderivados
 
Pacientes hemofílicos con inhibidor
Pacientes hemofílicos con inhibidorPacientes hemofílicos con inhibidor
Pacientes hemofílicos con inhibidorcursohemoderivados
 
Coagulopatías congénitas (hemofilia). Indicaciones y criterios de utilización...
Coagulopatías congénitas (hemofilia). Indicaciones y criterios de utilización...Coagulopatías congénitas (hemofilia). Indicaciones y criterios de utilización...
Coagulopatías congénitas (hemofilia). Indicaciones y criterios de utilización...cursohemoderivados
 
Hemoderivados (II): Concentrados de los factores...Características técnicas d...
Hemoderivados (II): Concentrados de los factores...Características técnicas d...Hemoderivados (II): Concentrados de los factores...Características técnicas d...
Hemoderivados (II): Concentrados de los factores...Características técnicas d...cursohemoderivados
 
Indicaciones y criterios de utilización...Inmunodeficiencias
Indicaciones y criterios de utilización...InmunodeficienciasIndicaciones y criterios de utilización...Inmunodeficiencias
Indicaciones y criterios de utilización...Inmunodeficienciascursohemoderivados
 
Indicaciones y criterios de utilización...Procesos autoinmunes
Indicaciones y criterios de utilización...Procesos autoinmunesIndicaciones y criterios de utilización...Procesos autoinmunes
Indicaciones y criterios de utilización...Procesos autoinmunescursohemoderivados
 

Plus de cursohemoderivados (20)

2016 alternativas terapéuticas para la urgencia hemorragica
2016 alternativas terapéuticas para la urgencia hemorragica2016 alternativas terapéuticas para la urgencia hemorragica
2016 alternativas terapéuticas para la urgencia hemorragica
 
Hemoderivados 16 04_2014
Hemoderivados 16 04_2014Hemoderivados 16 04_2014
Hemoderivados 16 04_2014
 
2014 pk nuria padulles
2014 pk nuria padulles2014 pk nuria padulles
2014 pk nuria padulles
 
Aat hemoderivados mayo2014
Aat hemoderivados mayo2014Aat hemoderivados mayo2014
Aat hemoderivados mayo2014
 
Programa_ XVIII curso de farmacoterapia 2014 (4)
Programa_ XVIII curso de farmacoterapia 2014 (4)Programa_ XVIII curso de farmacoterapia 2014 (4)
Programa_ XVIII curso de farmacoterapia 2014 (4)
 
Tratamiento de hemorrágia grave
Tratamiento de hemorrágia graveTratamiento de hemorrágia grave
Tratamiento de hemorrágia grave
 
Utilización de Concentrados de Fibrinógeno...
Utilización de Concentrados de Fibrinógeno...Utilización de Concentrados de Fibrinógeno...
Utilización de Concentrados de Fibrinógeno...
 
Aspectos prácticos de la participación de los servicios de farmacia...
Aspectos prácticos de la participación de los servicios de farmacia...Aspectos prácticos de la participación de los servicios de farmacia...
Aspectos prácticos de la participación de los servicios de farmacia...
 
Participación del Servicio de Farmacia en el uso de inmunoglobulinas en pedia...
Participación del Servicio de Farmacia en el uso de inmunoglobulinas en pedia...Participación del Servicio de Farmacia en el uso de inmunoglobulinas en pedia...
Participación del Servicio de Farmacia en el uso de inmunoglobulinas en pedia...
 
Aspectos éticos del tratamiento con hemoderivados
Aspectos éticos del tratamiento con hemoderivadosAspectos éticos del tratamiento con hemoderivados
Aspectos éticos del tratamiento con hemoderivados
 
Hemoderivados (V): Productos de origen recombinante
Hemoderivados (V): Productos de origen recombinanteHemoderivados (V): Productos de origen recombinante
Hemoderivados (V): Productos de origen recombinante
 
Hemoderivados (IV): Otros hemoderivados de interés terapéutico...
Hemoderivados (IV): Otros hemoderivados de interés terapéutico...Hemoderivados (IV): Otros hemoderivados de interés terapéutico...
Hemoderivados (IV): Otros hemoderivados de interés terapéutico...
 
Utilización de hemoderivados en enfermedades rara o de baja prevalencia...
Utilización de hemoderivados en enfermedades rara o de baja prevalencia...Utilización de hemoderivados en enfermedades rara o de baja prevalencia...
Utilización de hemoderivados en enfermedades rara o de baja prevalencia...
 
Hemoderivados (III): Albúmina
Hemoderivados (III): AlbúminaHemoderivados (III): Albúmina
Hemoderivados (III): Albúmina
 
Coagulopatías adquiridas. Indicaciones y criterios de utilización; seguridad ...
Coagulopatías adquiridas. Indicaciones y criterios de utilización; seguridad ...Coagulopatías adquiridas. Indicaciones y criterios de utilización; seguridad ...
Coagulopatías adquiridas. Indicaciones y criterios de utilización; seguridad ...
 
Pacientes hemofílicos con inhibidor
Pacientes hemofílicos con inhibidorPacientes hemofílicos con inhibidor
Pacientes hemofílicos con inhibidor
 
Coagulopatías congénitas (hemofilia). Indicaciones y criterios de utilización...
Coagulopatías congénitas (hemofilia). Indicaciones y criterios de utilización...Coagulopatías congénitas (hemofilia). Indicaciones y criterios de utilización...
Coagulopatías congénitas (hemofilia). Indicaciones y criterios de utilización...
 
Hemoderivados (II): Concentrados de los factores...Características técnicas d...
Hemoderivados (II): Concentrados de los factores...Características técnicas d...Hemoderivados (II): Concentrados de los factores...Características técnicas d...
Hemoderivados (II): Concentrados de los factores...Características técnicas d...
 
Indicaciones y criterios de utilización...Inmunodeficiencias
Indicaciones y criterios de utilización...InmunodeficienciasIndicaciones y criterios de utilización...Inmunodeficiencias
Indicaciones y criterios de utilización...Inmunodeficiencias
 
Indicaciones y criterios de utilización...Procesos autoinmunes
Indicaciones y criterios de utilización...Procesos autoinmunesIndicaciones y criterios de utilización...Procesos autoinmunes
Indicaciones y criterios de utilización...Procesos autoinmunes
 

Dernier

Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Dipal Arora
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...Neha Kaur
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...hotbabesbook
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Call Girls in Nagpur High Profile
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...narwatsonia7
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Servicevidya singh
 
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiLow Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiSuhani Kapoor
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escortsvidya singh
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableNehru place Escorts
 
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsBangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsGfnyt
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipurparulsinha
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...indiancallgirl4rent
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...astropune
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...chandars293
 

Dernier (20)

Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 9907093804 Top Class Call Girl Service Available
 
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls JaipurRussian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
Russian Call Girls in Jaipur Riya WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
VIP Russian Call Girls in Varanasi Samaira 8250192130 Independent Escort Serv...
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...Bangalore Call Girls Nelamangala Number 7001035870  Meetin With Bangalore Esc...
Bangalore Call Girls Nelamangala Number 7001035870 Meetin With Bangalore Esc...
 
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort ServicePremium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
Premium Call Girls Cottonpet Whatsapp 7001035870 Independent Escort Service
 
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service KochiLow Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
Low Rate Call Girls Kochi Anika 8250192130 Independent Escort Service Kochi
 
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore EscortsCall Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
Call Girls Horamavu WhatsApp Number 7001035870 Meeting With Bangalore Escorts
 
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Siliguri Just Call 9907093804 Top Class Call Girl Service Available
 
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls AvailableVip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
Vip Call Girls Anna Salai Chennai 👉 8250192130 ❣️💯 Top Class Girls Available
 
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual NeedsBangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
Bangalore Call Girl Whatsapp Number 100% Complete Your Sexual Needs
 
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls JaipurCall Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
Call Girls Service Jaipur Grishma WhatsApp ❤8445551418 VIP Call Girls Jaipur
 
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Kochi Just Call 9907093804 Top Class Call Girl Service Available
 
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
(Rocky) Jaipur Call Girl - 09521753030 Escorts Service 50% Off with Cash ON D...
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...Top Rated  Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
Top Rated Hyderabad Call Girls Erragadda ⟟ 6297143586 ⟟ Call Me For Genuine ...
 

