SlideShare une entreprise Scribd logo
1  sur  11
Télécharger pour lire hors ligne
Learning Spatio-Temporal Representation
with Local and Global Diffusion
Zhaofan Qiu, Ting Yao, Chong-Wah Ngo, Xinmei Tian,
and Tao Mei
資料作成︓後藤啓太
1
http://xpaperchallenge.org/cv/
概要
2
• ⽬的
– 動画の「動き」をうまくエンコードすることで、
⾏動認識の精度を向上させたい
• 提案
– 3D ResNet に Global Path を導⼊、動画全体を⾒て特徴を抽出
– 逐次的に Global な特徴と Local な特徴を混ぜ合わせる
• 結果
– ⾏動認識やセグメンテーションに
おいて SOTA を実現した
背景(1)
3
• ⾏動認識 ( Action Recognition )
– 動画に対して Action Class を付与
• データセット
– HMDB51
– UCF101
– Sports-1M
– Kinetics 400 → 600 → 700
• 年々⼤規模化︕
https://www.crcv.ucf.edu/data/UCF101.php
背景(2)
4
• データセットの⼤規模化によって、
• 深い 3D CNN でも学習が安定するようになった
– 2D CNN から 3D CNN へ
– C3D → I3D → 3D ResNet と代表的なモデルが登場
• 3D CNN は動き (= フレーム間の変化) を⾒ていないという批判
• [Huang+, CVPR 2018]
– どれも結局は Optical Flow とアンサンブルしている
こういった批判から、ネットワークの再考 が⾏われ始めている
提案⼿法 (1)
5
• Local Global Diffusion (LGD): Global Path を追加
– Global Path が動画全体の特徴を保持
– Upsampling と Global Average Pooling により Diffusion
Global →
Local →
ℱ がエンコードするための関数 (ResNet なら Residual Block) に相当
提案⼿法 (2)
6
• LGD Block を積んでネットワークを構成
– Global 情報を段階的にエンコード
– Local 情報にアテンションをかけるイメージに近い
実験
7
1. 2D Conv と 3D Conv の⽐較
2. Ablation Study
– ResNet-50 vs ResNet-101
– ImageNet 事前学習の有無
– Classification に Global 特徴の使⽤
– フレーム数(16 frames vs 64 frames per clip)
3. 従来の SOTA ⼿法と⽐較
– Kinetics-{400, 600}, UCF101, HMDB51, UCF101D, J-HMDB
結果 (1)
8
• 2Dよりも3Dの⽅がいい︕
• → 3D CNN の弱点をカバーすることで真の性能を引き出している
結果 (2)
9
• ResNet-101
• + ImageNet 事前学習
• + グローバル特徴
• + 多フレーム
精度向上に寄与
提案⼿法は時間⽅向の変化を
うまくエンコードできてる
結果 (3)
10
• 様々なデータセットで SOTA を実現
Kinetics-600 の validation set による比較(*は test set での結果)
• Recognition
– HMDB51
– UCF101
– Kinetics-{400, 600}
• Spatio-Temporal Detection
– J-HMDB
– UCF101D
で SOTA を実現
考察
11
•Global Path の追加で精度が向上
– フレーム間の変化を⾒れている (?)
– が、Two-Streamの⽅が精度が⾼いのには変わらない
•ResNet-101 程度のパラメータ数でも学習できている
– Kinetics-600が⼗分に⼤きいデータセット
•ネットワーク内でDiffusion
– ネットワーク構造としては Two-Stream 的な雰囲気
– Diffusion や Progressive など、ネットワーク複雑化の傾向

Contenu connexe

Tendances

[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose TrackingDeep Learning JP
 
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based ControlDeep Learning JP
 
CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)MasanoriSuganuma
 
[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural NetworksDeep Learning JP
 
0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)MasanoriSuganuma
 
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object DetectionDeep Learning JP
 
CNNの構造最適化手法について
CNNの構造最適化手法についてCNNの構造最適化手法について
CNNの構造最適化手法についてMasanoriSuganuma
 
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic SegmentationDeep Learning JP
 
[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networks[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networksDeep Learning JP
 
