SlideShare une entreprise Scribd logo
1  sur  24
N
7. Leyes de Newton
1. Un bloque de 10 kg que está en un plano sin rozamiento e inclinado 300
con respecto a la
horizontal, es sostenido mediante una cuerda, como se muestra en la figura. Determine la tensión
de la cuerda y la magnitud de la fuerza normal (perpendicular al plano inclinado).
Primero: Se identifican todas las fuerzas que actúan sobre el cuerpo
T tensión de la cuerda
w peso del cuerpo
N normal
Segundo: Se realiza el diagrama de cuerpo libre o aislado, donde se colocan todas las fuerzas que
actúan sobre el cuerpo en estudio (bloque).
Tercero: Elegir un sistema de referencia (de preferencia un eje perpendicular y otro paralelo al
plano). Considerar el eje x positivo en la dirección (o posible dirección) de movimiento del cuerpo.
Cuarto: Se aplica la segunda ley de Newton en forma de componentes rectangulares.
∑ = xx maF
∑ = yy maF
θ
m
T
N
T
mg = wx+
θ
θ
El ángulo de inclinación
que forma el peso con
respecto al eje vertical
es θ
w
y+
Quinto: Se descomponen todas las fuerzas en sus componentes rectangulares. Debido al sistema
de referencia elegido, la normal N y la tensión T, están sobre los ejes. La única fuerza que se
descompone en este problema, es el peso. Sus componentes rectangulares son:
θmgsenwx =
θcosmgwy =
De esta forma, las fuerzas o componentes de fuerzas que se encuentran sobre le eje de las x's
son: la componente del peso wx y la tensión de la cuerda T, las cuales se sustituyen por la Σ Fx
∑ = xx maF
Quedando:
xx maTw =−
Obsérvese que wx es positivo y que T es negativo, ya que apuntan en tales direcciones.
Sustituyendo el valor de wx
xmaTmgsen =−θ
En este caso, el cuerpo está en reposo, por lo que no hay cambios de velocidad, ó lo que es lo
mismo, no existe aceleración (ax = 0 ). Sustituyendo:
0=−Tmgsenθ
Resolviendo para la tensión:
θmgsenT =
Sustituyendo los valores:
0
2
30)81.9(10 sen
s
m
kgT =
NtT 05.49=
La fuerza normal se determina a partir de la sumatoria de fuerzas en el eje de las y's.
∑ = yy maF
Considerando también que no hay movimiento en el eje vertical ay = 0
0=− ywN
Despejando a la normal y sustituyendo la componente vertical del peso:
θcosmgN =
Sustituyendo los valores
0
2
30cos)81.9(10
s
m
kgN =
NtN 82.94=
2. Del problema anterior, suponga que la cuerda se rompe. Calcule la aceleración del bloque
cuando ésta se desliza sobre el plano inclinado.
Al desaparecer la tensión de la cuerda, el bloque inicia su movimiento, a medida que transcurre el
tiempo, su velocidad va incrementándose (no hay rozamiento), existiendo en consecuencia una
aceleración.
Las fuerzas que actúan sobre el bloque son la Normal y el Peso. Si sumáramos las dos fuerzas,
encontraríamos una fuerza Neta o Resultante que estará sobre el eje de las x's y que es la que
hace que el cuerpo se acelere hacia abajo sobre el plano.
Analizando el problema con mayor detenimiento, podemos descomponer al peso en sus
componentes rectangulares, y como el cuerpo no se mueve sobre el eje de las y's, deducimos que
la fuerza Normal es de igual magnitud que la componente del Peso sobre dicho eje, quedándonos
únicamente la componente en el eje x, siendo ésta de magnitud: mg sen θ.
Para determinar la aceleración resolvamos analíticamente, aplicando la segunda ley de Newton.
∑ = xx maF
xx maW =
xmamgsen =θ
θ
θ
gsen
m
mgsen
ax ==
3. De las siguientes figuras encuentre la aceleración de las masas y las tensiones de las cuerdas.
Si analizamos las figuras antes de resolver el problema analíticamente, observaremos que existe
una gran similitud entre ellos, lo único que está cambiando son los ángulos. Con esta observación
podemos resolver un solo problema (el que parece más complicado: Fig. 3) y a partir del análisis
del resultado, podemos inferir los otros. Procedamos a ello.
N
mg = W
x+
y+
θ
600300
m1
m2
m1
m2
30 0
m1
m2
m2m1
Figura 1
Figura 2
Figura 3
Figura 4
Se deben de hacer tantos diagramas de cuerpo libre, como cuerpos en estudio tengamos.
Descomponer todas las fuerzas en sus componentes rectangulares y aplicar la segunda ley de
Newton a cada uno de los diagramas de cuerpo libre. Cuando no existe rozamiento, no es
necesario trabajar con la sumatoria de fuerzas en el eje de las y's, a menos que se pida la
magnitud de la fuerza Normal o la componente del peso en ese eje.
Haciendo suma de fuerzas en el eje de las x's
∑ = xx amF 11 ∑ = xx amF 22
xx amWT 1111 =− xx amTW 2222 =−
xamgsenmT 111 =− α xamTgsenm 2222 =−β
Como es la misma cuerda y mientras no se estire ni se afloje, la tensión en cualquier punto es la
misma por lo que:
T1 = T2
Consecuentemente, mientras un cuerpo desliza hacia arriba, el otro desliza hacia abajo,
experimentando ambos los mismos cambios de velocidad, es decir, que tienen la misma
aceleración:
a1x = a2x
Con esto, las dos ecuaciones anteriores se convierten en:
amgsenmT 11 =− α amTgsenm 222 =−β
Un sistema de dos ecuaciones lineales con dos incógnitas ( T y a ), que se resuelve por medio de
los métodos conocidos ( suma y resta; sustitución; igualación o determinantes).
Usando el método de sustitución:
Despejamos T de la primera ecuación:
αgsenmamT 11 +=
y la sustituimos en la segunda:
amgsenmamgsenm 2112 )( =+− αβ
600300
m1
m2
α β
Para el bloque m1 Para el bloque m2
y+
x+
y+
x+
Mov. de m1
Mov. de m2
en el eje
de las x's, positivo hacia
abajo
N
T
W
T
N
W
1
2
1
1
2
2
Resolviendo:
amgsenmamgsenm 2112 ) =−− αβ
amamgsenmgsenm 1212 +=− αβ
ammgsenmgsenm )( 1212 +=− αβ
21
12
mm
gsenmgsenm
a
+
−
=
αβ
g
mm
senmsenm
a 





+
−
=
21
12 αβ
Para calcular la tensión, únicamente sustituimos el valor de la aceleración en cualquiera de las dos
ecuaciones lineales.
α
αβ
gsenmg
mm
senmsenm
mT 1
21
12
1 +





+
−
=
Analizando el resultado de la aceleración, podemos tener los siguientes casos:
{ Si: α = 00
y β = 900
; sen α = 0 y sen β = 1
Correspondiendo dichos ángulos al primer caso, es decir, a la figura 1.
Por lo tanto, la aceleración de los bloques para esa figura es:
g
mm
mm
g
mm
senmsenm
a 





+
−
=





+
−
=
21
12
21
0
1
0
2 )0()1(090
21
2
mm
gm
a
+
=
Para la Figura 2 tenemos que:
{ α = 300
y β = 900
; sen β = 1
g
mm
senmm
g
mm
senmm
a 





+
−
=





+
−
=
21
12
21
12 )1( αα
Para la Figura 4 tenemos que:
{ α = 900
y β = 900
; sen α = 1 sen β = 1
g
mm
mm
g
mm
mm
a 