Antigens, antibodies, and the immune response

  • 1. ! Antígenos y anticuerpos Antígenos y epitopos Estructura de los anticuerpos Unión antígeno-anticuerpo Efectos mediados por anticuerpos Clases de anticuerpos y efectos biológicos Determinantes antigénicos de las Igs La generación de diversidad de los Acs BCR La superfamilia de las Igs
  • 2. Immunogenicidad y antigenicidad 2 Caso del hápteno: por si solo no inmunogénico, pero si con un carrier • Antígeno: es toda sustancia que reacciona con los elementos de defensa de la respuesta inmune, es lo que “detectamos” en el laboratorio con los anticuerpos y las células inmunes. • Excepciones •No toda sustancia es inmunogénica. •El antígeno no es siempre la substancia inductora de la respuesta
  • 3. 3 antigens by receptors of adaptive immunity, which can lead to autoimmune disorders. Like antibodies and T-cell recep- tors, pattern-recognition receptors are proteins. However, the genes that encode PRRs are present in the germline of the organism. In contrast, the genes that encode the enormous diversity of antibodies and TCRs are not present in the germline. They are generated by an extraordinary process of ancient—toll-like receptors mediate the recognition and generation of defensive responses to pathogens in organisms as widely separated in evolutionary history as humans and flies. Typically, signals transduced through the TLRs cause transcriptional activation and the synthesis and secretion of cytokines, which promote inflammatory responses that bring macrophages and neutrophils to sites of inflammation. 70 P A R T I I Generation of B-Cell and T-Cell Responses TABLE 3-6 Reactivity of antisera with various haptens REACTIVITY WITH Antiserum against Aminobenzene (aniline) o-Aminobenzoic acid m-Aminobenzoic acid p-Aminobenzoic acid Aminobenzene ϩ 0 0 0 o-Aminobenzoic acid 0 ϩ 0 0 m-Aminobenzoic acid 0 0 ϩ 0 p-Aminobenzoic acid 0 0 0 + KEY: 0 ϭ no reactivity; ϩ ϭ strong reactivity SOURCE: Based on K. Landsteiner, 1962, The Specificity of Serologic Reactions, Dover Press. Modified by J. Klein, 1982, Immunology: The Science of Self-Nonself Discrimination, John Wiley. NH2 NH2 COOH NH2 COOH NH2 COOH 8536d_ch03_057-075 8/7/02 9:18 AM Page 70 mac79 Mac 79:45_BW:Goldsby et al. / Immunology 5e:
  • 4. Estructura básica de las Ig 4 CH on the heavy chain.Antibodies are gl exceptions, the sites of attachment for c stricted to the constant region. We do n stand the role played by glycosylation probably increases the solubility of the priate glycosylation, or its absence, affe antibodies are cleared from the serum, a ciency of interaction between antibody system and between antibodies and Fc re Chemical and Enzymatic Meth Basic Antibody Structure Our knowledge of basic antibody struct a variety of experimental observations. W fraction of serum is separated into high- weight fractions, antibodies of around ignated as immunoglobulin G (IgG) ar molecular-weight fraction. In a key exp tion of IgG with the enzyme papain p ments, two of which were identical fragm was quite different (Figure 4-3). The tw Antibodies: Structure and Function C βα γ Globulins Albumin Absorbance Migration distance + − FIGURE 4-1 Experimental demonstration that most antibodies are in the ␥-globulin fraction of serum proteins. After rabbits were im- munized with ovalbumin (OVA), their antisera were pooled and elec- trophoresed, which separated the serum proteins according to their electric charge and mass. The blue line shows the electrophoretic pattern of untreated antiserum. The black line shows the pattern of 8536d_ch04_076-104 9/6/02 9:02 PM Page 77 mac85 Mac 85:365_smm:Goldsby et al. / Immunology 5e:
  • 5. Estructura elemental Igs ✦ Bivalentes ✦ Fc y Fab ✦ Dos cadenas pesadas y dos ligeras ✦ Dominio básico de Ig de unos 110 ✦ Puentes disulfuro ✦ Bisagra 5 polypeptides of molecular weight 50,000 or more. Like the antibody molecules they constitute, H and L chains are also called immunoglobulins. Each light chain is bound to a heavy chain by a disulfide bond, and by such noncovalent in- teractions as salt linkages, hydrogen bonds, and hydrophobic bonds, to form a heterodimer (H-L). Similar noncovalent in- teractions and disulfide bridges link the two identical heavy and light (H-L) chain combinations to each other to form the basic four-chain (H-L)2 antibody structure, a dimer of dimers. As we shall see, the exact number and precise posi- tions of these interchain disulfide bonds differs among anti- body classes and subclasses. The first 110 or so amino acids of the amino-terminal re- gion of a light or heavy chain varies greatly among antibodies of different specificity. These segments of highly variable se- quence are called V regions:VL in light chains andVH in heavy. All of the differences in specificity displayed by different anti- a variety of experimental observations. When the ␥-globulin fraction of serum is separated into high- and low-molecular- weight fractions, antibodies of around 150,000-MW, des- ignated as immunoglobulin G (IgG) are found in the low- molecular-weight fraction. In a key experiment, brief diges- tion of IgG with the enzyme papain produced three frag- ments, two of which were identical fragments and a third that was quite different (Figure 4-3). The two identical fragments Migration distance FIGURE 4-1 Experimental demonstration that most antibodies are in the ␥-globulin fraction of serum proteins. After rabbits were im- munized with ovalbumin (OVA), their antisera were pooled and elec- trophoresed, which separated the serum proteins according to their electric charge and mass. The blue line shows the electrophoretic pattern of untreated antiserum. The black line shows the pattern of antiserum that was incubated with OVA to remove anti-OVA anti- body and then electrophoresed. [Adapted from A. Tiselius and E. A. Kabat, 1939, J. Exp. Med. 69:119, with copyright permission of the Rockefeller University Press.] S S S S S S S S S S S S CHO CHO COO– Light chain κ or λ CH2CH3 S SS S VH CH 1 S S S S VL CL S S S S C H1 V H S S S S C L V L S S S S Heavy chain µ,γ,α,δ, or ⑀ Hinge NH 3 + NH 3 + NH 3 +NH 3 + COO– COO–COO – Biological activity Antigen binding CH2CH3 446 214 FIGURE 4-2 Schematic diagram of structure of immunoglobulins derived from amino acid sequencing studies. Each heavy and light chain in an immunoglobulin molecule contains an amino-terminal
  • 6. Fragmentos típicos de las Igs 6 78 P A R T I I Generation of B-Cell and T-Cell Responses S Disulfide bonds L chain L chains SHHS Pepsin digestion F(ab')2 + + Fc fragments Fc Fab Fab Mercaptoethanol reduction H chain H chains S S S S S S S S S S S S S S S S S S S SH SH S S S S Papain digestion SHHS + SH SH + + FIGURE 4-3 Prototype structure of IgG, showing chain structure and interchain disulfide bonds. The fragments produced by various treatments are also indicated. Light (L) chains are in gray and heavy (H) chains in blue. http://bcs.whfreeman.com/immunology6e/content/cat_030/immunoglobulin/start.html Visión 3
  • 7. 7 across the faces of the ␤ sheets (Figure 4-8). Interactions form links between identical domains (e.g., CH2/CH2, CH3/CH3, and CH4/CH4) and between nonidentical do- mains (e.g., VH/VL and CH1/CL). The structure of the im- munoglobulin fold also allows for variable lengths and sequences of amino acids that form the loops connecting the ␤ strands. As the next section explains, some of the loop sequences of the VH and VL domains contain variable amino acids and constitute the antigen-binding site of the molecule. FIGURE 4-6 (a) Heavy and light chains are folded into domains, each containing about 110 amino acid residues and an intrachain disulfide bond that forms a loop of 60 amino acids. The amino- erminal domains, corresponding to the V regions, bind to antigen; CHO S S S SS S S S S S S S S S S S S SS S S S S S CH2 (a) γ, δ, α (b) ␮, ⑀ CH3 CHO Hinge 261 321 367 425 446 214 200194 144134 22 C H1 V H C L V L SSSS SSSS Biological activity No hinge region Antigen binding 88 CH2 CH3 CH4 Additional domain effector functions are mediated by the other domains. (b) The ␮ and ⑀ heavy chains contain an additional domain that replaces the hinge region. Isotipos Inmunoglobulinas http://bcs.whfreeman.com/immunology6e/content/cat_030/immunoglobulin/start.html
  • 8. 8 Clase Cadena pesada Subclase Cadena Ligera IgG gamma gamma-1, 2, 3, 4 kappa o lambda IgM mu No Kappa o lambda IgA alfa alfa-1; alfa 2 Kappa o lambda IgD delta No Kappa o lambda IgE épsilon No Kappa o lambda Isotipos Inmunoglobulinas
  • 9. Formación del lugar de unión al Ag: CDRs 9 82 P A R T I I Generation of B-Cell and T-Cell Responses FIGURE 4-7 (a) Diagram of an immunoglobulin light chain depict- (a) (b) CL domain Disulfide bond β strands β-strand arrangement Loops VL domain NH2 NH2 COOH COOH COOH CDRs CDRs NH2 CDRs (complementarity-determining regions). Heavy-chain do-
  • 10. Complementariedad 10 Diferentes tipos de unión Tamaño area de unión, de una cadena lateral de 15 aminoácidos Antigens C H A P T E R 3 65 FIGURE 3-5 Computer simulation of an interaction between anti- body and influenza virus antigen, a globular protein. (a) The antigen (yellow) is shown interacting with the antibody molecule; the variable region of the heavy chain is red, and the variable region of the light Antigen Antibody (a) (b) chain is blue. (b) The complementarity of the two molecules is re- vealed by separating the antigen from the antibody by 8 Å. [Based on x-ray crystallography data collected by P. M. Colman and W. R. Tulip. From G. J. V. H. Nossal, 1993, Sci. Am. 269(3):22.]