北大調和系 DLゼミ A3C
北大調和系 DLゼミ A3C北大調和系 DLゼミ A3C
北大調和系 DLゼミ A3CTomoya Oda
 
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...Shunsuke Ono
 
[DL輪読会]Objects as Points
[DL輪読会]Objects as Points[DL輪読会]Objects as Points
[DL輪読会]Objects as PointsDeep Learning JP
 
【DL輪読会】Where do Models go Wrong? Parameter-Space Saliency Maps for Explainabi...
【DL輪読会】Where do Models go Wrong? Parameter-Space Saliency Maps for Explainabi...【DL輪読会】Where do Models go Wrong? Parameter-Space Saliency Maps for Explainabi...
【DL輪読会】Where do Models go Wrong? Parameter-Space Saliency Maps for Explainabi...Deep Learning JP
 
[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...
[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...
[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...Deep Learning JP
 
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields [DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields Deep Learning JP
 
論文紹介 "DARTS: Differentiable Architecture Search"
論文紹介 "DARTS: Differentiable Architecture Search"論文紹介 "DARTS: Differentiable Architecture Search"
論文紹介 "DARTS: Differentiable Architecture Search"Yuta Koreeda
 
[DL輪読会]Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Ima...
[DL輪読会]Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Ima...[DL輪読会]Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Ima...
[DL輪読会]Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Ima...Deep Learning JP
 
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
[DL輪読会]Dream to Control: Learning Behaviors by Latent ImaginationDeep Learning JP
 
【DL輪読会】Free Lunch for Few-shot Learning: Distribution Calibration
【DL輪読会】Free Lunch for Few-shot Learning: Distribution Calibration【DL輪読会】Free Lunch for Few-shot Learning: Distribution Calibration
【DL輪読会】Free Lunch for Few-shot Learning: Distribution CalibrationDeep Learning JP
 
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...
When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...MasanoriSuganuma
 

Tendances (20)

[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
[DL輪読会]LightTrack: A Generic Framework for Online Top-Down Human Pose Tracking
 
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
[DL輪読会]Learning to Adapt: Meta-Learning for Model-Based Control
 
CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)CNNの構造最適化手法(第3回3D勉強会)
CNNの構造最適化手法(第3回3D勉強会)
 
[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
[DL輪読会]EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
 
0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)0から理解するニューラルネットアーキテクチャサーチ(NAS)
0から理解するニューラルネットアーキテクチャサーチ(NAS)
 
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
 
CNNの構造最適化手法について
CNNの構造最適化手法についてCNNの構造最適化手法について
CNNの構造最適化手法について
 
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation
 
[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networks[DL輪読会]DropBlock: A regularization method for convolutional networks
[DL輪読会]DropBlock: A regularization method for convolutional networks
 
北大調和系 DLゼミ A3C
北大調和系 DLゼミ A3C北大調和系 DLゼミ A3C
北大調和系 DLゼミ A3C
 
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
 
[DL輪読会]Objects as Points
[DL輪読会]Objects as Points[DL輪読会]Objects as Points
[DL輪読会]Objects as Points
 
【DL輪読会】Where do Models go Wrong? Parameter-Space Saliency Maps for Explainabi...
【DL輪読会】Where do Models go Wrong? Parameter-Space Saliency Maps for Explainabi...【DL輪読会】Where do Models go Wrong? Parameter-Space Saliency Maps for Explainabi...
【DL輪読会】Where do Models go Wrong? Parameter-Space Saliency Maps for Explainabi...
 
[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...
[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...
[DL輪読会]Encoder-Decoder with Atrous Separable Convolution for Semantic Image S...
 
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields [DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
 
論文紹介 "DARTS: Differentiable Architecture Search"
論文紹介 "DARTS: Differentiable Architecture Search"論文紹介 "DARTS: Differentiable Architecture Search"
論文紹介 "DARTS: Differentiable Architecture Search"
 
[DL輪読会]Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Ima...
[DL輪読会]Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Ima...[DL輪読会]Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Ima...
[DL輪読会]Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Ima...
 
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
[DL輪読会]Dream to Control: Learning Behaviors by Latent Imagination
 
【DL輪読会】Free Lunch for Few-shot Learning: Distribution Calibration
【DL輪読会】Free Lunch for Few-shot Learning: Distribution Calibration【DL輪読会】Free Lunch for Few-shot Learning: Distribution Calibration
【DL輪読会】Free Lunch for Few-shot Learning: Distribution Calibration
 
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...
When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...When NAS Meets Robustness:In Search of Robust Architectures againstAdversar...
When NAS Meets Robustness: In Search of Robust Architectures against Adversar...
 