+
−
=





+
−
=
21
12
21
12 )1()1(
Los resultados obtenidos para la aceleración también pueden ser analizados, así por ejemplo, en el
último caso (Fig. 4):
v Si m2 > m1
tenemos que la aceleración de los cuerpos es positiva ( a > 0 ) y los cuerpos se mueven de la
siguiente forma:
m1 hacia arriba
m2 hacia abajo
v Si m2 < m1
tenemos que la aceleración de los cuerpos es negativa ( a < 0 ) y los cuerpos se mueven de la
siguiente forma:
m1 hacia abajo
m2 hacia arriba
v Si m2 = m1
tenemos que la aceleración de los cuerpos es nula ( a = 0 ) y los cuerpos permanecen en reposo.
v Si cualquiera de los cuerpos es mucho mayor ( >>> ) que el otro, por ejemplo m2 >>> m1,
entonces:
212 mmm ≅−
y
212 mmm ≅+
y la aceleración es positiva e igual al valor de la magnitud de la gravedad ( g ).
v En el otro caso, cuando:
m2 <<< m1, entonces:
tenemos que:
112 mmm −≅−
y
112 mmm ≅+
y la aceleración es negativa e igual al valor de la magnitud de la gravedad.
Ahora resolveremos la figura 4, también conocida como máquina de Atwood, con el fin de verificar
que nuestros resultados deductivos a partir de la figura 3 son correctos, pudiendo hacerse también
para las otras dos figuras.
Nota: Obsérvese que los ejes positivos fueron tomados en la dirección de movimiento propuesta.
Aplicando la segunda ley de Newton en el eje vertical a ambos diagramas:
∑ = yy amF 11 ∑ = yy amF 22
yamgmT 111 =− yamTgm 222 =−
m2
m1
Diagrama de cuerpo libre o aislado
Sobre m2
Sobre m1
TT
m1
g
m2
g
y+ y -
y - y+
Dirección de
movimiento
propuesta
Dirección de
movimiento
propuesta
donde a1y = a2y = a
obteniendo dos ecuaciones lineales con dos incógnitas:
amgmT 11 =− y amTgm 22 =−
Resolviendo por suma y resta:
amamgmgm 2112 +=−
factorizando:
ammgmm )()( 2112 +=−
despejando:
g
mm
mm
a
21
12 )(
+
−
=
que es el mismo resultado obtenido a partir de la deducción del resultado de la tercer figura
4. Dos bloques de masa m1 = 3 kg y m2 = 4 kg están tocándose sobre una mesa sin fricción. Si la
fuerza mostrada que actúa sobre m1 es de 5 Nt.
a) ¿Cuál será la aceleración de los dos bloques?
b) ¿Con qué fuerza empuja m1 a m2?
c) Repita los incisos anteriores, si la fuerza se aplica a m2.
a) Para determinar la aceleración de los bloques, consideremos a los dos como uno solo de masa
m1 + m2 = 7 kg.
El diagrama de cuerpo libre es:
3kg
4kg
7 kg
N
mg
F
x+
y+
De la suma de fuerzas en el eje x:
∑ = xx MaF
donde: M = m1 + m2
xMaF =
2
71.0
7
5
s
m
kg
Nt
M
F
a ===
b) Para determinar la fuerza con que empuja m1 a m2 aplicamos la tercera ley de Newton que dice
que la fuerza que ejerce m1 sobre m2 es de igual magnitud, pero en sentido contrario a la que
ejerce m2 sobre m1. Para ello analicemos las fuerzas que actúan sobre m1 mediante el siguiente
diagrama de fuerzas.
∑ = xx amF 11
La segunda ley se aplica sobre el cuerpo en estudio (m1 ) y la aceleración que este cuerpo
experimenta es la que encontramos en el inciso anterior ( a1x = a = 0.71 m/s2
).
amPF 1=−
amFP 1−=
Nt
s
m
kgNtP 85.2)71.0)(3(5 2
=−=
Luego entonces, por la tercera ley la fuerza con que empuja m1 a m2 es P' = 2.85 Nt.
c) Si la fuerza se aplica sobre m2, tendremos la misma aceleración, aunque los cuerpos se
moverán hacia la izquierda.
Para determinar la fuerza con que empuja m1 a m2 se realizan los mismos pasos, pero la suma de
fuerzas es ahora sobre m2.
∑ = xx amF 22
amRF 2=−
N
m1
g
F
x+
y+
P
F = Fuerza aplicada
P = Fuerza que ejerce m2
sobre
m1
y que detiene a m1
N
m2
g
F
x+
y+
P
F = Fuerza aplicada
R = Fuerza que ejerce m1
sobre
m2
y que detiene a m2
x+
en la dirección de movimiento.
Nt
s
m
kgNtamFR 1.2)71.0)(4(5 22 =−=−=
5. Un automóvil de 900 kg que va a 20 m/s choca con un árbol y recorre 1.6 m antes de detenerse.
¿Qué magnitud tendrá la fuerza de retardo ejercida por el árbol sobre él?
∑ = xx maF
amRF 2=−
xmaP −=
Donde ax se determina mediante cinemática. Las condiciones son:
v0 = 20 m/s
vf = 0
x - x0 = 1.6 m/s
ecuación:
)(2 0
2
0
2
xxavv f −=−
2
2
0
2
0
2
5.12
)6.1(2
)20(0
)(2 s
m
m
s
m
xx
vv
a
f
−=
−
=
−
−
=
luego entonces:
Nt
s
m
kgP 112500)5.12(900 2
=−−=
Obteniendo un resultado positivo, lo cual no implica que la fuerza P se encuentre en la dirección
que elegimos como positiva, ya que cuando aplicamos la segunda ley, dicha fuerza la expresamos
negativa.
6. ¿Qué magnitud tendrá una fuerza paralela a una pendiente de 300
para comunicarle a una caja
de 50 kg una aceleración de 2.0 m/s2
hacia arriba?
N
mg
P
x+
y+
P = Fuerza que ejerce el árbol
sobre el automóvil.
No existe ninguna otra fuerza
como, por ejemplo, la fuerza que
ejerce la tracción de las llantas o
la del motor.
F
300
x+
y+
FN
mg 300
∑ = xx maF
xx maWF =−
xmamgsenF =− θ
θmgsenmaF x +=
0
22
30)81.9(50)2(50 sen
s
m
kg
s
m
kgF +=
NtF 25.345=
Si se deposita la caja sobre el plano inclinado, ¿con qué aceleración bajará?
¿Qué tanta fuerza se requiere para que baje con una aceleración de 2 m/s2
? ¿Hacia dónde debe
de aplicarse dicha fuerza?
7. Una bala de 8.0 gr penetra en una pieza de plástico de 2 cm de espesor con una rapidez de 140
m/s.
¿Cuál es la fuerza promedio que retarda el paso de la bala por el plástico?
∑ = xx maF
xmaF =−
donde:
2
2
0
2
0
2
490000
)02.0(2
)140(0
)(2 s
m
m
s
m
xx
vv
a
f
−=
−
=
−
−
=
Nt
s
m
kgF 3920)490000)(008.0( 2
=−−=
Cabe hacer la aclaración de que no se puso el peso ni la fuerza normal en el diagrama de cuerpo
libre, ya que no son relevantes para la resolución del problema. En el caso de la fuerza normal,
ésta actúa sobre toda la superficie cilíndrica y saliendo, de tal manera que se contrarrestan
mutuamente.
8. Un prisionero de 60 kg desea escapar por una ventana del tercer piso deslizándose por una
cuerda hecha de sábanas. Por desgracia, la cuerda puede sostener sólo 500 Nt.
¿Con qué rapidez debe el prisionero acelerar hacia abajo de ella para que no se rompa?
Calculemos primero el peso del prisionero para comparar dicha fuerza con la máxima tensión de la
cuerda. Si el peso del prisionero es mayor que la tensión de la cuerda, entonces ésta se rompe.
2 cm
v = 0
v = 140 m/s0
Antes Después
F
x+
y+
W = mg = 60 kg ( 9.81 m/s2
) = 588.6 Nt.
Por lo que la cuerda no puede sostener al prisionero en esas condiciones. Sin embargo, existe una
forma de hacerlo sin que se rompa la cuerda. Para ver esta forma, hagamos una similitud con un
experimento, siendo éste el siguiente. Si ato un ladrillo o bloque con un hilo de coser a máquina,
éste se romperá, puesto que no puede sostener el peso. Pero si dejo caer el bloque con el hilo
amarrado, éste viajará junto con el bloque sin romperse, teniendo ambos una aceleración igual a la
de la gravedad.
Puedo soltar el bloque teniendo sostenido el hilo, pero de tal manera que esté tenso y viajando con
el bloque a medida que vaya cayendo. Ésa es la forma en que el hilo no se rompa; es decir, que se
encuentre acelerado hacia abajo.
En el caso del prisionero ocurre lo mismo, para que la cuerda no se rompa, él debe de acelerarse
hacia abajo.
Hagamos un análisis de las fuerzas que actúan sobre él, siendo éstas: su propio peso (hacia abajo)
y la tensión de la cuerda (hacia arriba), eligiendo un sistema de referencia positivos hacia abajo,
por la segunda ley tendremos:
∑ = yy maF
ymaTW =−
ymaTmg =−
2
47.1
60
6.88
60
5006.588
s
m
kg
Nt
kg
NtNt
m
Tmg
ay ==
−
=
−
=
9. Una masa de 200 gr se cuelga de un hilo, del fondo de ella pende una masa de 300 gr atada a
un segundo hilo. Encuentre las tensiones de los dos hilos, si las masas:
a) Permanecen inmóviles.
b) Aceleran hacia abajo con una aceleración constante de 5 m/s2
.
c) Caen libremente.
d) Si la máxima tensión que pueden soportar las cuerdas es de 15 Nt. ¿Cuál es la máxima
aceleración hacia arriba que se le puede dar a las masas sin que se rompa la cuerda?
a) Si permanecen inmóviles. a = 0
Para m1: Para m2
ΣFy = m1 a1y ΣFy = m12a2y
m1g +T2 - T1 = 0 m2g - T2 = 0
200 gr
300 gr
T1
T2
sobre m
1
T1
T2
m g
1
sobre m
2
T2
m g
2
y+ y+
T2 = m2g
T2 = 0.3 Kg ( 9.81 m/s2
)= 29.43 Nt
Sustituyendo para encontrar T1
T1 = m1g +T2
T1 = 0.2 kg ( 9.81m/s2
) + 29.43 Nt
T1 = 49.5 Nt
Lo cual representa el peso de m1 y m2.
b) Si aceleran hacia abajo con a = 5 m/s2
ΣFy = m1 a1y ΣFy = m12a2y
m1g +T2 - T1 = m1 a1y m2g - T2 = m12a2y
T2 = m2g - m12a2y
T2 = m2 (g - a2y )
T2 = 0.3 Kg ( 9.81 m/s2
- 5 m/s2
) = 1.44 Nt.
Despejando T1
T1 = m1g +T2 + m1 a1y
T1 = 0.2 kg ( 9.81m/s2
) + 1.44 Nt - 0.2 kg ( 5 m/s2
)
T1 = 2.402 Nt
c) Si caen libremente a = g = 9.81 m/s2
ΣFy = m1 a1y ΣFy = m12a2y
m1g +T2 - T1 = m1 g m2g - T2 = m12g
T2 = T1 T2 = m2g - m12g
T2 = 0.
d) Si la máxima tensión es de 15 Nt, escogemos ahora un sistema de referencia positivo hacia
arriba, ya que se moverán en esa dirección. Como existen dos cuerdas, elegimos la que soporta
mayor peso, siendo ésta T1, en el caso de T2 no podemos tomar el valor de 15 Nt, ya que para una
misma aceleración de ambos cuerpos, esta tensión es menor que la que soportaría T1.
ΣFy = m1 a1y ΣFy = m2a2y
T1 - m1g - T2 = m1 a T2 - m2g = m2a
T2 = m2g + m2a
T1 - m1g - ( m2g + m2a ) = m1 a
T1 - m1g - m2g - m2a = m1 a
T1 - m1g - m2g = m1 a + m2a
T1 - g ( m1 + m2 ) = a ( m1 + m2)
21
211 )(
mm
mmgT
a
+
+−
=
kgkg
kgkg
s
m
Nt
a
3.02.0
)3.02.0)(81.9(15 2
+
+−
=
2
19.20
s
m
a =
10. Un pasajero que viaja en un barco en un mar tranquilo, cuelga con un hilo una pelota del techo
de su camarote. Observa que, al acelerar la nave, la pelota se encuentra detrás del punto de
suspensión y el péndulo ya no cuelga verticalmente.
¿Cuál será la aceleración del barco cuando el péndulo se halla en un ángulo de 50
con la vertical?
∑ = xx maF
xx maT =
xmaTsen =θ
m
Tsen
a
θ
=
Para determinar T hagamos suma de fuerzas en el eje y.
∑ = yy maF
yy maT =
0cos =−mgT θ
θcos
mg
T =
Sustituyendo en la ecuación de aceleración encontrada en la suma de fuerzas en el eje x:
2
0
2
85.0)5)(tan81.9(tan
tancos
s
m
s
m
g
m
mg
m
sen
mg
a ===== θ
θ
θ
θ
11. Un bloque sin velocidad inicial se desliza sin rozamiento sobre un plano inclinado de 370
.
Después de 3 s.
a) ¿Qué distancia recorre?
b) ¿Con qué velocidad baja al final del plano si éste tiene una distancia de 40 m?
Como ya se vio en uno de los problemas anteriores, cuando no existe rozamiento, la aceleración
de los cuerpos es a = g sen θ, en este caso, a = 5.90 m/s2
θ
Sin acelerar acelerando y+
x+
T
mg
a) La distancia que recorre en tres segundos viene dada por la ecuación de cinemática:
2
00
2
1
attvxx ++=
ms
s
m
xx 55.26)3)(9.5(
2
1 2
20 ==−
b) La velocidad con la que baja cuando a recorrido una distancia de 40 m viene dada por la
ecuación:
)(2 0
2
0
2
xxavv −=−
s
m
m
s
m
xxav 72.21)40)(9.5(2))2 20 ==−=
12. En la parte superior de un plano inclinado sin fricción de 16 m de longitud se suelta un cuerpo,
originalmente en reposo y tarda 4 s en llegar a la parte mas baja del plano. Desde ahí se lanza
hacia arriba a un segundo cuerpo, justo en el momento en que se suelta el primero, de tal forma
que ambos llegan simultáneamente a la parte más baja.
a) Calcular la aceleración de cada uno de los cuerpos sobre el plano inclinado.
b) ¿Cuál era la velocidad inicial del segundo cuerpo?
c) ¿Cuál es el ángulo que forma el plano respecto a la horizontal?
a) Como no hay rozamiento, la aceleración viene dada por a = g senθ, la cual se puede determinar
también mediante la ecuación de cinemática:
2
00
2
1
attvxx ++=
2
0
2
1
0 atxx ++=
222
0
2
)4(
)16(2)(2
s
m
s
m
t
xx
a ==
−
=
A partir de este resultado, podemos calcular el ángulo de inclinación del plano inclinado, siendo
éste:
θgsena =
0
2
2
11
76.11
81.9
2
=