  • 11. Variabilidad en los CDRs y unión 11 large globular protein antigens or with a number of smaller antigens including carbohydrates, nucleic acids, peptides, and small haptens. In addition, complete structures have been obtained for several intact monoclonal antibodies. X- ray diffraction analysis of antibody-antigen complexes has shown that several CDRs may make contact with the antigen, and a number of complexes have been observed in which all six CDRs contact the antigen.In general,more residues in the heavy-chain CDRs appear to contact antigen than in the light-chain CDRs. Thus the VH domain often contributes mains of human antibodies with different specificities. Three hyper- variable (HV) regions, also called complementarity-determining regions (CDRs), are present in both heavy- and light-chain V do- mains. As shown in Figure 4-7 (right), the three HV regions in the ture. The same is true of the heavy-chain V domain. [Based on E. A. Kabat et al., 1977, Sequence of Immunoglobulin Chains, U.S. Dept. of Health, Education, and Welfare.] (a) (b) FIGURE 4-10 (a) Side view of the three-dimensional structure of the combining site of an angiotensin II–Fab complex. The peptide is in red. The three heavy-chain CDRs (H1, H2, H3) and three light- chain CDRs (L1, L2, L3) are each shown in a different color. All six CDRs contain side chains, shown in yellow, that are within van der Waals contact of the angiotensin peptide. (b) Side view of the van der Waals surface of contact between angiotensin II and Fab frag- ment. [From K. C. Garcia et al., 1992, Science 257:502; courtesy of M. Amzel, Johns Hopkins University.] Visión de la unión de un péptido (angiotensina) a un fragmento Fab. Dos regiones determinantes de complementariedad de la cadena ligera (L1 y L2 y tres de la cadena pesada (H1, H2, H3) forman la cavidad. A la derecha representación volumétrica
  • 12. Regiones Hipervariables y CDRs 12 84 P A R T I I Generation of B-Cell and T-Cell Responses Residue position number VL domain 150 12020 10060400 80 Variability 100 50 0 CDR2 CDR3CDR1 Variability 150 1007550250 120 60 30 0 Residue position number VH domain CDR1 CDR2 CDR3 FIGURE 4-9 Variability of amino acid residues in the VL and VH do- mains of human antibodies with different specificities. Three hyper- variable (HV) regions, also called complementarity-determining regions (CDRs), are present in both heavy- and light-chain V do- mains. As shown in Figure 4-7 (right), the three HV regions in the light-chain V domain are brought into proximity in the folded struc- ture. The same is true of the heavy-chain V domain. [Based on E. A. Kabat et al., 1977, Sequence of Immunoglobulin Chains, U.S. Dept. of Health, Education, and Welfare.] 36d_ch04_076-104 9/6/02 9:02 PM Page 84 mac85 Mac 85:365_smm:Goldsby et al. / Immunology 5e:
  • 14. Epitopos continuos y no continuos 14 V I S U A L I Z I N G C O N C E P T S FIGURE 3-6 Protein antigens usually contain both sequential and nonsequential B-cell epitopes. (a) Diagram of sperm whale myoglobin showing locations of five sequential B-cell epitopes (blue). (b) Ribbon diagram of hen egg-white lysozyme showing residues that compose one nonsequential (conformational) epi- tope. Residues that contact antibody light chains, heavy chains, or both are shown in red, blue, and white, respectively. These residues are widely spaced in the amino acid sequence but are brought into proximity by folding of the protein. [Part (a) adapted from M. Z. Atassi and A. L. Kazim. 1978, Adv. Exp. Med. Biol. 98:9; part (b) from W. G. Laver et al., 1990, Cell 61:554.] Heme (145) 146 −151 COOH (a) (b) NH2 15−21 (22) 56−62 113−119 FIGURE 3-5 Computer simulation of an interaction between anti- body and influenza virus antigen, a globular protein. (a) The antigen (yellow) is shown interacting with the antibody molecule; the variable region of the heavy chain is red, and the variable region of the light chain is blue. (b) The complementarity of the two molecules is re- vealed by separating the antigen from the antibody by 8 Å. [Based on x-ray crystallography data collected by P. M. Colman and W. R. Tulip. From G. J. V. H. Nossal, 1993, Sci. Am. 269(3):22.] Mioglobina de ballena, los anticuerpos reaccionan con varios epitopos a lo largo de la cadena Lisozima de la albúmina de huevo de gallina, el epitopo esta formado por aa de diferentes parte de la cadena A la formación de los epitopos B contribuyen la estructura secundaria, terciaria y cuaternaria de las proteínas Un antisuero contiene múltiples anticuerpos que reconocen varios epitopos
  • 15. ! Interacciones Ag-Ac Tipos de unión (enlace) Medida de la afinidad
  • 16. Naturaleza de la reacción Ag-Ac ✦ Puentes de hidrógeno ✦ Fuerzas electrostáticas (iones) ✦ Interacciones hidrofóbicas ✦ Fuerzas de van der Waals ✦ Todas estas fuerzas actúan a muy corta distancias por lo que tiene que haber complementaridad estérica (3D) ✦ No hay enlaces covalentes 16
  • 17. Reacción Ag-Ac 17 Ag + Ac Ag-Ab k1 k-1 k1 k-1 Constante afinidad Ka where k1 is the forward (association) rate constant and kϪ1 is the reverse (dissociation) rate constant. The ratio k1/kϪ1 is the association constant Ka (i.e., k1/kϪ1 ϭ Ka), a measure of affinity. Because Ka is the equilibrium constant for the above reaction, it can be calculated from the ratio of the molar con- centration of bound Ag-Ab complex to the molar concentra- tions of unbound antigen and antibody at equilibrium as follows: Ka ϭ The value of Ka varies for different Ag-Ab complexes and depends upon both k1, which is expressed in units of liters/mole/second (L/mol/s), and kϪ1, which is expressed in units of 1/second. For small haptens, the forward rate con- stant can be extremely high; in some cases, k1 can be as high [Ag-Ab] ᎏ [Ab][Ag] the associa For examp one fifth th times great cein antibo fold higher Ag-Ab com L/mol; high as 1011 L/m For som body comp The equilib cal of Ka En Ley de acción de masas aplicada a la reacción Ag con
  • 18. Naturaleza de la reaccion Ag-Ac 18 S U A L I Z I N G C O N C E P T S ANTIGEN CH2 ANTIBODY OH ••• O C CH2 CH2 NH2 Hydrogen bond CH2 CH2 NH3 + –O CH2 CH2C Ionic bond O CH2 CH3 CH CH3 CH3 +H3N CH2CHCH3 van der Waals interactionsCH CHCH3 CH CH3 O O– CH2 C CH2 Ionic bond CH3 Hydrophobic interactions Bond = enlace
  • 19. Ejemplos de afinidades 19 Anticuerpos Ligando K1 asociación K-1 separación Ka afinidad Kd disociación Anti-DNP e-DNP-Lisina 8x107 1 1x107 1x10--7 Anti- fluoresceina Fluorescein 4x108 5x10-3 1x1011 1x10-11 Anti-BSA BSA 3x105 2x10-3 1,7x108 5,9x10-9
  • 20. Medida experimental de la afinidad 20 and that is small enough to pass through the semipermeable membrane is placed in the other compartment (Figure 6-2). Suitable ligands include haptens,oligosaccharides,and oligo- peptides. In the absence of antibody, ligand added to com- partment B will equilibrate on both sides of the membrane (Figure 6-2a). In the presence of antibody, however, part will be greater in the compartment containing antibody (Fig- ure 6-2b). The difference in the ligand concentration in the two compartments represents the concentration of ligand bound to the antibody (i.e.,the concentration of Ag-Ab com- plex). The higher the affinity of the antibody, the more ligand is bound. FIGURE 6-2 Determination of antibody affinity by equilibrium dial- sured. (b) Plot of concentration of ligand in each compartment with (a) Radiolabeled ligand A B A B (b) Concentrationofligand,M 100 50 100 50 ControlControl: No antibody present (ligand equilibrates on both sides equally) ExperimentalExperimental: Antibody in A (at equilibrium more ligand in A due to Ab binding) Ligand bound by antibody 2 4 6 8 Time, h Initial state Equilibrium A B A B Initial state Equilibrium DAntibody A B A B peptides. In the absence of antibody, ligand added to com- partment B will equilibrate on both sides of the membrane (Figure 6-2a). In the presence of antibody, however, part bound to the antibody (i.e.,the concentration of Ag-Ab com plex). The higher the affinity of the antibody, the more ligand is bound. FIGURE 6-2 Determination of antibody affinity by equilibrium dial- sured. (b) Plot of concentration of ligand in each compartment wit (a) Radiolabeled ligand A B A B (b) Concentrationofligand,M 100 50 100 50 ControlControl: No antibody present (ligand equilibrates on both sides equally) ExperimentalExperimental: Antibody in A (at equilibrium more ligand in A due to Ab binding) Ligand boun by antibody 2 4 6 8 Time, h Initial state Equilibrium A B A B Initial state Equilibrium DAntibody A B A B binding = unión,
  • 21. Avidez y afinidad ✦ Avidez, es la fuerza con la que al Ag se une al Ac ➡ Además de la afinidad de cada lugar de unión, depende de la valencia ➡ Es el producto de las afinidades individuales ✦ Es mejor medida de la capacidad total de un Ac al antígeno ✦ IgM : Ka x10, medir experimentalmente! 21
  • 22. Efectos mediados por los Acs 22 these areas are now more widely called complementarity de- termining regions (CDRs). The three heavy-chain and three light-chain CDR regions are located on the loops that con- nect the ␤ strands of the VH and VL domains. The remainder of the VL and VH domains exhibit far less variation; these stretches are called the framework regions (FRs). The wide range of specificities exhibited by antibodies is due to varia- tions in the length and amino acid sequence of the six CDRs in each Fab fragment. The framework region acts as a scaf- fold that supports these six loops. The three-dimensional structure of the framework regions of virtually all antibodies analyzed to date can be superimposed on one another; in contrast, the hypervariable loops (i.e., the CDRs) have differ- ent orientations in different antibodies. CDRs Bind Antigen The finding that CDRs are the antigen-binding regions of antibodies has been confirmed directly by high-resolution x-ray crystallography of antigen-antibody complexes. Crys- tallographic analysis has been completed for many Fab fragments of monoclonal antibodies complexed either with Antibodies: Structure and Function C H A P T E R 4 83 FIGURE 4-8 Interactions between domains in the separate chains of an immunoglobulin molecule are critical to its quaternary struc- ture. (a) Model of IgG molecule, based on x-ray crystallographic analysis, showing associations between domains. Each solid ball rep- resents an amino acid residue; the larger tan balls are carbohydrate. The two light chains are shown in shades of red; the two heavy chains, in shades of blue. (b) A schematic diagram showing the in- VL domain Antigen–binding site CL domain Heavy chains Carbohydrate chain Carbohydrate Antigen–binding site VH domain (a) (b) S S VH CL VL CΗ2 CΗ3 CΗ1VH CΗ2 VL VL domain VH domain CH1 CH2 CH3 teracting heavy- and light-chain domains. Note that the CH2/CH2 domains protrude because of the presence of carbohydrate (tan) in the interior. The protrusion makes this domain more accessible, en- abling it to interact with molecules such as certain complement components. [Part (a) from E. W. Silverton et al., 1977, Proc. Nat. Acad. Sci. U.S.A. 74:5140.] Go to www.whfreeman.com/immunology Molecular Visualization 8536d_ch04_076-104 9/6/02 9:02 PM Page 83 mac85 Mac 85:365_smm:Goldsby et al. / Immunology 5e: Fijación de complemento Unión a receptores Fc ✴ Neutralización ✴ Opsonización ✴ Fijación de complemento ✴ Transcitosis (intestino, placenta) ✴ Citotoxicidad celular dependiente de Ac A A
