SlideShare a Scribd company logo
1 of 57
Clova Music:
Smart AI-DJ Assistant
Jung-Woo Ha
Leader, Clova AI Research (CLAIR)
Chanju Kim
Tech Leader, Clova Music
Clova: Cloud-based Virtual Assistant
Clova: General-purpose AI platform for empowering user values
Clova-inside
Vision of Clova
• Jarvis-like AGI platform
for H.E.M Augmentation
• Real-time, Real-world, Real-life
• Tacking enormous technical
and challenging huddles
• Fundamental and advanced AI
Human
Environ
ment Machine
CLOVA
CLAIR: Clova AI Research
• Team responsible for Clova-oriented advanced AI research
• Open, Collaborative, and Self-motivated
• Outstanding global team (working language: English)
• Position: Research scientists, PostDoc, AI SW engineers, Internship researchers
• Research infrastructure and supporting: nsml (presented by Nako Sung)
• Your KPI may include research publication
• Advisory members: Active research involvement + authorships
조경현(NYU) 임재환(USC) 김성훈(HKUST) 박혜원(MIT) 신진우(KAIST) 주재걸(고려대)
…
1. Recommendation in online music services
2. Recommendation in Clova Music
- Playing log analysis
- Musical semantic embedding
- MF-based personalization
3. Music content modeling for Clova Music
- Highlight extraction via CRAN
- Emotional recognition via MCRN
4. Discussion & Future work
Contents
1. Recommendation in
Online Music Services
How to Recommend
• More similar users, more similar items
• Focusing on relationships
Collaborative Filtering
Content-based Filtering
• Representing the contents of users and items
• Focusing on the contents of each entity
Collaborative Filtering
…
User
…
Item
0.5 0.3 0.2
…
Co-occurrence based Model
Users watching
the same items
as
Recommended
items for
[Choi, 2017]
Collaborative Filtering
Methods
• Latent factor model
• Assumption
• There exist latent features representing user and item characteristics
• Matrix (Tensor) factorization:
• SVD, ALS, NMF, pMF, etc..
• Topic model: LDA, HDP etc
• NN-based CF [Dziugaite & Roy, 2015, Wang et al. 2015, Kim et al, 2016, Seo et al.
2017]
ܹ H
×
ܸ
≈
Collaborative Filtering
• Sparsity
• User-item matrix  Most slots are unknown.
• Scalability
• User size and item size: real-world cases
• Synonyms: Same or similar items but different indices
• Gray sheep: Not consistent users = not reflecting true distribution
• Shilling attack: Not fair rating
• Diversity and long-tail: Untrusty features for few log (long-tail data)
• Cold-start problem
Challenges
Hybrid with content-based method
• Content-based method: user / item / etc
• Hybrid concept is not new.
• Deep learning enables it to be valuable
• Text, image, video, audio, music, webtoon, etc.
• CNN, RNN, DNN
• Requires a safety logic
• Description is valuable
How to hybridize
Neural Hybrid Models
[Kim et al, 2016]ConvMF
More and more NN-based hybrid models
Remaining Challenges
• Ambiguous objective function
• Changing user preference
• Gap between model metrics and user satisfaction
• Now correct, at that time wrong
• Still require post processing
2. Recommendation in
Clova Music
- Playing log analysis
- Musical semantic embedding
- MF-based personalization
- Challenges
AI Speaker vs Conventional Platforms
• WAVE: Clova-inside AI speaker
• Playing music is the key feature of AI speakers
• Compare usage patterns of AI speaker with those
of conventional platforms
Top Music Sentences
• 노래 틀어줘
• 자장가 틀어줘
• 동요틀어줘
• 신나는 노래 틀어줘
• 조용한 노래 틀어줘
• 핑크퐁 노래 틀어줘
• 아이유 노래 틀어줘
• 클래식 틀어줘
• 분위기 좋은 음악 틀어줘
• 잔잔한 음악 틀어줘
• 발라드 틀어줘
• 팝송 틀어줘
• Artists rather than tracks
• Genres, moods, and themes
rather than artists
• Just play rather than genres
Playing Pattern : Hour of day
0 5 10 15 20 25
NAVER_APP NAVER_PC WAVE CLOVA_APP
Hour of day
Playing ratio
Playing Pattern : Genre
가요
기능성음악
팝
동요
OST
클래식
재즈
종교음악
일렉트로니카
락
힙합
기타
NAVER_APP WAVE
Playing ratio
Genre
Playing Pattern : Genre
가요
기능성음악
팝
동요
OST
클래식
재즈
종교음악
일렉트로니카
락
힙합
기타
NAVER_APP WAVE
재생 비율
장르
May be caused by
home environments
Playing Pattern : Long-tail distribution
Artist
Playing ratio
• ‘Artists’–‘Play count ratio’