=





= −−
s
m
s
m
sen
g
a
senθ
b) Para determinar la velocidad del segundo cuerpo, utilizamos el hecho de que el plano no tiene
rozamiento, de tal forma que cuando sube, el cuerpo va desacelerando uniformemente siendo la
aceleración a = - g sen θ. Cuando desciende, el cuerpo va acelerando uniformemente, teniendo
una aceleración de a = g sen θ. Por la simetría del problema, el tiempo que tarda en subir es el
mismo que tarda en bajar y como el tiempo total es la suma de ambos, entonces el tiempo en subir
es de 2 segundos. Utilizando ese hecho y la ecuación de movimiento de cinemática:
v = v0 + at
Despejamos v0 y sustituimos el valor de la aceleración de subida
v0 = - a t
v0 = - (- g senθ ) t
v0 = ( 9.81 m/s2
) ( sen 11.760
) ( 2 s ) = 4 m/s.
13. Se lanza un bloque hacia arriba sobre un plano inclinado sin fricción, con una rapidez inicial v0.
El ángulo de inclinación es θ.
a) ¿Cuánto ascenderá por el plano?
b) ¿Cuánto tiempo tarda en hacerlo?
c) ¿Cuál es su rapidez cuando regresa hasta la base?
d) Calcule los incisos anteriores para θ = 300
; v0 = 2 m/s.
a) Éste es un problema parecido al anterior, donde la desaceleración es a = - g sen θ, la distancia
que asciende sobre el plano viene dada por la ecuación:
)(2 0
2
0
2
xxavv −=−
θθ gsen
v
gsen
v
a
v
a
vv
xx
2)(22
0
2
2
0
2
0
2
0
2
0
2
0 =
−
−
=
−
=
−
=−
b) El tiempo que tarda en hacerlo se encuentra a partir de la ecuación:
atvv += 0
θθ gsen
v
gsen
v
a
vv
t 000
=
−
−
=
−
=
c) La rapidez con que regresa a la base del plano, es la misma que con la que inició la subida. Esto
se puede demostrar considerando que ya se encuentra en su punto más alto, teniendo:
una velocidad inicial nula v'0 = 0,
experimentando una aceleración:
a' = g sen θ,
recorriendo una distancia de:
θgsen
v
xx
2
2
0
0 =−
en un tiempo de:
θgsen
v
t 0
=
Con esos datos se puede encontrar la velocidad final que llamaremos v'f, a partir de la ecuación
(para diferenciar los datos de cuando subió se ha agregado un apóstrofe ):
v'f = v'0 + a' t
0
0'
´ )(0 v
gsen
v
gsenv f =





+=
θ
θ
d) Para determinar este inciso, únicamente se sustituyen los valores proporcionados en las
ecuaciones encontradas anteriormente.
14. Un hombre de 80 kg se lanza con un paracaídas y sufre una desaceleración de 2.5 m/s2
. La
masa del paracaídas es de 5 kg.
a) ¿Cuál es el valor de la fuerza ejercida hacia arriba por el aire sobre el paracaídas?
b) ¿Cuál es el valor de la fuerza ejercida hacia abajo por el hombre sobre el paracaídas?
Hagamos suma de fuerzas sobre el hombre, iniciamos con él, debido a que sobre el paracaídas
desconocemos la fuerza que ejerce el hombre sobre el paracaídas, en estos casos, erróneamente
se supone que esta fuerza es igual al peso del hombre, pero como los cuerpos están acelerados,
dicha fuerza puede aumentar o disminuir. Para reafirmar lo anterior, si el hombre fuese en caída
libre (acelerado) su peso sería nulo.
Sobre el hombre:
∑ = amF Hy
amgmF HH
H
p =−
gmamF HH
H
p +=
H
H
p mgaF )( +=
kg
s
m
s
m
F
H
p 80)5.281.9( 22
+=
NtF
H
p 984=
Por la tercera ley de Newton, esta fuerza es igual en magnitud pero en sentido contrario a la que
ejerce el hombre sobre el paracaídas.
Sobre el paracaídas:
∑ = amF py
amFgmF p
p
Hpa =−−
p
Hpa FgamF ++= )(
Sobre el paracaídas Sobre el hombre
Wh
= peso del hombre
y +
y-
wp
hw
Fa/p
= Fuerza que ejerce el aire
sobre el paracaídas.
y +
y -
WT/p
= Fuerza que ejerce la Tierra
sobre el paracaídas.
Wh/p
= Fuerza que ejerce el hombre
sobre el paracaídas.
Fp/h
= Fuerza que ejerce el
bloque A se mueva 1.0 mts.GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
hombre
Nt
s
m
kgFa 984)81.95.2)(5( 2
++=
NtFa 5.1045=
Nota: en este ejercicio, se consideró una aceleración positiva de 2.5 m/s2
¿Por qué ? si el problema
dice que tiene una desaceleración de 2.5 m/s2
. Sugerencia: en base a diagramas de caída de los
cuerpos, considerando sistemas de referencia positivos hacia arriba, negativos hacia abajo, analice
como son los cambios de posición, como son las velocidades y los cambios de velocidad para
determinar el signo de la aceleración.
15. De la siguiente figura, calcule la aceleración de las masas y las tensiones de las cuerdas.
Como tenemos tres cuerpos moviéndose simultáneamente, debemos tener un diagrama de cuerpo
libre para cada uno.
Aplicamos la suma de fuerzas en cada diagrama, pero antes, observemos que la aceleración de
los cuerpos va a ser la misma, es decir a1x = a2x =a3y = a;
ΣFx = m1 a1x ΣFx = m2 a2x ΣFx = m3 a3x
T1 = m1a T2 + m2g senθ - T1 = m2a m3g -T2 = m3a
despejando T2 de la tercera ecuación:
T2 = m3g - m3a
sustituyendo T1 de la primera y; T2 despejada en la ecuación de enmedio:
m3g - m3a + m2g senθ - m1a = m2a
despejando a la aceleración:
m3g + m2g sen θ - = m2a + m3a + m1a
m3g + m2g sen θ - = ( m2 + m3 + m1 )a
100 kg
200 kg
300 kg
370
T2
N1
W1
N2
T2
T1
W2
θ
y+
x+
y+
x+
Sobre m1
Sobre m2
Sobre m3
W3
y+
y-
T1
321
23
mmm
gsenmgm
a
++
+
=
θ
las tensiones se encuentran sustituyendo en las ecuaciones respectivas:






++
+
=
321
23
11
mmm
gsenmgm
mT
θ






++
+
−=
321
23
333
mmm
gsenmgm
mgmT
θ
16. Dos bloques con masa de 20 kg cada uno, descansan sobre superficies lisas. Suponiendo que
las poleas son ligeras y sin rozamiento. Calcule:
a) El tiempo requerido para que el bloque A se mueva 1.0 m hacia abajo del plano, partiendo del
reposo.
b) La tensión de la cuerda que une a los bloques.
El tiempo requerido se encuentra a partir de las ecuaciones de cinemática que contengan dicho
parámetro:
2
00
2
1
attvxx ++=
atvv += 0
y en ambos casos se requiere conocer la aceleración, la cual se determina aplicando las leyes de
Newton:
ΣFx = m1 a1 x ΣFx = m2 a2 x
m1g sen θ - T = m1 a T = m2 a
m1g sen θ - m2 a = m1 a
m1g sen θ = m1 a + m2 a
21
1
mm
gsenm
a
+
=
θ
370
N1
W1
T1
x+
y+
θ
N2
W2
x+
y+
T1
a) Despejando el tiempo y como el cuerpo parte del reposo ( v0 = 0 ):
θθ gsenm
mmxx
mm
gsenm
xx
a
xx
t
1
210
21
1
00 ))((2)(2)(2 +−
=
+
−
=
−
=
sustituyendo valores:
s
sen
s
m
kg
kgkgm
t 823.0
37)81.9(20
)2020)(21(2
0
2
=
+
=
b) La tensión se encuentra sustituyendo la aceleración en la ecuación respectiva:
21
12
21
1
2
mm
gsenmm
mm
gsenm
mT
+
=





+
=
θθ
Nt
kg
sen
s
m
kgkg
T 03.59
40
37)81.9)(20)(20( 0
2
==
17. Calcule en función de m1, m2 y g, la aceleración de los dos bloques si no existe rozamiento
entre m1 y la mesa, ni en la polea.
Antes de resolver el problema, debemos analizar el movimiento de los dos cuerpos. Cuando m1
recorre una distancia d hacia la derecha; el cuerpo de masa m2 baja una distancia d/2, debido a
que es la misma cuerda. En otras palabras, la longitud de la cuerda en m1 debe de compartirse en
el cuerpo 2, por tal razón la aceleración a1 deberá ser el doble de la aceleración a2, para que en el
mismo tiempo un cuerpo recorra una distancia d y el otro una d/2.
Σ Fx = m1 a1 x Σ Fy = m2 a2 y
T = m1 a1x m2 g -T - T = m2 a2y
donde:
a = a1x = 2 a2y ó a2y = a / 2
entonces:
T = m1 a
y
m2 g -T - T =( m2 a ) / 2
m2 g - m1 a - m1 a =( m2 a ) / 2
M2
m1
x+
y+
y+
y -
T1
m1
g m2
g
T1
T1
x+
m2 g =( m2 a ) / 2 + m1 a + m1 a
a (m2 / 2 + m1 + m1 ) = m2 g
a (m2 / 2 + 2 m1 ) = m2 g
gm
mm
a 2
12
2
4
=