Similaire à 【CVPR 2019】Learning spatio temporal representation with local and global diffusion

文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
文献紹介:Selective Feature Compression for Efficient Activity Recognition InferenceToru Tamaki
 
【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2Hirokatsu Kataoka
 
【チュートリアル】コンピュータビジョンによる動画認識
【チュートリアル】コンピュータビジョンによる動画認識【チュートリアル】コンピュータビジョンによる動画認識
【チュートリアル】コンピュータビジョンによる動画認識Hirokatsu Kataoka
 
ae-10. 中間まとめ(ディープラーニング)
ae-10. 中間まとめ(ディープラーニング)ae-10. 中間まとめ(ディープラーニング)
ae-10. 中間まとめ(ディープラーニング)kunihikokaneko1
 
動画認識・キャプショニングの潮流 (CVPR 2018 完全読破チャレンジ報告会)
動画認識・キャプショニングの潮流 (CVPR 2018 完全読破チャレンジ報告会)動画認識・キャプショニングの潮流 (CVPR 2018 完全読破チャレンジ報告会)
動画認識・キャプショニングの潮流 (CVPR 2018 完全読破チャレンジ報告会)cvpaper. challenge
 
人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -
人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -
人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -Akisato Kimura
 
動画像理解のための深層学習アプローチ
動画像理解のための深層学習アプローチ動画像理解のための深層学習アプローチ
動画像理解のための深層学習アプローチToru Tamaki
 
CVPR2016 reading - 特徴量学習とクロスモーダル転移について
CVPR2016 reading - 特徴量学習とクロスモーダル転移についてCVPR2016 reading - 特徴量学習とクロスモーダル転移について
CVPR2016 reading - 特徴量学習とクロスモーダル転移についてAkisato Kimura
 
ae-3. ディープラーニングの基礎
ae-3. ディープラーニングの基礎ae-3. ディープラーニングの基礎
ae-3. ディープラーニングの基礎kunihikokaneko1
 
動画認識サーベイv1(メタサーベイ )
動画認識サーベイv1(メタサーベイ )動画認識サーベイv1(メタサーベイ )
動画認識サーベイv1(メタサーベイ )cvpaper. challenge
 
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...Deep Learning JP
 
Sigir2013 勉強会資料
Sigir2013 勉強会資料Sigir2013 勉強会資料
Sigir2013 勉強会資料Mitsuo Yamamoto
 
B3スタートアップ コンピュータビジョンの現在と未来にやるべきこと(東京電機大学講演)
B3スタートアップ コンピュータビジョンの現在と未来にやるべきこと(東京電機大学講演)B3スタートアップ コンピュータビジョンの現在と未来にやるべきこと(東京電機大学講演)
B3スタートアップ コンピュータビジョンの現在と未来にやるべきこと(東京電機大学講演)cvpaper. challenge
 
[DL輪読会]Deep Face Recognition: A Survey
[DL輪読会]Deep Face Recognition: A Survey[DL輪読会]Deep Face Recognition: A Survey
[DL輪読会]Deep Face Recognition: A SurveyDeep Learning JP
 
大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺n_hidekey
 
増加するコアを使い切れ!!
増加するコアを使い切れ!!増加するコアを使い切れ!!
増加するコアを使い切れ!!guestc06e54
 
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hareDAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也harePreferred Networks
 
【2017.06】 cvpaper.challenge 2017
【2017.06】 cvpaper.challenge 2017【2017.06】 cvpaper.challenge 2017
【2017.06】 cvpaper.challenge 2017cvpaper. challenge
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...cvpaper. challenge
 
【SSII2015】人を観る技術の先端的研究
【SSII2015】人を観る技術の先端的研究【SSII2015】人を観る技術の先端的研究
【SSII2015】人を観る技術の先端的研究Hirokatsu Kataoka
 

Similaire à 【CVPR 2019】Learning spatio temporal representation with local and global diffusion (20)

文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
文献紹介:Selective Feature Compression for Efficient Activity Recognition Inference
 