  • 23. Estructura Igs diméricas 23 Antibodies: Structure and Function C H A P T E R 4 91 (b) IgD VL Cδ1CL Cδ2 VH Cδ3 (d) IgA (dimer) Hinge region VL Cγ1CL Cγ2 VH Cγ3 (c) IgE Cε1 Cε3 VH Cε4 VL CL Cε2 Cµ1 Cµ3 VH Cµ4 VL CL Cµ2 J chain Disulfide bond (e) IgM (pentamer) J chain VL Cα1 Cα2 VH Cα3 Hinge region (a) IgG CL 8536d_ch04_076-104 9/5/02 6:19 AM Page 91 mac76 mac76:385 Goldsby et al./Immunology5e: Intravascular & Membrana linfocito B Mastocito92 P A R T I I Generation of B-Cell and T-Cell Responses IgG3 IgG4IgG2IgG1 Disulfide bond FIGURE 4-14 General structure of the four subclasses of human IgG, which differ in the number and arrangement of the interchain disulfide bonds (thick black lines) linking the heavy chains. A notable feature of human IgG3 is its 11 interchain disulfide bonds. 8536d_ch04_076-104 9/5/02 6:19 AM Page 92 mac76 mac76:385 Goldsby et al./Immunology5e:
  • 24. Estructura Igs poliméricas 24 polypeptide (see Figure 4-13d). The IgA of external secre- tions, called secretory IgA, consists of a dimer or tetramer, a cilitating the polymerization of both serum IgA and secre- tory IgA.The secretory component is a 70,000-MW polypep- δCL Cδ2 Cδ3 (d) IgA (dimer) Hinge region γCL Cγ2 Cγ3 ε Cε3 Cε4 CL Cε2 Cµ1 Cµ3 VH Cµ4 VL CL Cµ2 J chain Disulfide bond (e) IgM (pentamer) J chain VL Cα1 Cα2 VH Cα3 Hinge region CL FIGURE 4-13 General structures of the five major classes of se- creted antibody. Light chains are shown in shades of pink, disulfide bonds are indicated by thick black lines. Note that the IgG, IgA, and IgD heavy chains (blue, orange, and green, respectively) contain four domains and a hinge region, whereas the IgM and IgE heavy chains (purple and yellow, respectively) contain five domains but no hinge region. The polymeric forms of IgM and IgA contain a polypeptide, called the J chain, that is linked by two disulfide bonds to the Fc re- gion in two different monomers. Serum IgM is always a pentamer; most serum IgA exists as a monomer, although dimers, trimers, and even tetramers are sometimes present. Not shown in these figures are intrachain disulfide bonds and disulfide bonds linking light and heavy chains (see Figure 4-2). Mucosas y secreciones Resistente a digestión Intravascular Menor afinidad mas valencias- avidez suficiente ion of the CDR loops, the ntly change conformation tibodies to assume a shape o that of their epitopes. mational changes following mited to the antibody. Al- 4-11, the conformation of he Fab shows no structural epitope in the native HIV at the inhibition of protease e antibody is a result of its conformation. s egion domains take part in at are determined by the ain. extend the Fab arms of the ating interaction with anti- m rotation of the Fab arms. n domains help to hold the y virtue of the interchain Figure 4-6). Also, the CH1 to antibody diversity by al- ns between VH and VL do- ociation were driven by the VH/VL interaction alone. These considerations have impor- tant implications for building a diverse repertoire of anti- bodies. As Chapter 5 will show, random rearrangements of the immunoglobulin genes generate unique VH and VL se- quences for the heavy and light chains expressed by each B lymphocyte; association of the VH and VL sequences then generates a unique antigen-binding site. The presence of CH1 and CL domains appears to increase the number of stable VH andVL interactions that are possible, thus contributing to the overall diversity of antibody molecules that can be expressed by an animal. HINGE REGION The ␥, ␦, and ␣ heavy chains contain an extended peptide se- quence between the CH1 and CH2 domains that has no ho- mology with the other domains (see Figure 4-8). This region, called the hinge region, is rich in proline residues and is flex- ible,giving IgG,IgD,and IgA segmental flexibility.As a result, the two Fab arms can assume various angles to each other when antigen is bound. This flexibility of the hinge region can be visualized in electron micrographs of antigen-anti- body complexes. For example, when a molecule containing two dinitrophenol (DNP) groups reacts with anti-DNP anti- body and the complex is captured on a grid, negatively stained, and observed by electron microscopy, large com- plexes (e.g., dimers, trimers, tetramers) are seen. The angle between the arms of the Y-shaped antibody molecules differs in the different complexes, reflecting the flexibility of the hinge region (Figure 4-12). Cell and T-Cell Responses N NO2 NO2 25Å S S SS S S SS Anti-DNP mer DNP ligand (b) stration of the flexibility of the a) A hapten in which two dini- by a short connecting spacer es to form trimers, tetramers, omplexes. A trimer is shown ograph of a negatively stained triangular trimeric structures are clearly visible. The antibody protein stands out as a light struc- ture against the electron-dense background. Because of the flexibility of the hinge region, the angle between the arms of the antibody mol- ecules varies. [Photograph from R. C. Valentine and N. M. Green, 1967, J. Mol. Biol. 27:615; reprinted by permission of Academic Press Inc. (London) Ltd.]
  • 25. IgA 25 Antibodies: Structure and Function C H A P T E R 4 93 FIGURE 4-15 Structure and formation of secretory IgA. (a) Secre- tory IgA consists of at least two IgA molecules, which are covalently linked to each other through a J chain and are also covalently linked with the secretory component. The secretory component contains Plasma cell (a) Structure of secretory IgA J chain Secretory component (b) Formation of secretory IgA Dimeric IgA Poly-Ig receptor Vesicle Enzymatic cleavage Secretory IgA Epithelial cells Lumen Submucosa tory IgA is formed during transport through mucous membrane epithelial cells. Dimeric IgA binds to a poly-Ig receptor on the baso- lateral membrane of an epithelial cell and is internalized by receptor- mediated endocytosis. After transport of the receptor-IgA complex 8536d_ch04_076-104 9/5/02 6:19 AM Page 93 mac76 mac76:385 Goldsby et al./Immunology5e: ✦Transcitosis ✦Producida por cels plasmatica de la mucosa y médula ósea. Cada día se producen de 5 a 15 g más que todas las otras Igs ✦IgA de la leche materna protege al recién nacido ✦Varios grados de polimerización
  • 26. IgE mediadora de las reacciones alérgicas 26 Immunoglobu IgD was first discov myeloma whose m isotype antisera ag and IgG. When rab protein, the resulti class of antibody a new class, called Ig and constitutes ab serum. IgD, togeth bound immunoglo role in the physiolo ological effector fu Antigenic D on Immuno Since antibodies ar tion as potent imm Such anti-Ig antib B-cell developmen antigenic determin molecules fall into and idiotypic deter tic portions of the Isotype Isotypic determina Mucins Adhere to bacteria and viruses, thus keeping such microorganisms f Oligosaccharides Bind to microorganisms and bar them from attaching to mucosal su SOURCE: Adapted from J. Newman, 1995, How breast milk protects newborns, Sci. Am. 273(6):76. FIGURE 4-16 Allergen cross-linkage of receptor-bound IgE on mast cells induces degranulation, causing release of substances Mast cell Allergen Granule Histamine and other substances that mediate allergic reactions IgE Fc receptor specific for IgE Degranulation and release of granule contents ★El mastocito amplifica la consecuencias de la reacción Ag-Ac ★Contribuye a la eliminación de parásitos ★Media las reacciones alérgicas
  • 27. 27 IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD Peso molecular 150.000 150.000 150.000 150.000 150.000 600.000 150.000 600.00 900.000 190.000 150.000 Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ Conc en suero (mg/dl) 500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03 <100 KU <10 Vida media 23 23 8 23 6 6 5 2,5 3 Activación complemento + +/- ++ - - - ++ - - Cruza la placenta + +/- + + - - - - - Parte del BCR cel B madura - - - - - - + - + Transcitosis mucosa - - - - ++ ++ + - - Degranulación mastocitos - - - - - - - + - Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y secreciones Mucosas y secreciones Intravasc ular Mastocito s Linfocitos Isotipos de las inmunoglobulinas y funciones
  • 28. 28 IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD Peso molecular 150.000 150.000 150.000 150.000 150.000 600.000 150.000 600.00 900.000 190.000 150.000 Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ Conc en suero (mg/dl) 500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03 <100 KU <10 Vida media 23 23 8 23 6 6 5 2,5 3 Activación complemento + +/- ++ - - - ++ - - Cruza la placenta + +/- + + - - - - - Parte del BCR cel B madura - - - - - - + - + Transcitosis mucosa - - - - ++ ++ + - - Degranulación mastocitos - - - - - - - + - Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y secreciones Mucosas y secreciones Intravasc ular Mastocito s Linfocitos Isotipos de las inmunoglobulinas y funciones