log-log scale graph
• Long-tail distribution
• No difference in distribution,
but…
Playing Pattern : Long-tail distribution
WAVE NAVER MUSIC APP
핑크퐁 EXO
아이유 아이유
동요 젝스키스
동요 방탄소년단
EXO 뉴이스트(NU`EST)
윤종신 Wanna One
별하나 동요 윤종신
이루마 우원재
오르골뮤직 볼빨간사춘기
볼빨간사춘기 뉴이스트 W
젝스키스 황치열
트니트니 헤이즈
헤이즈 선미
성시경 WINNER
힐링 피아노 자장가
Top Artists
Artist
Playing ratio
Implication
• Paradigm shift of music consumption via AI speakers
• New market
• Kids
• Lean-out music
• Classical / jazz
• Music recommendation will play more important roles for AI
assistant platforms
Clova Music Recommendation
Two main challenging issues
• Lack of well-refined metadata
• “~~한 노래 틀어줘”
• 신나는 노래
• 혼자 듣기 좋은 노래
• Personalized playlists
• 발화에 부합하고 다양한
Musical Semantic Embedding
• Map musical items (tracks, artists, words) to the same semantic
space as vector of real numbers
• Word2vec
• Feature learning
• Usages
• Item similarities
• Input of deep neural network
Goal & Usages
Musical Semantic Embedding
• Embedding keywords and tracks (artists) to the same space
• JAMM data
• User-created playlist with hash tags in the Naver music
• About 72,000 playlists
• Treat a track-id as a symbol with semantics as a textual word
Word2Vec with tagged playlists
Examples
‘가을 ’
• Similar keywords and tracks
Examples
‘신나는’
• Similar tracks
Examples
벛꽃엔딩 / 버스커 버스커
• Similar keywords and tracks
Multimodal Semantic Embedding
Embedding tracks with session data
• Regards user music playing sequence
data as documents
• For multiple track meanings, use
multimodal word distributions formed
from Gaussian mixtures.
Ben Athiwaratkun and Andrew Gordon Wilson, Multimodal Word Distributions, 2017
Examples
밤편지 / 아이유
• Similar tracks of two
different ‘밤편지’
embedding
< 밤편지_2 >< 밤편지_1 >
MF for Personalized Recommendation
Matrix Factorization
• Select tracks and artists that user prefers when generating a playlist
• Simple but hard to apply
• Evaluation
• Overfitting / Underfitting
• Combining with other models
MF for Personalized Recommendation
• Relatively huge item set
• Long-term batch learning for a compact model
• Short-term incremental learning
• Proper regularization factors
• Consider item distribution when performing the negative sampling
• Remove abusing users (ex. Top100 users)
Tips
Fundamental Problem of Collaborative Filtering
• Assumption: Users who have similar preferences are likely to have
similar preferences
• When a user violate the assumption?
• Familiarity vs. discovery
MF for Personalized Recommendation
Sparkline Chart
Precision@30 for Top 10,000 Users
https://en.wikipedia.org/wiki/Sparkline
Remaining Challenges
• Interactive recommendation
• Lean-in vs lean-out
• More personalized and context-aware recommendation
• Familiarity vs discovery
Conventional Problems
Music recommendation for AI speakers
• Sparsity
• Harry Porter effect (Top 100)
• Cold-start problems
• Explanatory recommendation
3. Music content modeling
for Clova Music
- Highlight extraction via CRAN
(Ha et al, ICML ML4MD Workshop
2017)
- Emotional recognition via MCRN
(Jeon et al, RECSYS 2017)
Music Highlight Extraction (MHE)
Motivation
Why only the first 1 minute?
Improved user experiences and recommendations
Increase in potential customers
Valuable data sets
Definition
Extract a representative snippet from a given track
Main Task in MHE
Task
Finding significant snippets within a track is an interesting and valuable task
Given a track x, where should a ‘Highlight’ start?
40000
H H+S
mel-spectrogram of x
Input: mel-spectrogram of x
Output: Starting frame (H) of highlight
Structure of MHE
Track file Mel-spectrogram
Deep learning model
Attention layer
Convolutional & pooling layer
Recurrent layer
Fully connected & output layer
Candidate
generation
Candidate
selection
Highlight extraction
Highlight Clip
[Ha et al. 2017]
CRAN: Convolutional Recurrent Attention Networks
Track file Mel-spectrogram
Deep learning model
Attention layer
Convolutional & pooling layer
Recurrent layer
Fully connected & output layer
Candidate