【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2【チュートリアル】コンピュータビジョンによる動画認識 v2
【チュートリアル】コンピュータビジョンによる動画認識 v2
 
【チュートリアル】コンピュータビジョンによる動画認識
【チュートリアル】コンピュータビジョンによる動画認識【チュートリアル】コンピュータビジョンによる動画認識
【チュートリアル】コンピュータビジョンによる動画認識
 
ae-10. 中間まとめ(ディープラーニング)
ae-10. 中間まとめ(ディープラーニング)ae-10. 中間まとめ(ディープラーニング)
ae-10. 中間まとめ(ディープラーニング)
 
動画認識・キャプショニングの潮流 (CVPR 2018 完全読破チャレンジ報告会)
動画認識・キャプショニングの潮流 (CVPR 2018 完全読破チャレンジ報告会)動画認識・キャプショニングの潮流 (CVPR 2018 完全読破チャレンジ報告会)
動画認識・キャプショニングの潮流 (CVPR 2018 完全読破チャレンジ報告会)
 
人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -
人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -
人間の視覚的注意を予測するモデル - 動的ベイジアンネットワークに基づく 最新のアプローチ -
 
動画像理解のための深層学習アプローチ
動画像理解のための深層学習アプローチ動画像理解のための深層学習アプローチ
動画像理解のための深層学習アプローチ
 
CVPR2016 reading - 特徴量学習とクロスモーダル転移について
CVPR2016 reading - 特徴量学習とクロスモーダル転移についてCVPR2016 reading - 特徴量学習とクロスモーダル転移について
CVPR2016 reading - 特徴量学習とクロスモーダル転移について
 
ae-3. ディープラーニングの基礎
ae-3. ディープラーニングの基礎ae-3. ディープラーニングの基礎
ae-3. ディープラーニングの基礎
 
動画認識サーベイv1(メタサーベイ )
動画認識サーベイv1(メタサーベイ )動画認識サーベイv1(メタサーベイ )
動画認識サーベイv1(メタサーベイ )
 
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representatio...
 
Sigir2013 勉強会資料
Sigir2013 勉強会資料Sigir2013 勉強会資料
Sigir2013 勉強会資料
 
B3スタートアップ コンピュータビジョンの現在と未来にやるべきこと(東京電機大学講演)
B3スタートアップ コンピュータビジョンの現在と未来にやるべきこと(東京電機大学講演)B3スタートアップ コンピュータビジョンの現在と未来にやるべきこと(東京電機大学講演)
B3スタートアップ コンピュータビジョンの現在と未来にやるべきこと(東京電機大学講演)
 
[DL輪読会]Deep Face Recognition: A Survey
[DL輪読会]Deep Face Recognition: A Survey[DL輪読会]Deep Face Recognition: A Survey
[DL輪読会]Deep Face Recognition: A Survey
 
大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺
 
増加するコアを使い切れ!!
増加するコアを使い切れ!!増加するコアを使い切れ!!
増加するコアを使い切れ!!
 
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hareDAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
DAシンポジウム2019招待講演「深層学習モデルの高速なTraining/InferenceのためのHW/SW技術」 金子紘也hare
 
【2017.06】 cvpaper.challenge 2017
【2017.06】 cvpaper.challenge 2017【2017.06】 cvpaper.challenge 2017
【2017.06】 cvpaper.challenge 2017
 
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
 
【SSII2015】人を観る技術の先端的研究
【SSII2015】人を観る技術の先端的研究【SSII2015】人を観る技術の先端的研究
【SSII2015】人を観る技術の先端的研究
 

Dernier

LoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアルLoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアルCRI Japan, Inc.
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NTT DATA Technology & Innovation
 
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。iPride Co., Ltd.
 
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。iPride Co., Ltd.
 
LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイス
LoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイスLoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイス
LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイスCRI Japan, Inc.
 