  • 29. 29 IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD Peso molecular 150.000 150.000 150.000 150.000 150.000 600.000 150.000 600.00 900.000 190.000 150.000 Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ Conc en suero (mg/dl) 500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03 <100 KU <10 Vida media 23 23 8 23 6 6 5 2,5 3 Activación complemento + +/- ++ - - - ++ - - Cruza la placenta + +/- + + - - - - - Parte del BCR cel B madura - - - - - - + - + Transcitosis mucosa - - - - ++ ++ + - - Degranulación mastocitos - - - - - - - + - Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y secreciones Mucosas y secreciones Intravasc ular Mastocito s Linfocitos Isotipos de las inmunoglobulinas y funciones
  • 30. 30 IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD Peso molecular 150.000 150.000 150.000 150.000 150.000 600.000 150.000 600.00 900.000 190.000 150.000 Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ Conc en suero (mg/dl) 500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03 <100 KU <10 Vida media 23 23 8 23 6 6 5 2,5 3 Activación complemento + +/- ++ - - - ++ - - Cruza la placenta + +/- + + - - - - - Parte del BCR cel B madura - - - - - - + - + Transcitosis mucosa - - - - ++ ++ + - - Degranulación mastocitos - - - - - - - + - Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y secreciones Mucosas y secreciones Intravasc ular Mastocito s Linfocitos Isotipos de las inmunoglobulinas y funciones
  • 31. 31 IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD Peso molecular 150.000 150.000 150.000 150.000 150.000 600.000 150.000 600.00 900.000 190.000 150.000 Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ Conc en suero (mg/dl) 500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03 <100 KU <10 Vida media 23 23 8 23 6 6 5 2,5 3 Activación complemento + +/- ++ - - - ++ - - Cruza la placenta + +/- + + - - - - - Parte del BCR cel B madura - - - - - - + - + Transcitosis mucosa - - - - ++ ++ + - - Degranulación mastocitos - - - - - - - + - Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y secreciones Mucosas y secreciones Intravasc ular Mastocito s Linfocitos Isotipos de las inmunoglobulinas y funciones
  • 32. 32 IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD Peso molecular 150.000 150.000 150.000 150.000 150.000 600.000 150.000 600.00 900.000 190.000 150.000 Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ Conc en suero (mg/dl) 500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03 <100 KU <10 Vida media 23 23 8 23 6 6 5 2,5 3 Activación complemento + +/- ++ - - - ++ - - Cruza la placenta + +/- + + - - - - - Parte del BCR cel B madura - - - - - - + - + Transcitosis mucosa - - - - ++ ++ + - - Degranulación mastocitos - - - - - - - + - Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y secreciones Mucosas y secreciones Intravasc ular Mastocito s Linfocitos Isotipos de las inmunoglobulinas y funciones
  • 33. 33 IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD Peso molecular 150.000 150.000 150.000 150.000 150.000 600.000 150.000 600.00 900.000 190.000 150.000 Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ Conc en suero (mg/dl) 500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03 <100 KU <10 Vida media 23 23 8 23 6 6 5 2,5 3 Activación complemento + +/- ++ - - - ++ - - Cruza la placenta + +/- + + - - - - - Parte del BCR cel B madura - - - - - - + - + Transcitosis mucosa - - - - ++ ++ + - - Degranulación mastocitos - - - - - - - + - Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y secreciones Mucosas y secreciones Intravasc ular Mastocito s Linfocitos Isotipos de las inmunoglobulinas y funciones
  • 34. 34 IgG1 IgG2 IgG3 IgG4 IgA1 IgA2 IgM IgE IgD Peso molecular 150.000 150.000 150.000 150.000 150.000 600.000 150.000 600.00 900.000 190.000 150.000 Cadena pesada γ1 γ2 γ3 γ4 α1 α2 µ ε δ Conc en suero (mg/dl) 500-900 200-500 20-70 20-80 70-40070-400 40-230 0,03 <100 KU <10 Vida media 23 23 8 23 6 6 5 2,5 3 Activación complemento + +/- ++ - - - ++ - - Cruza la placenta + +/- + + - - - - - Parte del BCR cel B madura - - - - - - + - + Transcitosis mucosa - - - - ++ ++ + - - Degranulación mastocitos - - - - - - - + - Compartimento vascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelularvascular y liquido extracelular Mucosas y secreciones Mucosas y secreciones Intravasc ular Mastocitos Linfocitos Isotipos de las inmunoglobulinas y funciones
  • 35. Isotipo, alotipo e idiotipo 35 antibody is routinely used fo mine the class or subclass of s ing an immune response or membrane-bound antibody p Allotype Although all members of a spe type genes, multiple alleles ex Figure 4-17b). These alleles en ences, called allotypic determ not all, members of a species. typic determinants displayed allotype. In humans, allotype all four IgG subclasses, for on light chain. The ␥-chain allo markers. At least 25 different G fied; they are designated by the the allele number, for example G4m(4a). Of the two IgA su class has allotypes, as A2m( chain has three allotypes, d ␬m(3). Each of these allotypi ferences in one to four amin different alleles. Antibody to allotypic dete injecting antibodies from one other member of the same spe typic determinants. Antibod sometimes is produced by a m sponse to paternal allotypic Antibodies: Structure and FIGURE 4-17 Antigenic determinants of immunoglobulins. For (a) Isotypic determinants Mouse IgG1 Mouse IgM γ1 µ κ (b) Allotypic determinants Mouse IgG1 (strain A) Mouse IgG1 (strain B) γ1 κ (c) Idiotypic determinants Mouse IgG1 against antigen a κ κ γ1 κ Mouse IgG1 against antigen b γ1 Idiotopes κ γ1 Idiotopes Variantes presentes en cada indivíduo Variantes entre individuos Reacciones transfusionales menores Variantes entre clonas Problema terapia con anticuerpos monoclonales
  • 36. ! La pregunta ¿Como se genera una variedad tan elevada de anticuerpos a partir de un número limitado de genes? Las respuestas Hipotesis instructiva Hipotesis genética
  • 37. Base del experimento de Tonegawa 37 separated by size and analyzed for their ability to hybridize with a radiolabeled mRNA probe. Two separate restriction fragments from the embryonic DNA hybridized with the mRNA, whereas only a single restriction fragment of the adult myeloma DNA hybridized with the same probe. Tone- gawa and Hozumi suggested that, during differentiation of lymphocytes from the embryonic state to the fully differenti- ated plasma-cell stage (represented in their system by the shows the detection of rearrangement at the ␬ light-chain lo- cus by comparing the fragments produced by digestion of DNA from a clone of B-lineage cells with the pattern ob- tained by digestion of non-B cells (e.g., sperm or liver cells). The rearrangement of aV gene deletes an extensive section of germ-line DNA, thereby creating differences between re- arranged and unrearranged Ig loci in the distribution and number of restriction sites. This results in the generation of FIGURE 5-2 Experimental basis for diagnosis of rearrangement at an immunoglobulin locus. The number and size of restriction frag- are separated in the germ line. Consequently, fragments dependent on the presence of this segment for their generation are absent from 3′5′ Vn RE V2 RE J C V1 RE RE RE 3′5′ Vn RE V2 RE V1 RE RE RE Germ line Rearranged Germ line Rearranged Deleted Rearrangement J C Probe Probe RE digestion RE digestion Southern blot sonda
  • 38. Base del experimento de Tonegawa 38 separated by size and analyzed for their ability to hybridize with a radiolabeled mRNA probe. Two separate restriction fragments from the embryonic DNA hybridized with the mRNA, whereas only a single restriction fragment of the adult myeloma DNA hybridized with the same probe. Tone- gawa and Hozumi suggested that, during differentiation of lymphocytes from the embryonic state to the fully differenti- ated plasma-cell stage (represented in their system by the shows the detection of rearrangement at the ␬ light-chain lo- cus by comparing the fragments produced by digestion of DNA from a clone of B-lineage cells with the pattern ob- tained by digestion of non-B cells (e.g., sperm or liver cells). The rearrangement of aV gene deletes an extensive section of germ-line DNA, thereby creating differences between re- arranged and unrearranged Ig loci in the distribution and number of restriction sites. This results in the generation of FIGURE 5-2 Experimental basis for diagnosis of rearrangement at an immunoglobulin locus. The number and size of restriction frag- are separated in the germ line. Consequently, fragments dependent on the presence of this segment for their generation are absent from 3′5′ Vn RE V2 RE J C V1 RE RE RE 3′5′ Vn RE V2 RE V1 RE RE RE Germ line Rearranged Germ line Rearranged Deleted Rearrangement J C Probe Probe RE digestion RE digestion Southern blot sonda signal sequence I Cutting of the hairpin to generate sites for the addition of P-region nucleotides, followed by the trimming of a few nucleotides from the coding sequence by a single- strand endonuclease I Addition of up to 15 nucleotides, called N-region nucleotides, at the cut ends of the V, D, and J coding sequences of the heavy chain by the enzyme terminal deoxynucleotidyl transferase I Repair and ligation to join the coding sequences and to join the signal sequences, catalyzed by normal double- strand break repair (DSBR) enzymes Recombination results in the formation of a coding joint, falling between the coding sequences, and a signal joint, be- tween the RSSs. The transcriptional orientation of the gene segments to be joined determines the fate of the signal joint and intervening DNA. When the two gene segments are in the same transcriptional orientation, joining results in dele- tion of the signal joint and intervening DNA as a circular ex- cision product (Figure 5-8). Less frequently, the two gene segments have opposite orientations. In this case joining oc- curs by inversion of the DNA, resulting in the retention of 3′ VκL Jκ Coding joint 5′ 3′ Signal joint Signal joint Coding joint Single-strand DNA cleavage by RAG-1/2 Hairpin formation and double-strand DNA break by RAG-1/2 Random cleavage of hairpin by endonuclease generates sites for the addition of P-nucleotides Optional addition to H-chain segments of N-nucleotides by TdT Repair and ligation of coding and signal sequences to form joints by DSBR enzymes 2 3 4 5 = Two-turn RSS = One-turn RSS + FIGURE 5-7 Model depicting the general process of recombina- tion of immunoglobulin gene segments is illustrated with V␬ and J␬. (a) Deletional joining occurs when the gene segments to be joined have the same transcriptional orientation (indicated by horizontal blue arrows). This process yields two products: a rearranged VJ unit that includes the coding joint, and a circular excision product con- sisting of the recombination signal sequences (RSSs), signal joint, and intervening DNA. (b) Inversional joining occurs when the gene segments have opposite transcriptional orientations. In this case, the FIGURE 5-8 Circular DNA isolated from thymocytes in which the DNA encoding the chains of the T-cell receptor (TCR) undergoes re-