 +
gmmma 212 2)4( =+
)4(
2
12
2
mm
gm
a
+
=
la aceleración para m1. Para m2:
)4(2 12
2
2
mm
gma
a y
+
==
19. ¿Cuál es la magnitud de una fuerza paralela a un plano inclinado 300
necesaria para dar a una
caja de 5 kg una aceleración de 0.20 m/s2
hacia arriba del plano? ¿Y si la fuerza es transversal al
plano?
Σ Fx = m ax Σ Fx = m ax
F - mg sen θ = max F cos θ - mg sen θ = m ax
F = mg sen θ + max
θ
θ
cos
xmamgsen
F
+
=
F = m ( g sen θ + ax )
θ
θ
cos
)( xagsenm
F
+
=
2
0
2
2.030)81.9(5
s
m
sen
s
m
kgF +=
0
2
0
2
30cos
2.030)81.9(5
s
m
sen
s
m
kg
F
+
=
F = 25.52 Nt. F = 29.47 Nt.
y+
x+
y+
x+
FN
W
W
N
F
θ
θ
θ
θ
paralela
transversal
20. Un automóvil que se mueve a 20 m/s empieza a subir en un plano inclinado a 370
, al mismo
tiempo, otro automóvil que se encuentra a una distancia de 100 m sobre el plano inclinado,
empieza a moverse hacia abajo a partir del reposo. Al ignorarse las fuerzas de fricción,
a) ¿A qué distancia de la parte inferior del plano inclinado se encontrarán los automóviles cuando
pasen uno al lado del otro?
b) ¿Qué velocidades tendrán los autos en ese instante?
Básicamente, éste es un problema de cinemática, lo único que requerimos de dinámica es conocer
las aceleraciones de los autos, y como no existe fricción, la aceleración del auto que baja es:
a = g sen 370
(acelerando)
en tanto que la del que sube es:
a = - g sen 370
(frenando)
Tomando un sistema de referencia con origen en el auto que se encuentra a 100 m sobre el plano
y con una convención de signos + hacia abajo, la ecuación de movimiento de ambos cuerpos es:
2
00
2
1
attvxx ++=
Sin embargo, debido a la convención de signos del sistema de referencia, antes de sustituir datos y
realizar operaciones, debe tenerse mucho cuidado con la aceleración del auto que sube, ya que
por moverse en sentido contrario de las x +, tiene asociada en todo momento una velocidad
negativa, la cual va disminuyendo en magnitud hasta que se hace cero, de tal manera que:
t
s
m
t
s
m
tt
vv
t
v
as
20)20(0
0
0
=
−−
=
−
−
=
∆
∆
=
la aceleración será positiva. De esta forma tenemos que:
2
00
2
1
tatvxx bbbb ++=
2
00
2
1
tatvxx ssss ++=
y con las condiciones particulares para cada uno de ellos tenemos que:
20
)37(
2
1
00 tgsenxb ++=
20
)37(
2
1
20100 tgsentxs ++−=
a) Se encuentran cuando ambos están en la misma posición: xb = xs. Igualando las ecuaciones:
2020
)37(
2
1
20100)37(
2
1
tgsenttgsen +−=
10020)37(
2
1
)37(
2
1 2020
=+− ttgsentgsen
s
s
m
m
t 5
20
100
==
Sustituyendo para encontrar la posición:
20
)37(
2
1
tgsenxb =
mssen
s
m
xb 79.73)5(37)81.9(
2
1 20
2
==
b) Las velocidades vienen dadas por la ecuación:
v = v0 +at
El de subida es:
vs = -20 + g sen370
(5)
vs = 9.51 m/s (ya va de bajada. Una velocidad positiva indica movimiento en dirección de las x +)
La velocidad del auto que inicia el descenso es:
vb = ( g senθ ) t
vb = 29.51 m/s
Si queremos conocer el tiempo que tarda el auto que va de subida, en detenerse, podemos
emplear la ecuación:
t
s
m
t
s
m
tt
vv
t
v
as
20)20(0
0
0
=
−−
=
−
−
=
∆
∆
=
t
s
m
as
20
=
sa
s
m
t
20
=
donde:
2
0
9.537
s
m
gsenas ==
sustituyendo:
s
s
m
s
m
t 39.3
9.5
20
2
==
Que es menor que el tiempo que tardan en estar uno al lado del otro.
21. Un electrón es lanzado horizontalmente con una velocidad de 1.2 x 107
m/s en un campo
eléctrico que ejerce sobre él una fuerza vertical hacia arriba constante de 4.5 x 10-31
Nt. Si la masa
del electrón es de 9.1 x 10-31
kg. Determinar la distancia vertical recorrida por el electrón durante el
tiempo que le toma moverse una distancia horizontal de 3 cm.
La fuerza vertical es una fuerza de origen eléctrico, que puede ser originada por un par de placas
paralelas con cargas de diferente signo, de tal manera que la placa negativa repele al electrón, en
tanto que la positiva lo atrae, acelerándolo y describiendo una trayectoria parabólica.
En el eje de las x no existen fuerzas, por lo tanto, hacemos sumatoria de fuerzas en el eje y.
yey amF −=∑
yeee amgmF −− =−
−
−−
=
e
ee
y
m
gmF
a
Sustituyendo datos:
231
2
3131
31.9
101.9
)81.9)(101.9(105.4
s
m
kgx
s
m
kgxkgx
ay −=
−
= −
−−
En este caso, la interpretación del signo de la aceleración debemos de encontrarlo a partir de la
sumatoria de fuerzas en el eje y, indicándonos que el peso es mayor que la fuerza eléctrica,
resultando una fuerza neta vertical hacia abajo y consecuentemente, la trayectoria del electrón está
invertida en la figura. (¿Qué pasaría en las mismas condiciones si las placas se invirtieran?).
Con dicha aceleración encontraremos la distancia vertical recorrida por el electrón, a partir de la
ecuación:
2
00
2
1
tatvyy yy ++=
como se lanzó horizontalmente, v0y = 0; tomando el origen en donde inicia la placa y0 = 0,
quedándonos:
2
2
1
tay y=
Sin embargo, desconocemos el tiempo, el cual se encuentra a partir de la ecuación de movimiento
uniforme en x.
tvxx x00 +=
sx
s
m
x
m
v
xx
t
x
9
70
0
105.2
102.1
03.0 −
==
−
=
sustituyendo los datos en la ecuación de movimiento vertical:
v0
+ + + + + + + + + + + +
- - - - - - - - - - - - - - - -
e-
w
F
distancia vertical
que se desvía
trayectoria
3 cm.
e-
mxsx
s
m
y 179
2
109.2)105.2)(31.9(
2
1 −−
=−=

Contenu connexe

Tendances

Tipos de trabajo fisica presentacion
Tipos de trabajo fisica presentacionTipos de trabajo fisica presentacion
Tipos de trabajo fisica presentacionEduardoOa2
 
05 fisica - ejercicios trabajo
05   fisica - ejercicios trabajo05   fisica - ejercicios trabajo
05 fisica - ejercicios trabajoQuimica Tecnologia
 
Problemas Resueltos-plano-inclinado
Problemas Resueltos-plano-inclinadoProblemas Resueltos-plano-inclinado
Problemas Resueltos-plano-inclinadoCarlitos Andrés
 
Cantidad de movimiento
Cantidad de movimientoCantidad de movimiento
Cantidad de movimientoYuri Milachay
 
Problemas resueltos-caida-libre
Problemas resueltos-caida-libreProblemas resueltos-caida-libre
Problemas resueltos-caida-libreGustavo Reina
 
Ejercicios leyes de newton
Ejercicios leyes de newtonEjercicios leyes de newton
Ejercicios leyes de newtonDaniel Alejandro
 
Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Andrea Alarcon
 
112020457 fisica-mendoza-duenas-completo-140118063919-phpapp02
112020457 fisica-mendoza-duenas-completo-140118063919-phpapp02112020457 fisica-mendoza-duenas-completo-140118063919-phpapp02
112020457 fisica-mendoza-duenas-completo-140118063919-phpapp02Juan Sebaxtian G
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacionArgye Lopez
 
La tercera ley de newton
La tercera ley de newtonLa tercera ley de newton
La tercera ley de newtonYura Mrtinz F
 
Ejercicios de Elasticidad (Física) I.T.S.Bolívar ( Ambato - Ecuador )
Ejercicios de Elasticidad (Física) I.T.S.Bolívar ( Ambato - Ecuador )Ejercicios de Elasticidad (Física) I.T.S.Bolívar ( Ambato - Ecuador )
Ejercicios de Elasticidad (Física) I.T.S.Bolívar ( Ambato - Ecuador )Diego F. Valarezo C.
 
Problemas resueltos-tensiones-cuerdas
Problemas resueltos-tensiones-cuerdasProblemas resueltos-tensiones-cuerdas
Problemas resueltos-tensiones-cuerdasbeto montero
 
Problemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BProblemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BESPOL
 
Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Luis Ajanel
 
236984390 problemas-resueltos-estatica-equilibrio (1)
236984390 problemas-resueltos-estatica-equilibrio (1)236984390 problemas-resueltos-estatica-equilibrio (1)
236984390 problemas-resueltos-estatica-equilibrio (1)Franklin1504
 

Tendances (20)

Tipos de trabajo fisica presentacion
Tipos de trabajo fisica presentacionTipos de trabajo fisica presentacion
Tipos de trabajo fisica presentacion
 
05 fisica - ejercicios trabajo
05   fisica - ejercicios trabajo05   fisica - ejercicios trabajo
05 fisica - ejercicios trabajo
 
Problemas Resueltos-plano-inclinado
Problemas Resueltos-plano-inclinadoProblemas Resueltos-plano-inclinado
Problemas Resueltos-plano-inclinado
 
Cantidad de movimiento
Cantidad de movimientoCantidad de movimiento
Cantidad de movimiento
 
Problemas resueltos-caida-libre
Problemas resueltos-caida-libreProblemas resueltos-caida-libre
Problemas resueltos-caida-libre
 
Ejercicios leyes de newton
Ejercicios leyes de newtonEjercicios leyes de newton
Ejercicios leyes de newton
 
Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2Trabajo potencia energía fisíca 2
Trabajo potencia energía fisíca 2
 
112020457 fisica-mendoza-duenas-completo-140118063919-phpapp02
112020457 fisica-mendoza-duenas-completo-140118063919-phpapp02112020457 fisica-mendoza-duenas-completo-140118063919-phpapp02
112020457 fisica-mendoza-duenas-completo-140118063919-phpapp02
 
Esfuerzo y deformacion
Esfuerzo y deformacionEsfuerzo y deformacion
Esfuerzo y deformacion
 
Conservacion en el trabajo mecanico
Conservacion en el trabajo mecanicoConservacion en el trabajo mecanico
Conservacion en el trabajo mecanico
 
La tercera ley de newton
La tercera ley de newtonLa tercera ley de newton
La tercera ley de newton
 
Ejercicios de Elasticidad (Física) I.T.S.Bolívar ( Ambato - Ecuador )
Ejercicios de Elasticidad (Física) I.T.S.Bolívar ( Ambato - Ecuador )Ejercicios de Elasticidad (Física) I.T.S.Bolívar ( Ambato - Ecuador )
Ejercicios de Elasticidad (Física) I.T.S.Bolívar ( Ambato - Ecuador )
 
Problemas resueltos-tensiones-cuerdas
Problemas resueltos-tensiones-cuerdasProblemas resueltos-tensiones-cuerdas
Problemas resueltos-tensiones-cuerdas
 
Problemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BProblemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0B
 
Leyes de newton
Leyes de newtonLeyes de newton
Leyes de newton
 
Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2Problemas resueltos-cap-5-fisica-serway2
Problemas resueltos-cap-5-fisica-serway2
 
236984390 problemas-resueltos-estatica-equilibrio (1)
236984390 problemas-resueltos-estatica-equilibrio (1)236984390 problemas-resueltos-estatica-equilibrio (1)
236984390 problemas-resueltos-estatica-equilibrio (1)
 
Presentacion de estatica
Presentacion de estaticaPresentacion de estatica
Presentacion de estatica
 
Fricción, Ejercicios y sus soluciones
Fricción, Ejercicios y sus solucionesFricción, Ejercicios y sus soluciones
Fricción, Ejercicios y sus soluciones
 
Ejercicio 2 2 4
Ejercicio 2 2 4Ejercicio 2 2 4
Ejercicio 2 2 4
 

En vedette

En vedette (20)

90591812 ejercicios-estatica
90591812 ejercicios-estatica90591812 ejercicios-estatica
90591812 ejercicios-estatica
 
Fis dinámica
Fis   dinámicaFis   dinámica
Fis dinámica
 
Ejercicios de mecanica
Ejercicios de mecanicaEjercicios de mecanica
Ejercicios de mecanica
 
Equilibrio 2 D
Equilibrio 2 DEquilibrio 2 D
Equilibrio 2 D
 
Problemas de p f-e
Problemas de p f-eProblemas de p f-e
Problemas de p f-e
 
Libro estatica problemas_resueltos
Libro estatica problemas_resueltosLibro estatica problemas_resueltos
Libro estatica problemas_resueltos
 
Apa
ApaApa
Apa
 
Practica 4
Practica 4Practica 4
Practica 4
 
Examen compu. carlos mora
Examen compu. carlos moraExamen compu. carlos mora
Examen compu. carlos mora
 
Wil jarry juego
Wil jarry juegoWil jarry juego
Wil jarry juego
 
Patrón de proceso1
Patrón de proceso1Patrón de proceso1
Patrón de proceso1
 
Antecedentes de la seguridad en la industria.
Antecedentes de la seguridad en la industria.Antecedentes de la seguridad en la industria.
Antecedentes de la seguridad en la industria.
 