generation
Candidate
selection
Highlight extraction
Highlight Clip
CRAN: Convolutional Recurrent Attention Networks
LSTM
Multiple
mel-channel
1D-convolution
&
max pooling
layers
Input layer
Feature
concatenation
Time separation
LSTM
LSTM LSTM
Multiple bidirectional
recurrent layers
LSTM output Attention-weighted
Attention
(softmax)
Output layer
Element-wise multiplication
Fully-connected
layer
Convolution & pooling
Channel summation
Attention layer
• Output: 10 genres
• Input: mel-spectrogram
• 128 mel bins
• Maximum 4000 frames
• 0.061s per frame
• Training Details
• 32,083 tracks
(80/10/10)
• Adam (LR = 0.005)
• 100 epochs
Highlight Extraction via CRAN
Attention Mel energy
Attention-weighted
Energy from frame n
Cumulative Sum of S energy values Speed/Acceleration of energy change
Highlight score
of frame n
Frame on where highlight of length S starts
Highlight Extraction via CRAN
H
Data Description
• 32,083 full tracks with genres tagged as multi-labels
Chosen based on played frequency from December 2016 – January 2017
• 10 representative genres
• Korean music market has a strongly-biased taste to specific genres
(Ballad, Dance, Hiphop, and R&B)
• Idol musicians make up the majority of K-pop.
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35 Total
Popular (Top 10%)
New Released (Top 10%)
Extraction Results
• Quantitative evaluation
• Ground truth highlights of 280 tracks from 8 experts
• Metric definition: Overlap lengths with ground truth
• Qualitative evaluation
• Explicit scoring from 8 experts with [1, 5] score window
• Results
• Web demo
Genre Similarity Results
• Confusion Matrix of classifying 3 genres per track
Musical Emotion Recognition
Motivation
Definition
Classify emotional characteristics from a given track
MCRN: Multimodal Convolutional Recurrent Networks
Overview : Our model directly predicts track’s polarity (pos / neg)
from audio and lyrics; it consists of audio and lyrics branches.
Layer (1) : Input layer, Audio – (128, 1024) mel-spectograms,
Lyrics – (27496, 400) padded word vectors
Layer (2) : Conv layers in audio branch, activation function :
ELU, Output of conv layers,
Layer (3) : RNN layers in audio branch, output dims :
64 Output of RNN layers,
Layer (4) : Conv layers in lyrics branch, activation function :
ELU, output dims : 64, Output of conv layers,
Layer (5) : Output layer, merge two branches with concatenation
activation function : ReLU, final output,
Data Description
• Naver Music Polarity Emotion Dataset
• 7,484 tracks (Pos : Neg = 1:1)
• Polarity emotion label (pos or neg)
• Lyrics: (27496, 400) word vectors (|V| = 27,496)
• Mel-spectograms: (128 mels, 1,024 time slots = 1 min)
• Dataset creation process
• Seperate pos/neg emotion tags of Naver Jamm Editor’s tags with polarity emotion word dictionary
• Editor’s tags are more reliable than users’ tags
• Filter out the tracks whose tags include both positive and negative words
• Reject the tracks whose length is less than a minute or lyrics include less than 30 words
• Use the first one minute of each mel-spectrogram
• Only use noun, verb, adjective, and adverb in words of lyrics
MER Results
Data Model Accuracy
Audio
CNN 0.6479
RNN 0.6303
MCRN 0.6619
Lyrics
CNN 0.7815
RNN 0.7716
Both MCRN, CNN 0.8046
MER Results
MER Results: Lyrics Cloud
[Positive lyrics] [Negative lyrics]
4. Discussion and Future
Work
More Smart AI DJ Assitant?
• More proactive interaction
• Human-in-the loop
• Real context-aware
• Real personalized
• Balance between familiarity and novelty
Future Direction
• More coverage for users’ intent
• Proactive interaction
• More visualization and explanation
• Rich intelligent services
• Discovery
• From smart to touching
Concluding Remarks
• Importance of human evaluation
• Untrusty numerical model metrics
• A/B test
• Proper evaluation design
• Do not trust user logs blindly
• Rich curation data by human experts
• Maybe reinforcement learning ?
• Conferences: KDD, RECSYS, CIKM, AAAI, IJCAI, ICDM, …
Q & A
Thank you

