Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Machine learning in image processing

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Prochain SlideShare
Image processing with ai
Image processing with ai
Chargement dans…3
×

Consultez-les par la suite

1 sur 35 Publicité

Plus De Contenu Connexe

Diaporamas pour vous (20)

Similaire à Machine learning in image processing (20)

Publicité

Plus par Data Science Thailand (20)

Plus récents (20)

Publicité

Machine learning in image processing

  1. 1. MACHINE LEARNING I N IMAGE PROCESSING PA R I N YA S A N G U A N S AT
  2. 2. Asst. Parinya Sanguansat, Ph.D. Computer Engineering, Panyapiwat Institute of Management
  3. 3. MACHINE LEARNING (WITH MATLAB)
  4. 4. CONTENTS • Introduction • Feature Extraction • Machine Learning approaches – Image to image – Image to non-image • Applications – Face Recognition – Face Hallucination – Object Detection – Augmented Reality • Tools
  5. 5. INTRODUCTION • Classification • Regression MachineData Class Label MachineData Data Discrete Continues
  6. 6. CLASSIFICATION VS REGRESSION Classification Regression
  7. 7. INTRODUCTION • Supervised Learning • Unsupervised Learning MachineTraining Data learning Training Target learningTest Data classify Test Target MachineTraining Data learningTest Data cluster Data Cluster
  8. 8. SUPERVISED VS UNSUPERVISED Supervised Unsupervised
  9. 9. FEATURE EXTRACTION • Normal data • Image data A1 A2 A3 A4 A5 A6 O1 1 2 1 1 2 3 O2 1 4 2 5 3 1 O3 2 1 5 2 1 3 O4 3 2 4 5 2 4 O1 O2 O3
  10. 10. VECTORIZATION O1 O2 O3 O1 O2 O3 PROBLEMS: • High-Dimensional feature vector • Very large memory • Very long processing time • Singularity problem • Small Sample Size problem
  11. 11. SCALE INVARIANT FEATURE TRANSFORM (SIFT) • To detect and describe local features in an images, wildly used in image search, object recognition, video tracking, gesture recognition, etc. • Speeded Up Robust Features (SURF)
  12. 12. EIGENVECTOR https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors 𝐴𝑣 = 𝜆𝑣
  13. 13. BAG OF (VISUAL) WORDS
  14. 14. OTHER FEATURE EXTRACTIONS • Color • Texture • Shape • Statistic
  15. 15. ALIGNMENT http://www.csc.kth.se/~vahidk/face_ert.html
  16. 16. CLASSIFIERS • K-NN • Neural network • SVM • CNN
  17. 17. MACHINE LEARNING APPROACHES
  18. 18. IMAGE TO NON-IMAGE Machine LearningImage Information Object detection and tracking Image recognition and classification
  19. 19. IMAGE TO IMAGE Machine LearningImage Image Image retrieval Image enhancement Extrapolated art (http://extrapolated-art.com/)
  20. 20. NEURAL ARTIST STYLE https://medium.com/@genekogan/machine-learning-for-artists-e93d20fdb097#.kf92ef5u8 http://www.kdnuggets.com/2015/09/deep-learning-art-style.html
  21. 21. APPLICATIONS
  22. 22. FACE RECOGNITION PreprocessingFace image Feature Extraction Classifier Label
  23. 23. PCA Crop & Resize m n Vectorize mn M M 1 1 ( )( ) M T k k kM        C Covariance matrix Dimension = mn x mn ( ), 1,2,3, ,T i i d y = x max( )d MPC Scalar
  24. 24. 2DPCA Crop & Resize m n VectorizeM 1 1 ( ) ( ) M T k k kM    G A A A A Image covariance matrix Dimension = n x n , 1,2,3, ,i i i dY = Ax max( )d nPCV Vector
  25. 25. IMAGE COVARIANCE MATRIX • Optimization Problem: Maximize the trace of covariance matrix (Sx) ( ) { [( )( ) ]}T xtr tr E E E  S Y Y Y Y ( ) { [( )( ) ]} { [( ) ( ) ]} { [ ( ) ( ) ]} { [( ) ( )] } { } T x T T T T T T T tr tr E E E tr E E E tr E E E tr E E E tr              S Y Y Y Y A A XX A A X A A A A X X A A A A X X GX Y = AX ( ) ( )tr XY tr YX 1 1 ( ) ( ) M T k k kM    G A A A A
  26. 26. FACE HALLUCINATION Hallucinating INPUT OUTPUT
  27. 27. INPUT Baseline BaselineProposed Proposed
  28. 28. CCTV SAMPLES • Asian on Asian database • European on Asian database
  29. 29. OBJECT DETECTION • Viola Jones method Positive samples Negative samples Cascade Classifier (Adaboost)
  30. 30. AUGMENTED REALITY matchFeatures estimateGeometricTransform + imwarp detectSURFFeatures Create Marker
  31. 31. TOOLS
  32. 32. OPENCV • http://opencv.org/
  33. 33. MATLAB • http://www.mathworks.com/products/matlab/
  34. 34. ALTERNATIVE TO MATLAB • Opensource Mostly compatible Different Syntax PythonBrowser-based
  35. 35. OCR https://code.google.com/p/tesseract-ocr/downloads/list

×