Dibujo técnico Aplicacion 2
Dibujo técnico Aplicacion 2Dibujo técnico Aplicacion 2
Dibujo técnico Aplicacion 2
 
Tipos de empres sebastian giraldo
Tipos de empres sebastian giraldoTipos de empres sebastian giraldo
Tipos de empres sebastian giraldo
 
02 vdj egdc_renzo sanchez_game business en latinoamérica
02 vdj egdc_renzo sanchez_game business en latinoamérica 02 vdj egdc_renzo sanchez_game business en latinoamérica
02 vdj egdc_renzo sanchez_game business en latinoamérica
 
Redes de valor y calidad (1)
Redes  de valor y calidad (1)Redes  de valor y calidad (1)
Redes de valor y calidad (1)
 
04 movil julioizique_8sep_11-12
04 movil julioizique_8sep_11-1204 movil julioizique_8sep_11-12
04 movil julioizique_8sep_11-12
 
LA MUSICA
LA MUSICA LA MUSICA
LA MUSICA
 
Los smartphones
Los smartphonesLos smartphones
Los smartphones
 
Resultados de la Convocatoria Tabletas para Educar 2014
Resultados de la Convocatoria Tabletas para Educar 2014Resultados de la Convocatoria Tabletas para Educar 2014
Resultados de la Convocatoria Tabletas para Educar 2014
 

Similaire à Leyes de newton (20)

Momento lineal
Momento linealMomento lineal
Momento lineal
 
Stema2
Stema2Stema2
Stema2
 
Capitulo5 2
Capitulo5 2Capitulo5 2
Capitulo5 2
 
EL PRINCIPIO DE TRABAJO Y ENERGÍA
EL PRINCIPIO DE TRABAJO Y ENERGÍA EL PRINCIPIO DE TRABAJO Y ENERGÍA
EL PRINCIPIO DE TRABAJO Y ENERGÍA
 
Condicion de equilibrio
Condicion de equilibrioCondicion de equilibrio
Condicion de equilibrio
 
TERCERA LEY DE NEWTON - ACCION Y REACCION
TERCERA LEY DE NEWTON - ACCION Y REACCIONTERCERA LEY DE NEWTON - ACCION Y REACCION
TERCERA LEY DE NEWTON - ACCION Y REACCION
 
APLICACIONES DE LAS LEYES DE NEWTON
APLICACIONES DE LAS LEYES DE NEWTONAPLICACIONES DE LAS LEYES DE NEWTON
APLICACIONES DE LAS LEYES DE NEWTON
 
Actividad 1 diagrama de cuerpo libre y calculo
Actividad 1 diagrama de cuerpo libre y calculoActividad 1 diagrama de cuerpo libre y calculo
Actividad 1 diagrama de cuerpo libre y calculo
 
Ejercicios resueltos newton
Ejercicios resueltos newtonEjercicios resueltos newton
Ejercicios resueltos newton
 
Fisica algo mas
Fisica algo masFisica algo mas
Fisica algo mas
 
Ejercicios resueltos dinamica
Ejercicios resueltos dinamicaEjercicios resueltos dinamica
Ejercicios resueltos dinamica
 
Cinetica del solido pdf
Cinetica del solido pdfCinetica del solido pdf
Cinetica del solido pdf
 
Prob007
Prob007Prob007
Prob007
 
Capítulo i
Capítulo iCapítulo i
Capítulo i
 
Dinámica de la rotación
Dinámica de la rotaciónDinámica de la rotación
Dinámica de la rotación
 
Dinámica de la rotación
Dinámica de la rotaciónDinámica de la rotación
Dinámica de la rotación
 
Dinámica de la rotación
Dinámica de la rotaciónDinámica de la rotación
Dinámica de la rotación
 
Taller 1 ondas 2
Taller 1 ondas 2Taller 1 ondas 2
Taller 1 ondas 2
 
ejercicios de fuerzas
ejercicios de  fuerzasejercicios de  fuerzas
ejercicios de fuerzas
 
Semana 4 dinámica traslacional
Semana 4 dinámica traslacionalSemana 4 dinámica traslacional
Semana 4 dinámica traslacional
 

Plus de Mr. Daniel Montano Montaño Rodriguez (10)

Material 2012 a_8_a_12_14148
Material 2012 a_8_a_12_14148Material 2012 a_8_a_12_14148
Material 2012 a_8_a_12_14148
 
mcuv
mcuvmcuv
mcuv
 
Areas sombreadas
Areas sombreadasAreas sombreadas
Areas sombreadas
 
Moral
MoralMoral
Moral
 
Xix olimpiadas colombianas de física 2003
Xix olimpiadas colombianas de física 2003Xix olimpiadas colombianas de física 2003
Xix olimpiadas colombianas de física 2003
 
Ejercicios con pie de rey
Ejercicios con pie de reyEjercicios con pie de rey
Ejercicios con pie de rey
 
Movimiento vertica clase
Movimiento vertica claseMovimiento vertica clase
Movimiento vertica clase
 
2 volumen de cuerpos problemas 2
2 volumen de cuerpos problemas 22 volumen de cuerpos problemas 2
2 volumen de cuerpos problemas 2
 
Ejercicios de potencia y energía eléctrica
Ejercicios de potencia y energía eléctricaEjercicios de potencia y energía eléctrica
Ejercicios de potencia y energía eléctrica
 
Ficha teoría leyes de newton
Ficha teoría leyes de newtonFicha teoría leyes de newton
Ficha teoría leyes de newton
 

Dernier

NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfUPTAIDELTACHIRA
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docxEliaHernndez7
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024IES Vicent Andres Estelles
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
SEPTIMO SEGUNDO PERIODO EMPRENDIMIENTO VS
SEPTIMO SEGUNDO PERIODO EMPRENDIMIENTO VSSEPTIMO SEGUNDO PERIODO EMPRENDIMIENTO VS
SEPTIMO SEGUNDO PERIODO EMPRENDIMIENTO VSYadi Campos
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdfMiguelHuaman31
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfAlfaresbilingual
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdfValeriaCorrea29
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIIsauraImbrondone
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOluismii249
 

Dernier (20)

NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdfNUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
NUEVAS DIAPOSITIVAS POSGRADO Gestion Publica.pdf
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024Tema 17. Biología de los microorganismos 2024
Tema 17. Biología de los microorganismos 2024
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
SEPTIMO SEGUNDO PERIODO EMPRENDIMIENTO VS
SEPTIMO SEGUNDO PERIODO EMPRENDIMIENTO VSSEPTIMO SEGUNDO PERIODO EMPRENDIMIENTO VS
SEPTIMO SEGUNDO PERIODO EMPRENDIMIENTO VS
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
2024 KIT DE HABILIDADES SOCIOEMOCIONALES.pdf
 
Tema 11. Dinámica de la hidrosfera 2024
Tema 11.  Dinámica de la hidrosfera 2024Tema 11.  Dinámica de la hidrosfera 2024
Tema 11. Dinámica de la hidrosfera 2024
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
Abril 2024 - Maestra Jardinera Ediba.pdf
Abril 2024 -  Maestra Jardinera Ediba.pdfAbril 2024 -  Maestra Jardinera Ediba.pdf
Abril 2024 - Maestra Jardinera Ediba.pdf
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 