新人研修 後半 2024/04/26の勉強会で発表されたものです。
新人研修 後半        2024/04/26の勉強会で発表されたものです。新人研修 後半        2024/04/26の勉強会で発表されたものです。
新人研修 後半 2024/04/26の勉強会で発表されたものです。iPride Co., Ltd.
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)Hiroshi Tomioka
 

Dernier (7)

LoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアルLoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
LoRaWAN スマート距離検出デバイスDS20L日本語マニュアル
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
 
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その32024/04/26の勉強会で発表されたものです。
 
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
Amazon SES を勉強してみる その22024/04/26の勉強会で発表されたものです。
 
LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイス
LoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイスLoRaWANスマート距離検出センサー  DS20L  カタログ  LiDARデバイス
LoRaWANスマート距離検出センサー DS20L カタログ LiDARデバイス
 
新人研修 後半 2024/04/26の勉強会で発表されたものです。
新人研修 後半        2024/04/26の勉強会で発表されたものです。新人研修 後半        2024/04/26の勉強会で発表されたものです。
新人研修 後半 2024/04/26の勉強会で発表されたものです。
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
 

【CVPR 2019】Learning spatio temporal representation with local and global diffusion

  • 1. Learning Spatio-Temporal Representation with Local and Global Diffusion Zhaofan Qiu, Ting Yao, Chong-Wah Ngo, Xinmei Tian, and Tao Mei 資料作成︓後藤啓太 1 http://xpaperchallenge.org/cv/
  • 2. 概要 2 • ⽬的 – 動画の「動き」をうまくエンコードすることで、 ⾏動認識の精度を向上させたい • 提案 – 3D ResNet に Global Path を導⼊、動画全体を⾒て特徴を抽出 – 逐次的に Global な特徴と Local な特徴を混ぜ合わせる • 結果 – ⾏動認識やセグメンテーションに おいて SOTA を実現した
  • 3. 背景(1) 3 • ⾏動認識 ( Action Recognition ) – 動画に対して Action Class を付与 • データセット – HMDB51 – UCF101 – Sports-1M – Kinetics 400 → 600 → 700 • 年々⼤規模化︕ https://www.crcv.ucf.edu/data/UCF101.php
  • 4. 背景(2) 4 • データセットの⼤規模化によって、 • 深い 3D CNN でも学習が安定するようになった – 2D CNN から 3D CNN へ – C3D → I3D → 3D ResNet と代表的なモデルが登場 • 3D CNN は動き (= フレーム間の変化) を⾒ていないという批判 • [Huang+, CVPR 2018] – どれも結局は Optical Flow とアンサンブルしている こういった批判から、ネットワークの再考 が⾏われ始めている
  • 5. 提案⼿法 (1) 5 • Local Global Diffusion (LGD): Global Path を追加 – Global Path が動画全体の特徴を保持 – Upsampling と Global Average Pooling により Diffusion Global → Local → ℱ がエンコードするための関数 (ResNet なら Residual Block) に相当
  • 6. 提案⼿法 (2) 6 • LGD Block を積んでネットワークを構成 – Global 情報を段階的にエンコード – Local 情報にアテンションをかけるイメージに近い
  • 7. 実験 7 1. 2D Conv と 3D Conv の⽐較 2. Ablation Study – ResNet-50 vs ResNet-101 – ImageNet 事前学習の有無 – Classification に Global 特徴の使⽤ – フレーム数(16 frames vs 64 frames per clip) 3. 従来の SOTA ⼿法と⽐較 – Kinetics-{400, 600}, UCF101, HMDB51, UCF101D, J-HMDB
  • 8. 結果 (1) 8 • 2Dよりも3Dの⽅がいい︕ • → 3D CNN の弱点をカバーすることで真の性能を引き出している
  • 9. 結果 (2) 9 • ResNet-101 • + ImageNet 事前学習 • + グローバル特徴 • + 多フレーム 精度向上に寄与 提案⼿法は時間⽅向の変化を うまくエンコードできてる
  • 10. 結果 (3) 10 • 様々なデータセットで SOTA を実現 Kinetics-600 の validation set による比較(*は test set での結果) • Recognition – HMDB51 – UCF101 – Kinetics-{400, 600} • Spatio-Temporal Detection – J-HMDB – UCF101D で SOTA を実現
  • 11. 考察 11 •Global Path の追加で精度が向上 – フレーム間の変化を⾒れている (?) – が、Two-Streamの⽅が精度が⾼いのには変わらない •ResNet-101 程度のパラメータ数でも学習できている – Kinetics-600が⼗分に⼤きいデータセット •ネットワーク内でDiffusion – ネットワーク構造としては Two-Stream 的な雰囲気 – Diffusion や Progressive など、ネットワーク複雑化の傾向