  • 39. Pregunta ¿Cómo se genera la enorme variedad de anticuerpos? ✦ Respuesta, combinando elementos, como en un alfabeto ✦ Se comprende cuando se analiza la estructura de los genes de las Igs ✦ Hay un elemento de azar 39
  • 40. Mecánica de la reordenación 40 two signal sequences and the adjacent coding sequences (gene segments) are brought into proximity I Cleavage of one strand of DNA by RAG-1 and RAG-2 at the junctures of the signal sequences and coding sequences I A reaction catalyzed by RAG-1 and RAG-2 in which the free 3Ј-OH group on the cut DNA strand attacks the phosphodiester bond linking the opposite strand to the signal sequence, simultaneously producing a hairpin structure at the cut end of the coding sequence and a flush, 5Ј-phosphorylated, double-strand break at the signal sequence I Cutting of the hairpin to generate sites for the addition of P-region nucleotides, followed by the trimming of a few nucleotides from the coding sequence by a single- strand endonuclease I Addition of up to 15 nucleotides, called N-region nucleotides, at the cut ends of the V, D, and J coding sequences of the heavy chain by the enzyme terminal deoxynucleotidyl transferase I Repair and ligation to join the coding sequences and to join the signal sequences, catalyzed by normal double- strand break repair (DSBR) enzymes Recombination results in the formation of a coding joint, falling between the coding sequences, and a signal joint, be- tween the RSSs. The transcriptional orientation of the gene segments to be joined determines the fate of the signal joint and intervening DNA. When the two gene segments are in the same transcriptional orientation, joining results in dele- tion of the signal joint and intervening DNA as a circular ex- cision product (Figure 5-8). Less frequently, the two gene segments have opposite orientations. In this case joining oc- curs by inversion of the DNA, resulting in the retention of (a) Deletional joining 3′5′ Vκ Jκ RSS 3′5′ Vκ Jκ (b) Inversional joining 3′ 5′ 3′ Recognition of RSSs by RAG-1/2 and synapsis VκL Jκ Coding joint 5′ 3′ Signal joint Signal joint Coding joint Single-strand DNA cleavage by RAG-1/2 Hairpin formation and double-strand DNA break by RAG-1/2 Random cleavage of hairpin by endonuclease generates sites for the addition of P-nucleotides Optional addition to H-chain segments of N-nucleotides by TdT Repair and ligation of coding and signal sequences to form joints by DSBR enzymes 1 2 3 4 5 = Two-turn RSS = One-turn RSS L L + FIGURE 5-7 Model depicting the general process of recombina- Dependiendo de la orientación RSS se genera o no un circulo de DNA (TREC) tween the RSSs. The transcriptional orientation of the gene segments to be joined determines the fate of the signal joint and intervening DNA. When the two gene segments are in the same transcriptional orientation, joining results in dele- tion of the signal joint and intervening DNA as a circular ex- cision product (Figure 5-8). Less frequently, the two gene segments have opposite orientations. In this case joining oc- curs by inversion of the DNA, resulting in the retention of 5′ 3′ Signal joint Coding joint -nucleotides ional addition H-chain segments N-nucleotides by TdT air and ligation oding and al sequences orm joints by R enzymes = Two-turn RSS = One-turn RSS ng the general process of recombina- e segments is illustrated with V␬ and J␬. when the gene segments to be joined al orientation (indicated by horizontal elds two products: a rearranged VJ unit t, and a circular excision product con- signal sequences (RSSs), signal joint,
  • 41. Opciones de la unión de segmentos 41 addition, and flexibility in joining the coding sequences. The introduction of randomness in the joining process helps gen- erate antibody diversity by contributing to the hypervariabil- ity of the antigen-binding site. (This phenomenon is covered in more detail below in the section on generation of antibody diversity.) marrow as mature Allelic Exclusio Antigenic Spec B cells, like all soma ternal and paterna Jκ Vκ C A C T G T G G T G G A C T A G G G A G G A T G C T C C C A C A G T G RSS RSS 2 3 4 5 G A G G A T G C G A C T A G G Glu Asp Ala Thr Arg 1 G A G G A T G G G A C T A G G Glu Asp Gly Thr Arg G A G G A T T G G A C T A G G Glu Asp Trp Thr Arg Productive rearrangements 2 3 G A G G A T G C G G A C T A G G Glu Asp Ala Asp Stop G A G G T G G A C T A G G Glu Val Asp Stop Nonproductive rearrangements 4 5 1 Joining flexibility FIGURE 5-9 Junctional flexibility in the joining of immunoglobulin gene segments is illustrated with V␬ and J␬. In-phase joining (arrows κ λ H ** Paternal chromosomes Maternal chromosomes Maternal H ch Maternal κ chain FIGURE 5-10 Beca heavy- and light-chain expressed per cell. Th antigenic specificity. T Reordenamientos productivos Reordenamientos fallidos Imprecisión de unión: nucleotidos P y N Reordenamiento en la otra copia del cromosoma
  • 42. Exclusión alélica 42 he section on generation of antibody B cells, like all somatic cells, are diploid and contain both ma- ternal and paternal chromosomes. Even though a B cell is Jκ G T G G T G G A C T A G G T C C C A C A G T G RSS 2 4 5 G A G G A T G C G A C T A G G Glu Asp Ala Thr Arg 1 G A G G A T G G G A C T A G G Glu Asp Gly Thr Arg G A G G A T T G G A C T A G G Glu Asp Trp Thr Arg 2 3 G A G G A T G C G G A C T A G G Glu Asp Ala Asp Stop G A G G T G G A C T A G G Glu Val Asp Stop 4 5 1 Joining flexibility exibility in the joining of immunoglobulin d with V␬ and J␬. In-phase joining (arrows productive rearrangement, which can be κκ λλ HH κ λ H ** * * κ λ H Paternal chromosomes Gene rearrangement Maternal chromosomes Maternal H chain Maternal κ chain Maternal H chain Paternal λ chain FIGURE 5-10 Because of allelic exclusion, the immunoglobulin heavy- and light-chain genes of only one parental chromosome are expressed per cell. This process ensures that B cells possess a single antigenic specificity. The allele selected for rearrangement is chosen randomly. Thus the expressed immunoglobulin may contain one ma- Asegura que cada clona de células B expresa una sola especie de molécula de Ig
  • 43. 43 Diversidad de los anticuerpos por combinación al azar de segmentos génicos Diversidad de los anticuerpos por combinación al azar de segmentos génicos Diversidad de los anticuerpos por combinación al azar de segmentos génicos Diversidad de los anticuerpos por combinación al azar de segmentos génicos Cadena pesada Cadena ligeraCadena ligera Segmento kappa lambda V 48 41 34 D 23 0 0 J 6 5 5 Combinaciones 48x23x6=6624 41x5=205 34x5=170 Total 6624x(205+170)=2,48x1066624x(205+170)=2,48x1066624x(205+170)=2,48x106
  • 44. Mecanismo de generación de diversidad ✦ Múltiples de segmentos génicos (variabilidad individual) ✦ Combinación aleatoria de segmentos V-(D)-J ✦ Combinación de cadenas pesadas y ligeras ✦ Flexibilidad punto de unión ✦ Adición de nucleotidos P y N (TdT transferasa terminal de dinucleótidos) ✦ Hipermutación somática 44
  • 45. Hipermutación somática 45 Organization and Expression of Immunoglobulin Genes C H A P T E R 5 121 FIGURE 5-14 Experimental evidence for somatic mutation in vari- quency of mutation (1) increases in the course of the primary re- Heavy–chain V regions Day7 Primary γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ3 γ1 γ1 µ µ µ γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 γ1 CDR1 CDR3CDR2CDR1 CDR2 CDR3 J3 3.7 (D) Hybridoma clone subclass Light–chain V regions Kd × 10–7M J5 Day14SecondaryTertiary 2.8 2.8 2.8 3.6 4.0 3.3 0.5 6.0 4.0 0.9 3.4 0.7 0.4 0.1 0.2 1.4 0.6 0.9 0.02 1.1 0.1 0.4 ≤ 0.02 1.0 ≤ 0.03 ≤ 0.03 ≤ 0.03 0.15 0.2 J4 J4 J4 J2 J2 J2 J4 J4 J2 J4 J4 J4 J4 J4
  • 46. Hipermutación somática ✦ Frecuencia de mutaciones en el genoma 1/108 nucleótidos por división ✦ Región VDJ 1/103 -> 1 en las dos regiones V por cada dos divisiones celulares ✦ En los anticuerpos hay una concentración de mutaciones somáticas en las zonas que codifican la regiones determinantes de complementariedad (CDRs) de los segmentos V de las cadenas ligera y pesada 46
  • 47. 47 La respuesta B en el centro germinal ✦ Las FDC contienen Ics con Ag en su superficie y producen CXCL13 que atrae a las células B ✦ Los linfocitos B (centrocitos) que maduran junto a las FDC forman la zona clara mientras que los que proliferan rápidamente constituyen la zona oscura (centroblastos) ✦ A nivel molecular tiene lugar la hipermutación somática y la maduración por afinidad bajo la influencia de las células Th y el cambio de isotipo ✦ Manto Centrocitos TCD4+ linfosT Centroblastos Zona Clara CD21, FDC L DCentroblastos FDC L D Centrocitos
  • 48.
