Nous avons mis à jour notre politique de confidentialité. Cliquez ici pour consulter les détails. Cliquez ici pour consulter les détails.
Activez votre essai gratuit de 30 jours pour accéder à une lecture illimitée
Les vidéos YouTube ne sont plus prises en charge sur SlideShare
Activez votre essai gratuit de 30 jours pour continuer votre lecture.
Télécharger pour lire hors ligne
“In Spark 2.0, we have extended DataFrames and Datasets to handle real time streaming data. This not only provides a single programming abstraction for batch and streaming data, it also brings support for event-time based processing, out-or-order/delayed data, sessionization and tight integration with non-streaming data sources and sinks. In this talk, I will take a deep dive into the concepts and the API and show how this simplifies building complex “Continuous Applications”.” - T.D.
Databricks Blog: "Structured Streaming In Apache Spark 2.0: A new high-level API for streaming"
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
// About the Presenter //
Tathagata Das is an Apache Spark Committer and a member of the PMC. He’s the lead developer behind Spark Streaming, and is currently employed at Databricks. Before Databricks, you could find him at the AMPLab of UC Berkeley, researching datacenter frameworks and networks with professors Scott Shenker and Ion Stoica.
Follow T.D. on -
Twitter: https://twitter.com/tathadas
LinkedIn: https://www.linkedin.com/in/tathadas
“In Spark 2.0, we have extended DataFrames and Datasets to handle real time streaming data. This not only provides a single programming abstraction for batch and streaming data, it also brings support for event-time based processing, out-or-order/delayed data, sessionization and tight integration with non-streaming data sources and sinks. In this talk, I will take a deep dive into the concepts and the API and show how this simplifies building complex “Continuous Applications”.” - T.D.
Databricks Blog: "Structured Streaming In Apache Spark 2.0: A new high-level API for streaming"
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
// About the Presenter //
Tathagata Das is an Apache Spark Committer and a member of the PMC. He’s the lead developer behind Spark Streaming, and is currently employed at Databricks. Before Databricks, you could find him at the AMPLab of UC Berkeley, researching datacenter frameworks and networks with professors Scott Shenker and Ion Stoica.
Follow T.D. on -
Twitter: https://twitter.com/tathadas
LinkedIn: https://www.linkedin.com/in/tathadas
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Vous avez clippé votre première diapositive !
En clippant ainsi les diapos qui vous intéressent, vous pourrez les revoir plus tard. Personnalisez le nom d’un clipboard pour mettre de côté vos diapositives.La famille SlideShare vient de s'agrandir. Profitez de l'accès à des millions de livres numériques, livres audio, magazines et bien plus encore sur Scribd.
Annulez à tout moment.Lecture illimitée
Apprenez plus vite et de façon plus astucieuse avec les meilleurs spécialistes
Téléchargements illimités
Téléchargez et portez vos connaissances avec vous hors ligne et en déplacement
Vous bénéficiez également d'un accés gratuit à Scribd!
Accès instantané à des millions de livres numériques, de livres audio, de magazines, de podcasts, et bien plus encore.
Lisez et écoutez hors ligne depuis n'importe quel appareil.
Accès gratuit à des services premium tels que TuneIn, Mubi, et bien plus encore.
Nous avons mis à jour notre politique de confidentialité pour nous conformer à l'évolution des réglementations mondiales en matière de confidentialité et pour vous informer de la manière dont nous utilisons vos données de façon limitée.
Vous pouvez consulter les détails ci-dessous. En cliquant sur Accepter, vous acceptez la politique de confidentialité mise à jour.
Merci!