Leyes de newton

  • 1. N 7. Leyes de Newton 1. Un bloque de 10 kg que está en un plano sin rozamiento e inclinado 300 con respecto a la horizontal, es sostenido mediante una cuerda, como se muestra en la figura. Determine la tensión de la cuerda y la magnitud de la fuerza normal (perpendicular al plano inclinado). Primero: Se identifican todas las fuerzas que actúan sobre el cuerpo T tensión de la cuerda w peso del cuerpo N normal Segundo: Se realiza el diagrama de cuerpo libre o aislado, donde se colocan todas las fuerzas que actúan sobre el cuerpo en estudio (bloque). Tercero: Elegir un sistema de referencia (de preferencia un eje perpendicular y otro paralelo al plano). Considerar el eje x positivo en la dirección (o posible dirección) de movimiento del cuerpo. Cuarto: Se aplica la segunda ley de Newton en forma de componentes rectangulares. ∑ = xx maF ∑ = yy maF θ m T N T mg = wx+ θ θ El ángulo de inclinación que forma el peso con respecto al eje vertical es θ w y+
  • 2. Quinto: Se descomponen todas las fuerzas en sus componentes rectangulares. Debido al sistema de referencia elegido, la normal N y la tensión T, están sobre los ejes. La única fuerza que se descompone en este problema, es el peso. Sus componentes rectangulares son: θmgsenwx = θcosmgwy = De esta forma, las fuerzas o componentes de fuerzas que se encuentran sobre le eje de las x's son: la componente del peso wx y la tensión de la cuerda T, las cuales se sustituyen por la Σ Fx ∑ = xx maF Quedando: xx maTw =− Obsérvese que wx es positivo y que T es negativo, ya que apuntan en tales direcciones. Sustituyendo el valor de wx xmaTmgsen =−θ En este caso, el cuerpo está en reposo, por lo que no hay cambios de velocidad, ó lo que es lo mismo, no existe aceleración (ax = 0 ). Sustituyendo: 0=−Tmgsenθ Resolviendo para la tensión: θmgsenT = Sustituyendo los valores: 0 2 30)81.9(10 sen s m kgT = NtT 05.49= La fuerza normal se determina a partir de la sumatoria de fuerzas en el eje de las y's. ∑ = yy maF Considerando también que no hay movimiento en el eje vertical ay = 0 0=− ywN Despejando a la normal y sustituyendo la componente vertical del peso: θcosmgN = Sustituyendo los valores 0 2 30cos)81.9(10 s m kgN = NtN 82.94= 2. Del problema anterior, suponga que la cuerda se rompe. Calcule la aceleración del bloque cuando ésta se desliza sobre el plano inclinado.
  • 3. Al desaparecer la tensión de la cuerda, el bloque inicia su movimiento, a medida que transcurre el tiempo, su velocidad va incrementándose (no hay rozamiento), existiendo en consecuencia una aceleración. Las fuerzas que actúan sobre el bloque son la Normal y el Peso. Si sumáramos las dos fuerzas, encontraríamos una fuerza Neta o Resultante que estará sobre el eje de las x's y que es la que hace que el cuerpo se acelere hacia abajo sobre el plano. Analizando el problema con mayor detenimiento, podemos descomponer al peso en sus componentes rectangulares, y como el cuerpo no se mueve sobre el eje de las y's, deducimos que la fuerza Normal es de igual magnitud que la componente del Peso sobre dicho eje, quedándonos únicamente la componente en el eje x, siendo ésta de magnitud: mg sen θ. Para determinar la aceleración resolvamos analíticamente, aplicando la segunda ley de Newton. ∑ = xx maF xx maW = xmamgsen =θ θ θ gsen m mgsen ax == 3. De las siguientes figuras encuentre la aceleración de las masas y las tensiones de las cuerdas. Si analizamos las figuras antes de resolver el problema analíticamente, observaremos que existe una gran similitud entre ellos, lo único que está cambiando son los ángulos. Con esta observación podemos resolver un solo problema (el que parece más complicado: Fig. 3) y a partir del análisis del resultado, podemos inferir los otros. Procedamos a ello. N mg = W x+ y+ θ 600300 m1 m2 m1 m2 30 0 m1 m2 m2m1 Figura 1 Figura 2 Figura 3 Figura 4
  • 4. Se deben de hacer tantos diagramas de cuerpo libre, como cuerpos en estudio tengamos. Descomponer todas las fuerzas en sus componentes rectangulares y aplicar la segunda ley de Newton a cada uno de los diagramas de cuerpo libre. Cuando no existe rozamiento, no es necesario trabajar con la sumatoria de fuerzas en el eje de las y's, a menos que se pida la magnitud de la fuerza Normal o la componente del peso en ese eje. Haciendo suma de fuerzas en el eje de las x's ∑ = xx amF 11 ∑ = xx amF 22 xx amWT 1111 =− xx amTW 2222 =− xamgsenmT 111 =− α xamTgsenm 2222 =−β Como es la misma cuerda y mientras no se estire ni se afloje, la tensión en cualquier punto es la misma por lo que: T1 = T2 Consecuentemente, mientras un cuerpo desliza hacia arriba, el otro desliza hacia abajo, experimentando ambos los mismos cambios de velocidad, es decir, que tienen la misma aceleración: a1x = a2x Con esto, las dos ecuaciones anteriores se convierten en: amgsenmT 11 =− α amTgsenm 222 =−β Un sistema de dos ecuaciones lineales con dos incógnitas ( T y a ), que se resuelve por medio de los métodos conocidos ( suma y resta; sustitución; igualación o determinantes). Usando el método de sustitución: Despejamos T de la primera ecuación: αgsenmamT 11 += y la sustituimos en la segunda: amgsenmamgsenm 2112 )( =+− αβ 600300 m1 m2 α β Para el bloque m1 Para el bloque m2 y+ x+ y+ x+ Mov. de m1 Mov. de m2 en el eje de las x's, positivo hacia abajo N T W T N W 1 2 1 1 2 2
  • 5. Resolviendo: amgsenmamgsenm 2112 ) =−− αβ amamgsenmgsenm 1212 +=− αβ ammgsenmgsenm )( 1212 +=− αβ 21 12 mm gsenmgsenm a + − = αβ g mm senmsenm a       + − = 21 12 αβ Para calcular la tensión, únicamente sustituimos el valor de la aceleración en cualquiera de las dos ecuaciones lineales. α αβ gsenmg mm senmsenm mT 1 21 12 1 +      + − = Analizando el resultado de la aceleración, podemos tener los siguientes casos: { Si: α = 00 y β = 900 ; sen α = 0 y sen β = 1 Correspondiendo dichos ángulos al primer caso, es decir, a la figura 1. Por lo tanto, la aceleración de los bloques para esa figura es: g mm mm g mm senmsenm a       + − =      + − = 21 12 21 0 1 0 2 )0()1(090 21 2 mm gm a + = Para la Figura 2 tenemos que: { α = 300 y β = 900 ; sen β = 1 g mm senmm g mm senmm a       + − =      + − = 21 12 21 12 )1( αα Para la Figura 4 tenemos que: { α = 900 y β = 900 ; sen α = 1 sen β = 1 g mm mm g mm mm a       + − =      + − = 21 12 21 12 )1()1( Los resultados obtenidos para la aceleración también pueden ser analizados, así por ejemplo, en el último caso (Fig. 4): v Si m2 > m1 tenemos que la aceleración de los cuerpos es positiva ( a > 0 ) y los cuerpos se mueven de la siguiente forma: m1 hacia arriba
  • 6. m2 hacia abajo v Si m2 < m1 tenemos que la aceleración de los cuerpos es negativa ( a < 0 ) y los cuerpos se mueven de la siguiente forma: m1 hacia abajo m2 hacia arriba v Si m2 = m1 tenemos que la aceleración de los cuerpos es nula ( a = 0 ) y los cuerpos permanecen en reposo. v Si cualquiera de los cuerpos es mucho mayor ( >>> ) que el otro, por ejemplo m2 >>> m1, entonces: 212 mmm ≅− y 212 mmm ≅+ y la aceleración es positiva e igual al valor de la magnitud de la gravedad ( g ). v En el otro caso, cuando: m2 <<< m1, entonces: tenemos que: 112 mmm −≅− y 112 mmm ≅+ y la aceleración es negativa e igual al valor de la magnitud de la gravedad. Ahora resolveremos la figura 4, también conocida como máquina de Atwood, con el fin de verificar que nuestros resultados deductivos a partir de la figura 3 son correctos, pudiendo hacerse también para las otras dos figuras. Nota: Obsérvese que los ejes positivos fueron tomados en la dirección de movimiento propuesta. Aplicando la segunda ley de Newton en el eje vertical a ambos diagramas: ∑ = yy amF 11 ∑ = yy amF 22 yamgmT 111 =− yamTgm 222 =− m2 m1 Diagrama de cuerpo libre o aislado Sobre m2 Sobre m1 TT m1 g m2 g y+ y - y - y+ Dirección de movimiento propuesta Dirección de movimiento propuesta
  • 7. donde a1y = a2y = a obteniendo dos ecuaciones lineales con dos incógnitas: amgmT 11 =− y amTgm 22 =− Resolviendo por suma y resta: amamgmgm 2112 +=− factorizando: ammgmm )()( 2112 +=− despejando: g mm mm a 21 12 )( + − = que es el mismo resultado obtenido a partir de la deducción del resultado de la tercer figura 4. Dos bloques de masa m1 = 3 kg y m2 = 4 kg están tocándose sobre una mesa sin fricción. Si la fuerza mostrada que actúa sobre m1 es de 5 Nt. a) ¿Cuál será la aceleración de los dos bloques? b) ¿Con qué fuerza empuja m1 a m2? c) Repita los incisos anteriores, si la fuerza se aplica a m2. a) Para determinar la aceleración de los bloques, consideremos a los dos como uno solo de masa m1 + m2 = 7 kg. El diagrama de cuerpo libre es: 3kg 4kg 7 kg N mg F x+ y+
  • 8. De la suma de fuerzas en el eje x: ∑ = xx MaF donde: M = m1 + m2 xMaF = 2 71.0 7 5 s m kg Nt M F a === b) Para determinar la fuerza con que empuja m1 a m2 aplicamos la tercera ley de Newton que dice que la fuerza que ejerce m1 sobre m2 es de igual magnitud, pero en sentido contrario a la que ejerce m2 sobre m1. Para ello analicemos las fuerzas que actúan sobre m1 mediante el siguiente diagrama de fuerzas. ∑ = xx amF 11 La segunda ley se aplica sobre el cuerpo en estudio (m1 ) y la aceleración que este cuerpo experimenta es la que encontramos en el inciso anterior ( a1x = a = 0.71 m/s2 ). amPF 1=− amFP 1−= Nt s m kgNtP 85.2)71.0)(3(5 2 =−= Luego entonces, por la tercera ley la fuerza con que empuja m1 a m2 es P' = 2.85 Nt. c) Si la fuerza se aplica sobre m2, tendremos la misma aceleración, aunque los cuerpos se moverán hacia la izquierda. Para determinar la fuerza con que empuja m1 a m2 se realizan los mismos pasos, pero la suma de fuerzas es ahora sobre m2. ∑ = xx amF 22 amRF 2=− N m1 g F x+ y+ P F = Fuerza aplicada P = Fuerza que ejerce m2 sobre m1 y que detiene a m1 N m2 g F x+ y+ P F = Fuerza aplicada R = Fuerza que ejerce m1 sobre m2 y que detiene a m2 x+ en la dirección de movimiento.