  • 49. Fases respuesta inmune ✦ Primeros 5-7 días, inmunidad innata ✦ 7 en adelante adaptativa primaria (específica) ✦ Nueva exposición, respuesta secundaria IgM Ig
  • 50. IgM e IgD: procesamiento alternativos 50 Organization and Expression of Immunoglobulin Genes C H A P T E R 5 125 FIGURE 5-17 Expression of membrane forms of ␮ and ␦ heavy chains by alternative RNA processing. (a) Structure of rearranged adenylation at site 2 and splicing. (c) Structure of ␦m transcript and ␦m mRNA resulting from polyadenylation at site 4 and splicing. 3′ (a) H-chain primary transcript VDJ J M1 5′ M2µ1 µ2 µ3 µ4 Poly-A site 1 Poly-A site 2 Cµ δ1 Cδ M1M2 Poly-A site 4 Poly-A site 3 δ2 δ3 ∼6.5 kb S SL (A)n J S (A)n µ1 µ2 µ3 µ4 Splicing M1 M2 M1 M2 µm transcript 5′ VDJ µm mRNA 5′ VDJ (b) Polyadenylation of primary transcript at site 2 µm← Cµ L L (A)n Splicing M2 VDJ δ1 δ2 δ3 (c) Polyadenylation of primary transcript at site 4 ← δm VDJ 5′ (A)n M1 δm transcript δm mRNA Cµ Cδ J M1 M2µ1 µ2 µ3 µ4 δ1 δ2 δ3S S M1M2 L L
  • 51. Generación formas de membrana o secretadas 51GURE 5-16 Expression of secreted and membrane forms of heavy chain by alternative RNA processing. (a) Amino acid (b) Primary H-chain transcript VDJ J (A)n Poly-A site 1 Poly-A site 2 Cµ Cδ Poly-A site 3 Poly-A site 4 Polyadenylation RNA transcript for secreted µ D J µ1 µ2 µ3 µ4 µ1 µ2 µ3 µ4 S JV S (A)n RNA transcript for membrane µ D J µ1 µ2 µ3 µ4JV S (A)n D µ1 µ2 µ3 µ4JV S (A)n D µ1 µ2 µ3 µ4JV RNA splicing mRNA encoding secreted µ chain mRNA encoding membrane µ chain M1 M2 M1 M2 M1 M2 Site 1 Site 2 L L L L L V KCytoplasm Secreted µ Membrane µ COOH COOH COOH 597 + 597 sequences are identical in both forms. (b) Structure of the pri- mary transcript of a rearranged heavy-chain gene showing the C␮
  • 52. Cambio de isotipo 52 122 P A R T I I Generation of B-Cell and T-Cell Responses FIGURE 5-15 Proposed mechanism for class switching induced Identification of the indicated circular excision products containing 5′ 3′ Cµ Cγ3V D J Cδ Cγ1 Cγ2b Sγ2b Cγ2a Sγ2a Cε Sε Cα Sα 3′ Sγ1Sγ3Sµ Sγ1 5′Sγ1 3′Sγ15′Sµ 3′Sµ Recombination at Sµ and Sγ1 DNA looping Sγ3 CδCγ3 Cµ Sγ3 CδCγ3 Cµ 5′Sε 3′Sγ1 Sγ2a Cγ2a Cγ2b Sγ2b 5′ 3′ + + V D J Cγ1 Cγ2b Sγ2b Cγ2a Sγ2a Cε Sε Cα Sα DNA looping and recombination at Sγ1 and Sε 5′ 3′ V D J Cε Cα Sα 5′ V D J Sµ Cγ1 Cγ1 Cγ2b Sγ2b Cγ2a Sγ2a Cε Sε Cα Sα L L L L • Durante la maduración de la respuesta • Dirigida por citocinas • Orientada a la función biológica del Ac looping = formación de antibody is routinely used for research purposes to deter- mine the class or subclass of serum antibody produced dur- ing an immune response or to characterize the class of membrane-bound antibody present on B cells. Allotype Although all members of a species inherit the same set of iso- type genes, multiple alleles exist for some of the genes (see Figure 4-17b). These alleles encode subtle amino acid differ- ences, called allotypic determinants, that occur in some, but not all, members of a species. The sum of the individual allo- typic determinants displayed by an antibody determines its allotype. In humans, allotypes have been characterized for all four IgG subclasses, for one IgA subclass, and for the ␬ light chain. The ␥-chain allotypes are referred to as Gm markers. At least 25 different Gm allotypes have been identi- fied; they are designated by the class and subclass followed by the allele number, for example, G1m(1), G2m(23), G3m(11), G4m(4a). Of the two IgA subclasses, only the IgA2 sub- class has allotypes, as A2m(1) and A2m(2). The ␬ light chain has three allotypes, designated ␬m(1), ␬m(2), and ␬m(3). Each of these allotypic determinants represents dif- ferences in one to four amino acids that are encoded by different alleles. Antibody to allotypic determinants can be produced by injecting antibodies from one member of a species into an- other member of the same species who carries different allo- typic determinants. Antibody to allotypic determinants sometimes is produced by a mother during pregnancy in re- sponse to paternal allotypic determinants on the fetal im- munoglobulins. Antibodies to allotypic determinants can also arise from a blood transfusion. Idiotype The unique amino acid sequence of the VH and VL domains of a given antibody can function not only as an antigen-bind- ing site but also as a set of antigenic determinants. The idio- typic determinants arise from the sequence of the heavy- and light-chain variable regions. Each individual antigenic deter- minant of the variable region is referred to as an idiotope (see Figure 4-17c). In some cases an idiotope may be the ac- tual antigen-binding site, and in some cases an idiotope may comprise variable-region sequences outside of the antigen- URE 4-17 Antigenic determinants of immunoglobulins. For ype of determinant, the general location of determinants within ntibody molecule is shown (left) and two examples are illus- (center and right). (a) Isotypic determinants are constant- n determinants that distinguish each Ig class and subclass n a species. (b) Allotypic determinants are subtle amino acid ences encoded by different alleles of isotype genes. Allotypic ences can be detected by comparing the same antibody class g different inbred strains. (c) Idiotypic determinants are gen- d by the conformation of the amino acid sequences of the - and light-chain variable regions specific for each antigen. Each dual determinant is called an idiotope, and the sum of the indi- idiotopes is the idiotype. otypic determinants Mouse IgG1 Mouse IgM γ1 µ κ lotypic determinants Mouse IgG1 (strain A) Mouse IgG1 (strain B) γ1 κ iotypic determinants Mouse IgG1 against antigen a κ κ γ1 κ Mouse IgG1 against antigen b γ1 Idiotopes κ γ1 Idiotopes
  • 53. Secreción de las Igs 53 Regulation of Ig-Gene Transcription The immunoglobulin genes are expressed only in B-lineage cells, and even within this lineage, the genes are expressed at different rates during different developmental stages.As with other eukaryotic genes, three major classes of cis regulatory sequences in DNA regulate transcription of immunoglobu- lin genes: I Promoters: relatively short nucleotide sequences, extending about 200 bp upstream from the transcription initiation site, that promote initiation of RNA transcription in a specific direction I Enhancers: nucleotide sequences situated some distance upstream or downstream from a gene that activate transcription from the promoter sequence in an orientation-independent manner I Silencers: nucleotide sequences that down-regulate transcription, operating in both directions over a distance. The locations of the three types of regulatory elements in germ-line immunoglobulin DNA are shown in Figure 5-19. All of these regulatory elements have clusters of sequence motifs that can bind specifically to one or more nuclear pro- teins. Each VH and VL gene segment has a promoter located just upstream from the leader sequence. In addition, the J␬ cluster and each of the DH genes of the heavy-chain locus are preceded by promoters. Like other promoters, the immunoglobulin promoters contain a highly conserved AT- rich sequence called the TATA box, which serves as a site for the binding of a number of proteins that are necessary for the initiation of RNA transcription. The actual process of tran- scription is performed by RNA polymerase II, which starts transcribing DNA from the initiation site, located about 25 bp downstream of the TATA box. Ig promoters also contain an essential and conserved octamer that confers B-cell speci- ficity on the promoter. The octamer binds two transcription factors, oct-1, found in many cell types, and oct-2, found only in B cells. While much remains to be learned about the function of enhancers, they have binding sites for a number of proteins, Secreted Ig Secretory vesicles Heavy-chain translation Light-chain translation Leader Nascent Ig (leader cleaved) RER Cis Golgi Trans Golgi Trans Golgi reticulum Oligosaccharides Membrane Ig Fusion with membrane Secretory vesicle Transmembrane segment FIGURE 5-18 Synthesis, assembly, and secretion of the im- Las cadenas se sintetizan y las molécula de anticuerpo se monta en RER Los anticuerpos se glicosilan en el aparato de Golgi En las células plasmáticas neoplásicas puede fallar la coordinación y generarse cadenas ligeras libres: proteínas de Bences-Jones
  • 54. Receptor de la célula B 54 composed of mIg and disulfide-linked heterodimers called Ig-␣/Ig-␤. Molecules of this heterodimer associate with an mIg molecule to form a BCR (Figure 4-18). The Ig-␣ chain centa body neutr ural k by wh system muni of an phage efficie comp as op antige gener induc lular r Th poly immu tamer neon fetus of IgG of the IgA, a that b eties o classe of the result result cepto volves FIGURE 4-18 General structure of the B-cell receptor (BCR). This antigen-binding receptor is composed of membrane-bound im- S S S S S S S S S S S S S S S SS S S SS S S S S S S S S S S S S S S S mIg S S S S Ig-αIg-β 48-aa tail 6l-aa tail Cytoplasmic tails Plasma membrane Igα e Igβ hacen posible la señalización por la ocupación de la Ig de membrana man ␬ locus, about half with respect to J␬ and y Be e egment recombination at are formed between e double-strand DNA ments are introduced uences and coding se- he coding sequences is V-J and V-D-J coding chanisms: variation in ucleotides, variation in iation in N-nucleotide coding sequences. The ning process helps gen- g to the hypervariabil- henomenon is covered generation of antibody segments may be joined out of phase, so that the triplet read- ing frame for translation is not preserved. In such a nonpro- ductive rearrangement, the resulting VJ or VDJ unit is likely to contain numerous stop codons, which interrupt transla- tion (Figure 5-9). When gene segments are joined in phase, the reading frame is maintained. In such a productive re- arrangement, the resulting VJ or VDJ unit can be translated in its entirety, yielding a complete antibody. If one allele rearranges nonproductively, a B cell may still be able to rearrange the other allele productively. If an in- phase rearranged heavy-chain and light-chain gene are not produced, the B cell dies by apoptosis. It is estimated that only one in three attempts at VL-JL joining, and one in three subsequent attempts at VH-DHJH joining, are productive. As a result, less than 1/9 (11%) of the early-stage pre-B cells in the bone marrow progress to maturity and leave the bone marrow as mature immunocompetent B cells. Allelic Exclusion Ensures a Single Antigenic Specificity B cells, like all somatic cells, are diploid and contain both ma- ternal and paternal chromosomes. Even though a B cell is Jκ G A C T A G G A G T G SS G C G A C T A G G Ala Thr Arg G G G A C T A G G Gly Thr Arg T G G A C T A G G Trp Thr Arg G C G G A C T A G G Ala Asp Stop G A C T A G G Asp Stop Joining flexibility ining of immunoglobulin κκ λλ HH κ λ H ** * * κ λ H Paternal chromosomes Gene rearrangement Maternal chromosomes Maternal H chain Maternal κ chain Maternal H chain Paternal λ chain FIGURE 5-10 Because of allelic exclusion, the immunoglobulin heavy- and light-chain genes of only one parental chromosome are expressed per cell. This process ensures that B cells possess a single
  • 55. Receptores Fc 55 Antibodies: Structure and Function C H A P T E R 4 97 S S S S S S S S S S S S S S S S S S S S S S β2m FcγRI FcRN Poly IgR S S S S S S FcγRII γγ CD64 CD32 S S S S γγ CD16 FcγRIIIA β S S S S γγ Fc⑀RI S S S S βγγ CD89 FcαR FIGURE 4-19 The structure of a number of human Fc-receptors. The Fc-binding polypeptides are shown in blue and, where present, accessory signal-transducing polypeptides are shown in green. The loops in these structures represent portions of the molecule with the characteristic immunoglobulin-fold structure. These molecules appear on the plasma membrane as cell-surface antigens and, as in- dicated in the figure, many have been assigned CD designations (for clusters of differentiation; see Appendix). [Adapted from M. Daeron, 1999, in The Antibodies, vol. 5, p. 53. Edited by M. Zanetti and J. D. Capra.] 536d_ch04_076-104 9/6/02 9:02 PM Page 97 mac85 Mac 85:365_smm:Goldsby et al. / Immunology 5e: Activadores, inhibidores, moduladores,
  • 56. Receptores Fc 56 Nature Reviews | Immunology Common -chain Cell membrane Immunoglobulin domain Name Function Activating Inhibitory Structure Fc RI Not expressed Not expressed Not expressed Not expressed Not expressed Not expressed Not expressed Monocyte, DC and macrophage Monocyte, DC, platelet and macrophage Monocyte, DC and macrophage Monocyte, DC and macrophage NK cell NK cell B cell and plasma cell Neutrophil and eosinophil Neutrophil, mast cell and eosinophil Neutrophil, basophil and mast cell Neutrophil Fc RIIA Fc RIIIA Fc RIIIB GPI anchor Fc RIIBFc RIIC IgG1 IgG2, IgG3 and IgG4 IgG1 and IgG3 IgG2 IgG4 IgG1 IgG3 IgG4 IgG2 IgG1 IgG2 and IgG3 IgG4 IgG1 and IgG3 IgG2 and IgG4 IgG1 IgG3 IgG4 IgG2 Lymphoid Myeloid Granulocyte IgG binding affinity ITIM Expression ITAM Acute-phase proteins A group of proteins, the plasma concentration of which changes in response to trauma, inflammation and infection. C-reative protein is the prototypical acute-phase protein and binds phosphocholine on pathogens Figure 1 | Structure, cellular distribution and IgG isotype-binding affinity of human activating and inhibitory FcγRs. Human Fc receptors for IgG (FcγRs) differ in function, affinity for the Fc fragment of antibody and in cellular distribution. There are five activating FcγRs: the high-affinity receptor FcγRI, which can bind monomeric IgG, and four low-affinity receptors (FcγRIIA, FcγRIIC, FcγRIIIA and FcγRIIIB), which bind only immune-complexed IgG. Cross-linking of activating FcγRs by immune complexes results in the phosphorylation of immunoreceptor tyrosine-based activating motifs (ITAMs) that are present either in the cytoplasmic domain of the receptor (FcγRIIA and FcγRIIC), or in the associated FcR common γ-chain (FcγRI and FcγRIIIA), resulting in an activating signalling cascade. FcγRIIIB is a glycosylphosphatidylinositol (GPI)-linked receptor that has no cytoplasmic domain. FcγRIIB is the only inhibitory FcγR. It is a low affinity receptor that binds immune-complexed IgG and contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain. FcγRIIB cross-linking by immune REVIEWSFOCUS ON THERAPEUTIC ANTIBODIES
  • 57. Nature Reviews | Immunology CD4+ T cell CD4+ T cell CD8+ T cell B cell Fc RIIB Fc R Fc R T cell- dependent a Humoral immunity b Antigen presentation by DCs c Innate immunity d Hypersensitivity Inhibition of activating signals Suppression of antigen presentation Immune complex trapping Fc R-mediated phagocytosis, superoxide production, adhesion, rolling and migration? Fc R-mediated phagocytosis, superoxide production and cytokine release IgE-mediated degranulation, IL-4 production and histamine release SCF-induced proliferation TLR-mediated activation CD40L Inhibition of DC maturation Immature DC Neutrophil Macrophage FDC CD40 CD40 CD28 CD86 Suppression of antigen internalization and presentation MHC class II MHC class II TCR IgG BCR Apoptosis Antigen uptake Presentation of intact antigen to B cells? Germinal centre Plasma cell Mast cell IgE Figure 2 | The functions of FcγRIIB. a | Fc receptor IIB for IgG (FcγRIIB) has an important role in controlling humoral immunity by regulating B cell activation, localization of B cells in the germinal centres, as well as plasma cell REVIEWSREVIEWS Las múltiples facetas de la inhibición por FcgammaRIIB
  • 58. Nature Reviews | Immunology CD4+ T cell CD4+ T cell CD8+ T cell B cell Fc RIIB Fc R Fc R T cell- dependent a Humoral immunity b Antigen presentation by DCs c Innate immunity d Hypersensitivity Inhibition of activating signals Suppression of antigen presentation Immune complex trapping Fc R-mediated phagocytosis, superoxide production, adhesion, rolling and migration? Fc R-mediated phagocytosis, superoxide production and cytokine release IgE-mediated degranulation, IL-4 production and histamine release SCF-induced proliferation TLR-mediated activation CD40L Inhibition of DC maturation Immature DC Neutrophil Macrophage FDC CD40 CD40 CD28 CD86 Suppression of antigen internalization and presentation MHC class II MHC class II TCR IgG BCR Apoptosis Antigen uptake Presentation of intact antigen to B cells? Germinal centre Plasma cell Mast cell IgE Figure 2 | The functions of FcγRIIB. a | Fc receptor IIB for IgG (FcγRIIB) has an important role in controlling humoral immunity by regulating B cell activation, localization of B cells in the germinal centres, as well as plasma cell REVIEWSREVIEWS Las múltiples facetas de la inhibición por FcgammaRIIB
  • 59. Nature Reviews | Immunology CD4+ T cell CD4+ T cell CD8+ T cell B cell Fc RIIB Fc R Fc R T cell- dependent a Humoral immunity b Antigen presentation by DCs c Innate immunity d Hypersensitivity Inhibition of activating signals Suppression of antigen presentation Immune complex trapping Fc R-mediated phagocytosis, superoxide production, adhesion, rolling and migration? Fc R-mediated phagocytosis, superoxide production and cytokine release IgE-mediated degranulation, IL-4 production and histamine release SCF-induced proliferation TLR-mediated activation CD40L Inhibition of DC maturation Immature DC Neutrophil Macrophage FDC CD40 CD40 CD28 CD86 Suppression of antigen internalization and presentation MHC class II MHC class II TCR IgG BCR Apoptosis Antigen uptake Presentation of intact antigen to B cells? Germinal centre Plasma cell Mast cell IgE Figure 2 | The functions of FcγRIIB. a | Fc receptor IIB for IgG (FcγRIIB) has an important role in controlling humoral immunity by regulating B cell activation, localization of B cells in the germinal centres, as well as plasma cell REVIEWSREVIEWS Las múltiples facetas de la inhibición por FcgammaRIIB
  • 60. El efecto de IVIG en las enfermedades autoinmunes ✦ Dependientes de Fab: ✦ ant-idiotipo ✦ modulación de citocinas ✦ neutralización de C3a y C5a ✦ Aumento de expresión de FCgammaRIIB en Macrófagos ✦ Efectos a través de CSF ✦ Efectos dependiento del nivel de glicosilación ✦ Polimorfismos FcgammaRIIB → SLE
  • 61. FcγRIIB as a therapeutic target. A monoclonal anti- body against FcγRIIB (hu2B6-3.5; MacroGenics) has been used to direct monocyte- or macrophage- induced cytotoxicity against B cell lymphoma cells150 and plasma cells from patients with systemic light- antibodies could co-ligate specific antigen and FcγRIIB raises the prospect of autoantigen-specific suppression of humoral immunity. The soluble FcγRIIB3 isoform has been shown to inhibit the effects of immune complexes in vitro24,26 . A Table 1 | Current and future therapeutic exploitation of FcγRIIB Therapeutic strategy Clinical effect Refs Modulation of FcγRIIB expression on effector cells IVIG indirectly increases FcγRIIB expression on ‘effector’ cells 138,139 Infliximab (Remicade; Centocor/Merck) blocks TNF, leading to increased FcγRIIB expression on monocytes 142 Modulation of IgG-binding to FcγRIIB Decrease in affinity of depleting monoclonal antibodies for FcγRIIB increases efficacy 45,47 Use of FcγRIIB as a direct therapeutic target Monoclonal antibody directed against FcγRIIB allowing co-crosslinking of FcγRIIB may induce apoptosis of B cells and plasma cells in lymphoma, myeloma or autoimmunity 40,150,151 A bispecific antibody that binds antigen-specific BCR and FcγRIIB potentially allows targeted inhibition of autoreactive B cells – Therapeutic antibody targeting IgE receptor can inhibit mast cell degranulation and may be useful in the treatment of allergy 152–155 Soluble FcγRIIB may inhibit immune complex-mediated immune activation and has shown efficacy in a mouse model of SLE 156 BCR, B cell receptor; FcγR, Fc receptor for IgG; IVIG, intravenous immunoglobulin; SLE, systemic lupus erythematosus; TNF, tumour necrosis factor. WSWS