  • 9. Nt s m kgNtamFR 1.2)71.0)(4(5 22 =−=−= 5. Un automóvil de 900 kg que va a 20 m/s choca con un árbol y recorre 1.6 m antes de detenerse. ¿Qué magnitud tendrá la fuerza de retardo ejercida por el árbol sobre él? ∑ = xx maF amRF 2=− xmaP −= Donde ax se determina mediante cinemática. Las condiciones son: v0 = 20 m/s vf = 0 x - x0 = 1.6 m/s ecuación: )(2 0 2 0 2 xxavv f −=− 2 2 0 2 0 2 5.12 )6.1(2 )20(0 )(2 s m m s m xx vv a f −= − = − − = luego entonces: Nt s m kgP 112500)5.12(900 2 =−−= Obteniendo un resultado positivo, lo cual no implica que la fuerza P se encuentre en la dirección que elegimos como positiva, ya que cuando aplicamos la segunda ley, dicha fuerza la expresamos negativa. 6. ¿Qué magnitud tendrá una fuerza paralela a una pendiente de 300 para comunicarle a una caja de 50 kg una aceleración de 2.0 m/s2 hacia arriba? N mg P x+ y+ P = Fuerza que ejerce el árbol sobre el automóvil. No existe ninguna otra fuerza como, por ejemplo, la fuerza que ejerce la tracción de las llantas o la del motor. F 300 x+ y+ FN mg 300
  • 10. ∑ = xx maF xx maWF =− xmamgsenF =− θ θmgsenmaF x += 0 22 30)81.9(50)2(50 sen s m kg s m kgF += NtF 25.345= Si se deposita la caja sobre el plano inclinado, ¿con qué aceleración bajará? ¿Qué tanta fuerza se requiere para que baje con una aceleración de 2 m/s2 ? ¿Hacia dónde debe de aplicarse dicha fuerza? 7. Una bala de 8.0 gr penetra en una pieza de plástico de 2 cm de espesor con una rapidez de 140 m/s. ¿Cuál es la fuerza promedio que retarda el paso de la bala por el plástico? ∑ = xx maF xmaF =− donde: 2 2 0 2 0 2 490000 )02.0(2 )140(0 )(2 s m m s m xx vv a f −= − = − − = Nt s m kgF 3920)490000)(008.0( 2 =−−= Cabe hacer la aclaración de que no se puso el peso ni la fuerza normal en el diagrama de cuerpo libre, ya que no son relevantes para la resolución del problema. En el caso de la fuerza normal, ésta actúa sobre toda la superficie cilíndrica y saliendo, de tal manera que se contrarrestan mutuamente. 8. Un prisionero de 60 kg desea escapar por una ventana del tercer piso deslizándose por una cuerda hecha de sábanas. Por desgracia, la cuerda puede sostener sólo 500 Nt. ¿Con qué rapidez debe el prisionero acelerar hacia abajo de ella para que no se rompa? Calculemos primero el peso del prisionero para comparar dicha fuerza con la máxima tensión de la cuerda. Si el peso del prisionero es mayor que la tensión de la cuerda, entonces ésta se rompe. 2 cm v = 0 v = 140 m/s0 Antes Después F x+ y+
  • 11. W = mg = 60 kg ( 9.81 m/s2 ) = 588.6 Nt. Por lo que la cuerda no puede sostener al prisionero en esas condiciones. Sin embargo, existe una forma de hacerlo sin que se rompa la cuerda. Para ver esta forma, hagamos una similitud con un experimento, siendo éste el siguiente. Si ato un ladrillo o bloque con un hilo de coser a máquina, éste se romperá, puesto que no puede sostener el peso. Pero si dejo caer el bloque con el hilo amarrado, éste viajará junto con el bloque sin romperse, teniendo ambos una aceleración igual a la de la gravedad. Puedo soltar el bloque teniendo sostenido el hilo, pero de tal manera que esté tenso y viajando con el bloque a medida que vaya cayendo. Ésa es la forma en que el hilo no se rompa; es decir, que se encuentre acelerado hacia abajo. En el caso del prisionero ocurre lo mismo, para que la cuerda no se rompa, él debe de acelerarse hacia abajo. Hagamos un análisis de las fuerzas que actúan sobre él, siendo éstas: su propio peso (hacia abajo) y la tensión de la cuerda (hacia arriba), eligiendo un sistema de referencia positivos hacia abajo, por la segunda ley tendremos: ∑ = yy maF ymaTW =− ymaTmg =− 2 47.1 60 6.88 60 5006.588 s m kg Nt kg NtNt m Tmg ay == − = − = 9. Una masa de 200 gr se cuelga de un hilo, del fondo de ella pende una masa de 300 gr atada a un segundo hilo. Encuentre las tensiones de los dos hilos, si las masas: a) Permanecen inmóviles. b) Aceleran hacia abajo con una aceleración constante de 5 m/s2 . c) Caen libremente. d) Si la máxima tensión que pueden soportar las cuerdas es de 15 Nt. ¿Cuál es la máxima aceleración hacia arriba que se le puede dar a las masas sin que se rompa la cuerda? a) Si permanecen inmóviles. a = 0 Para m1: Para m2 ΣFy = m1 a1y ΣFy = m12a2y m1g +T2 - T1 = 0 m2g - T2 = 0 200 gr 300 gr T1 T2 sobre m 1 T1 T2 m g 1 sobre m 2 T2 m g 2 y+ y+
  • 12. T2 = m2g T2 = 0.3 Kg ( 9.81 m/s2 )= 29.43 Nt Sustituyendo para encontrar T1 T1 = m1g +T2 T1 = 0.2 kg ( 9.81m/s2 ) + 29.43 Nt T1 = 49.5 Nt Lo cual representa el peso de m1 y m2. b) Si aceleran hacia abajo con a = 5 m/s2 ΣFy = m1 a1y ΣFy = m12a2y m1g +T2 - T1 = m1 a1y m2g - T2 = m12a2y T2 = m2g - m12a2y T2 = m2 (g - a2y ) T2 = 0.3 Kg ( 9.81 m/s2 - 5 m/s2 ) = 1.44 Nt. Despejando T1 T1 = m1g +T2 + m1 a1y T1 = 0.2 kg ( 9.81m/s2 ) + 1.44 Nt - 0.2 kg ( 5 m/s2 ) T1 = 2.402 Nt c) Si caen libremente a = g = 9.81 m/s2 ΣFy = m1 a1y ΣFy = m12a2y m1g +T2 - T1 = m1 g m2g - T2 = m12g T2 = T1 T2 = m2g - m12g T2 = 0. d) Si la máxima tensión es de 15 Nt, escogemos ahora un sistema de referencia positivo hacia arriba, ya que se moverán en esa dirección. Como existen dos cuerdas, elegimos la que soporta mayor peso, siendo ésta T1, en el caso de T2 no podemos tomar el valor de 15 Nt, ya que para una misma aceleración de ambos cuerpos, esta tensión es menor que la que soportaría T1. ΣFy = m1 a1y ΣFy = m2a2y T1 - m1g - T2 = m1 a T2 - m2g = m2a T2 = m2g + m2a T1 - m1g - ( m2g + m2a ) = m1 a T1 - m1g - m2g - m2a = m1 a T1 - m1g - m2g = m1 a + m2a T1 - g ( m1 + m2 ) = a ( m1 + m2) 21 211 )( mm mmgT a + +− =
  • 13. kgkg kgkg s m Nt a 3.02.0 )3.02.0)(81.9(15 2 + +− = 2 19.20 s m a = 10. Un pasajero que viaja en un barco en un mar tranquilo, cuelga con un hilo una pelota del techo de su camarote. Observa que, al acelerar la nave, la pelota se encuentra detrás del punto de suspensión y el péndulo ya no cuelga verticalmente. ¿Cuál será la aceleración del barco cuando el péndulo se halla en un ángulo de 50 con la vertical? ∑ = xx maF xx maT = xmaTsen =θ m Tsen a θ = Para determinar T hagamos suma de fuerzas en el eje y. ∑ = yy maF yy maT = 0cos =−mgT θ θcos mg T = Sustituyendo en la ecuación de aceleración encontrada en la suma de fuerzas en el eje x: 2 0 2 85.0)5)(tan81.9(tan tancos s m s m g m mg m sen mg a ===== θ θ θ θ 11. Un bloque sin velocidad inicial se desliza sin rozamiento sobre un plano inclinado de 370 . Después de 3 s. a) ¿Qué distancia recorre? b) ¿Con qué velocidad baja al final del plano si éste tiene una distancia de 40 m? Como ya se vio en uno de los problemas anteriores, cuando no existe rozamiento, la aceleración de los cuerpos es a = g sen θ, en este caso, a = 5.90 m/s2 θ Sin acelerar acelerando y+ x+ T mg
  • 14. a) La distancia que recorre en tres segundos viene dada por la ecuación de cinemática: 2 00 2 1 attvxx ++= ms s m xx 55.26)3)(9.5( 2 1 2 20 ==− b) La velocidad con la que baja cuando a recorrido una distancia de 40 m viene dada por la ecuación: )(2 0 2 0 2 xxavv −=− s m m s m xxav 72.21)40)(9.5(2))2 20 ==−= 12. En la parte superior de un plano inclinado sin fricción de 16 m de longitud se suelta un cuerpo, originalmente en reposo y tarda 4 s en llegar a la parte mas baja del plano. Desde ahí se lanza hacia arriba a un segundo cuerpo, justo en el momento en que se suelta el primero, de tal forma que ambos llegan simultáneamente a la parte más baja. a) Calcular la aceleración de cada uno de los cuerpos sobre el plano inclinado. b) ¿Cuál era la velocidad inicial del segundo cuerpo? c) ¿Cuál es el ángulo que forma el plano respecto a la horizontal? a) Como no hay rozamiento, la aceleración viene dada por a = g senθ, la cual se puede determinar también mediante la ecuación de cinemática: 2 00 2 1 attvxx ++= 2 0 2 1 0 atxx ++= 222 0 2 )4( )16(2)(2 s m s m t xx a == − = A partir de este resultado, podemos calcular el ángulo de inclinación del plano inclinado, siendo éste: θgsena = 0 2 2 11 76.11 81.9 2 =             =      = −− s m s m sen g a senθ b) Para determinar la velocidad del segundo cuerpo, utilizamos el hecho de que el plano no tiene rozamiento, de tal forma que cuando sube, el cuerpo va desacelerando uniformemente siendo la aceleración a = - g sen θ. Cuando desciende, el cuerpo va acelerando uniformemente, teniendo una aceleración de a = g sen θ. Por la simetría del problema, el tiempo que tarda en subir es el mismo que tarda en bajar y como el tiempo total es la suma de ambos, entonces el tiempo en subir es de 2 segundos. Utilizando ese hecho y la ecuación de movimiento de cinemática: v = v0 + at
  • 15. Despejamos v0 y sustituimos el valor de la aceleración de subida v0 = - a t v0 = - (- g senθ ) t v0 = ( 9.81 m/s2 ) ( sen 11.760 ) ( 2 s ) = 4 m/s. 13. Se lanza un bloque hacia arriba sobre un plano inclinado sin fricción, con una rapidez inicial v0. El ángulo de inclinación es θ. a) ¿Cuánto ascenderá por el plano? b) ¿Cuánto tiempo tarda en hacerlo? c) ¿Cuál es su rapidez cuando regresa hasta la base? d) Calcule los incisos anteriores para θ = 300 ; v0 = 2 m/s. a) Éste es un problema parecido al anterior, donde la desaceleración es a = - g sen θ, la distancia que asciende sobre el plano viene dada por la ecuación: )(2 0 2 0 2 xxavv −=− θθ gsen v gsen v a v a vv xx 2)(22 0 2 2 0 2 0 2 0 2 0 2 0 = − − = − = − =− b) El tiempo que tarda en hacerlo se encuentra a partir de la ecuación: atvv += 0 θθ gsen v gsen v a vv t 000 = − − = − = c) La rapidez con que regresa a la base del plano, es la misma que con la que inició la subida. Esto se puede demostrar considerando que ya se encuentra en su punto más alto, teniendo: una velocidad inicial nula v'0 = 0, experimentando una aceleración: a' = g sen θ, recorriendo una distancia de: θgsen v xx 2 2 0 0 =− en un tiempo de: θgsen v t 0 = Con esos datos se puede encontrar la velocidad final que llamaremos v'f, a partir de la ecuación (para diferenciar los datos de cuando subió se ha agregado un apóstrofe ): v'f = v'0 + a' t 0 0' ´ )(0 v gsen v gsenv f =      += θ θ d) Para determinar este inciso, únicamente se sustituyen los valores proporcionados en las ecuaciones encontradas anteriormente.
  • 16. 14. Un hombre de 80 kg se lanza con un paracaídas y sufre una desaceleración de 2.5 m/s2 . La masa del paracaídas es de 5 kg. a) ¿Cuál es el valor de la fuerza ejercida hacia arriba por el aire sobre el paracaídas? b) ¿Cuál es el valor de la fuerza ejercida hacia abajo por el hombre sobre el paracaídas? Hagamos suma de fuerzas sobre el hombre, iniciamos con él, debido a que sobre el paracaídas desconocemos la fuerza que ejerce el hombre sobre el paracaídas, en estos casos, erróneamente se supone que esta fuerza es igual al peso del hombre, pero como los cuerpos están acelerados, dicha fuerza puede aumentar o disminuir. Para reafirmar lo anterior, si el hombre fuese en caída libre (acelerado) su peso sería nulo. Sobre el hombre: ∑ = amF Hy amgmF HH H p =− gmamF HH H p += H H p mgaF )( += kg s m s m F H p 80)5.281.9( 22 += NtF H p 984= Por la tercera ley de Newton, esta fuerza es igual en magnitud pero en sentido contrario a la que ejerce el hombre sobre el paracaídas. Sobre el paracaídas: ∑ = amF py amFgmF p p Hpa =−− p Hpa FgamF ++= )( Sobre el paracaídas Sobre el hombre Wh = peso del hombre y + y- wp hw Fa/p = Fuerza que ejerce el aire sobre el paracaídas. y + y - WT/p = Fuerza que ejerce la Tierra sobre el paracaídas. Wh/p = Fuerza que ejerce el hombre sobre el paracaídas. Fp/h = Fuerza que ejerce el bloque A se mueva 1.0 mts.GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG hombre
  • 17. Nt s m kgFa 984)81.95.2)(5( 2 ++= NtFa 5.1045= Nota: en este ejercicio, se consideró una aceleración positiva de 2.5 m/s2 ¿Por qué ? si el problema dice que tiene una desaceleración de 2.5 m/s2 . Sugerencia: en base a diagramas de caída de los cuerpos, considerando sistemas de referencia positivos hacia arriba, negativos hacia abajo, analice como son los cambios de posición, como son las velocidades y los cambios de velocidad para determinar el signo de la aceleración. 15. De la siguiente figura, calcule la aceleración de las masas y las tensiones de las cuerdas. Como tenemos tres cuerpos moviéndose simultáneamente, debemos tener un diagrama de cuerpo libre para cada uno. Aplicamos la suma de fuerzas en cada diagrama, pero antes, observemos que la aceleración de los cuerpos va a ser la misma, es decir a1x = a2x =a3y = a; ΣFx = m1 a1x ΣFx = m2 a2x ΣFx = m3 a3x T1 = m1a T2 + m2g senθ - T1 = m2a m3g -T2 = m3a despejando T2 de la tercera ecuación: T2 = m3g - m3a sustituyendo T1 de la primera y; T2 despejada en la ecuación de enmedio: m3g - m3a + m2g senθ - m1a = m2a despejando a la aceleración: m3g + m2g sen θ - = m2a + m3a + m1a m3g + m2g sen θ - = ( m2 + m3 + m1 )a 100 kg 200 kg 300 kg 370 T2 N1 W1 N2 T2 T1 W2 θ y+ x+ y+ x+ Sobre m1 Sobre m2 Sobre m3 W3 y+ y- T1
  • 18. 321 23 mmm gsenmgm a ++ + = θ las tensiones se encuentran sustituyendo en las ecuaciones respectivas:       ++ + = 321 23 11 mmm gsenmgm mT θ       ++ + −= 321 23 333 mmm gsenmgm mgmT θ 16. Dos bloques con masa de 20 kg cada uno, descansan sobre superficies lisas. Suponiendo que las poleas son ligeras y sin rozamiento. Calcule: a) El tiempo requerido para que el bloque A se mueva 1.0 m hacia abajo del plano, partiendo del reposo. b) La tensión de la cuerda que une a los bloques. El tiempo requerido se encuentra a partir de las ecuaciones de cinemática que contengan dicho parámetro: 2 00 2 1 attvxx ++= atvv += 0 y en ambos casos se requiere conocer la aceleración, la cual se determina aplicando las leyes de Newton: ΣFx = m1 a1 x ΣFx = m2 a2 x m1g sen θ - T = m1 a T = m2 a m1g sen θ - m2 a = m1 a m1g sen θ = m1 a + m2 a 21 1 mm gsenm a + = θ 370 N1 W1 T1 x+ y+ θ N2 W2 x+ y+ T1
  • 19. a) Despejando el tiempo y como el cuerpo parte del reposo ( v0 = 0 ): θθ gsenm mmxx mm gsenm xx a xx t 1 210 21 1 00 ))((2)(2)(2 +− = + − = − = sustituyendo valores: s sen s m kg kgkgm t 823.0 37)81.9(20 )2020)(21(2 0 2 = + = b) La tensión se encuentra sustituyendo la aceleración en la ecuación respectiva: 21 12 21 1 2 mm gsenmm mm gsenm mT + =      + = θθ Nt kg sen s m kgkg T 03.59 40 37)81.9)(20)(20( 0 2 == 17. Calcule en función de m1, m2 y g, la aceleración de los dos bloques si no existe rozamiento entre m1 y la mesa, ni en la polea. Antes de resolver el problema, debemos analizar el movimiento de los dos cuerpos. Cuando m1 recorre una distancia d hacia la derecha; el cuerpo de masa m2 baja una distancia d/2, debido a que es la misma cuerda. En otras palabras, la longitud de la cuerda en m1 debe de compartirse en el cuerpo 2, por tal razón la aceleración a1 deberá ser el doble de la aceleración a2, para que en el mismo tiempo un cuerpo recorra una distancia d y el otro una d/2. Σ Fx = m1 a1 x Σ Fy = m2 a2 y T = m1 a1x m2 g -T - T = m2 a2y donde: a = a1x = 2 a2y ó a2y = a / 2 entonces: T = m1 a y m2 g -T - T =( m2 a ) / 2 m2 g - m1 a - m1 a =( m2 a ) / 2 M2 m1 x+ y+ y+ y - T1 m1 g m2 g T1 T1 x+
  • 20. m2 g =( m2 a ) / 2 + m1 a + m1 a a (m2 / 2 + m1 + m1 ) = m2 g a (m2 / 2 + 2 m1 ) = m2 g gm mm a 2 12 2 4 =      + gmmma 212 2)4( =+ )4( 2 12 2 mm gm a + = la aceleración para m1. Para m2: )4(2 12 2 2 mm gma a y + == 19. ¿Cuál es la magnitud de una fuerza paralela a un plano inclinado 300 necesaria para dar a una caja de 5 kg una aceleración de 0.20 m/s2 hacia arriba del plano? ¿Y si la fuerza es transversal al plano? Σ Fx = m ax Σ Fx = m ax F - mg sen θ = max F cos θ - mg sen θ = m ax F = mg sen θ + max θ θ cos xmamgsen F + = F = m ( g sen θ + ax ) θ θ cos )( xagsenm F + = 2 0 2 2.030)81.9(5 s m sen s m kgF += 0 2 0 2 30cos 2.030)81.9(5 s m sen s m kg F + = F = 25.52 Nt. F = 29.47 Nt. y+ x+ y+ x+ FN W W N F θ θ θ θ paralela transversal
  • 21. 20. Un automóvil que se mueve a 20 m/s empieza a subir en un plano inclinado a 370 , al mismo tiempo, otro automóvil que se encuentra a una distancia de 100 m sobre el plano inclinado, empieza a moverse hacia abajo a partir del reposo. Al ignorarse las fuerzas de fricción, a) ¿A qué distancia de la parte inferior del plano inclinado se encontrarán los automóviles cuando pasen uno al lado del otro? b) ¿Qué velocidades tendrán los autos en ese instante? Básicamente, éste es un problema de cinemática, lo único que requerimos de dinámica es conocer las aceleraciones de los autos, y como no existe fricción, la aceleración del auto que baja es: a = g sen 370 (acelerando) en tanto que la del que sube es: a = - g sen 370 (frenando) Tomando un sistema de referencia con origen en el auto que se encuentra a 100 m sobre el plano y con una convención de signos + hacia abajo, la ecuación de movimiento de ambos cuerpos es: 2 00 2 1 attvxx ++= Sin embargo, debido a la convención de signos del sistema de referencia, antes de sustituir datos y realizar operaciones, debe tenerse mucho cuidado con la aceleración del auto que sube, ya que por moverse en sentido contrario de las x +, tiene asociada en todo momento una velocidad negativa, la cual va disminuyendo en magnitud hasta que se hace cero, de tal manera que: t s m t s m tt vv t v as 20)20(0 0 0 = −− = − − = ∆ ∆ = la aceleración será positiva. De esta forma tenemos que: 2 00 2 1 tatvxx bbbb ++= 2 00 2 1 tatvxx ssss ++= y con las condiciones particulares para cada uno de ellos tenemos que: 20 )37( 2 1 00 tgsenxb ++= 20 )37( 2 1 20100 tgsentxs ++−= a) Se encuentran cuando ambos están en la misma posición: xb = xs. Igualando las ecuaciones: 2020 )37( 2 1 20100)37( 2 1 tgsenttgsen +−= 10020)37( 2 1 )37( 2 1 2020 =+− ttgsentgsen s s m m t 5 20 100 ==
  • 22. Sustituyendo para encontrar la posición: 20 )37( 2 1 tgsenxb = mssen s m xb 79.73)5(37)81.9( 2 1 20 2 == b) Las velocidades vienen dadas por la ecuación: v = v0 +at El de subida es: vs = -20 + g sen370 (5) vs = 9.51 m/s (ya va de bajada. Una velocidad positiva indica movimiento en dirección de las x +) La velocidad del auto que inicia el descenso es: vb = ( g senθ ) t vb = 29.51 m/s Si queremos conocer el tiempo que tarda el auto que va de subida, en detenerse, podemos emplear la ecuación: t s m t s m tt vv t v as 20)20(0 0 0 = −− = − − = ∆ ∆ = t s m as 20 = sa s m t 20 = donde: 2 0 9.537 s m gsenas == sustituyendo: s s m s m t 39.3 9.5 20 2 == Que es menor que el tiempo que tardan en estar uno al lado del otro. 21. Un electrón es lanzado horizontalmente con una velocidad de 1.2 x 107 m/s en un campo eléctrico que ejerce sobre él una fuerza vertical hacia arriba constante de 4.5 x 10-31 Nt. Si la masa del electrón es de 9.1 x 10-31 kg. Determinar la distancia vertical recorrida por el electrón durante el tiempo que le toma moverse una distancia horizontal de 3 cm.
  • 23. La fuerza vertical es una fuerza de origen eléctrico, que puede ser originada por un par de placas paralelas con cargas de diferente signo, de tal manera que la placa negativa repele al electrón, en tanto que la positiva lo atrae, acelerándolo y describiendo una trayectoria parabólica. En el eje de las x no existen fuerzas, por lo tanto, hacemos sumatoria de fuerzas en el eje y. yey amF −=∑ yeee amgmF −− =− − −− = e ee y m gmF a Sustituyendo datos: 231 2 3131 31.9 101.9 )81.9)(101.9(105.4 s m kgx s m kgxkgx ay −= − = − −− En este caso, la interpretación del signo de la aceleración debemos de encontrarlo a partir de la sumatoria de fuerzas en el eje y, indicándonos que el peso es mayor que la fuerza eléctrica, resultando una fuerza neta vertical hacia abajo y consecuentemente, la trayectoria del electrón está invertida en la figura. (¿Qué pasaría en las mismas condiciones si las placas se invirtieran?). Con dicha aceleración encontraremos la distancia vertical recorrida por el electrón, a partir de la ecuación: 2 00 2 1 tatvyy yy ++= como se lanzó horizontalmente, v0y = 0; tomando el origen en donde inicia la placa y0 = 0, quedándonos: 2 2 1 tay y= Sin embargo, desconocemos el tiempo, el cual se encuentra a partir de la ecuación de movimiento uniforme en x. tvxx x00 += sx s m x m v xx t x 9 70 0 105.2 102.1 03.0 − == − = sustituyendo los datos en la ecuación de movimiento vertical: v0 + + + + + + + + + + + + - - - - - - - - - - - - - - - - e- w F distancia vertical que se desvía trayectoria 3 cm. e-