More Related Content

What's hot

ODSC East: Effective Transfer Learning for NLP
ODSC East: Effective Transfer Learning for NLPODSC East: Effective Transfer Learning for NLP
ODSC East: Effective Transfer Learning for NLPindico data
 
Multi modal retrieval and generation with deep distributed models
Multi modal retrieval and generation with deep distributed modelsMulti modal retrieval and generation with deep distributed models
Multi modal retrieval and generation with deep distributed modelsRoelof Pieters
 
Engineering Intelligent NLP Applications Using Deep Learning – Part 2
Engineering Intelligent NLP Applications Using Deep Learning – Part 2 Engineering Intelligent NLP Applications Using Deep Learning – Part 2
Engineering Intelligent NLP Applications Using Deep Learning – Part 2 Saurabh Kaushik
 
Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Tutorial on Deep Learning in Recommender System, Lars summer school 2019Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Tutorial on Deep Learning in Recommender System, Lars summer school 2019Anoop Deoras
 
Natural Language Processing: L01 introduction
Natural Language Processing: L01 introductionNatural Language Processing: L01 introduction
Natural Language Processing: L01 introductionananth
 
2017 Tutorial - Deep Learning for Dialogue Systems
2017 Tutorial - Deep Learning for Dialogue Systems2017 Tutorial - Deep Learning for Dialogue Systems
2017 Tutorial - Deep Learning for Dialogue SystemsMLReview
 
End-to-End Task-Completion Neural Dialogue Systems
End-to-End Task-Completion Neural Dialogue SystemsEnd-to-End Task-Completion Neural Dialogue Systems
End-to-End Task-Completion Neural Dialogue SystemsYun-Nung (Vivian) Chen
 
[KDD 2018 tutorial] End to-end goal-oriented question answering systems
[KDD 2018 tutorial] End to-end goal-oriented question answering systems[KDD 2018 tutorial] End to-end goal-oriented question answering systems
[KDD 2018 tutorial] End to-end goal-oriented question answering systemsQi He
 
Deep learning for natural language embeddings
Deep learning for natural language embeddingsDeep learning for natural language embeddings
Deep learning for natural language embeddingsRoelof Pieters
 
Anthiil Inside workshop on NLP
Anthiil Inside workshop on NLPAnthiil Inside workshop on NLP
Anthiil Inside workshop on NLPSatyam Saxena
 
Talk from NVidia Developer Connect
Talk from NVidia Developer ConnectTalk from NVidia Developer Connect
Talk from NVidia Developer ConnectAnuj Gupta
 
Engineering Intelligent NLP Applications Using Deep Learning – Part 1
Engineering Intelligent NLP Applications Using Deep Learning – Part 1Engineering Intelligent NLP Applications Using Deep Learning – Part 1
Engineering Intelligent NLP Applications Using Deep Learning – Part 1Saurabh Kaushik
 
An Intelligent Assistant for High-Level Task Understanding
An Intelligent Assistant for High-Level Task UnderstandingAn Intelligent Assistant for High-Level Task Understanding
An Intelligent Assistant for High-Level Task UnderstandingYun-Nung (Vivian) Chen
 
Deep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word EmbeddingsDeep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word EmbeddingsRoelof Pieters
 
Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken...
Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken...Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken...
Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken...Yun-Nung (Vivian) Chen
 
Recent Advances in NLP
  Recent Advances in NLP  Recent Advances in NLP
Recent Advances in NLPAnuj Gupta
 
Personalizing "The Netflix Experience" with Deep Learning
Personalizing "The Netflix Experience" with Deep LearningPersonalizing "The Netflix Experience" with Deep Learning
Personalizing "The Netflix Experience" with Deep LearningAnoop Deoras
 
An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)Thomas da Silva Paula
 
Deep Learning for Information Retrieval
Deep Learning for Information RetrievalDeep Learning for Information Retrieval
Deep Learning for Information RetrievalRoelof Pieters
 

What's hot (20)

ODSC East: Effective Transfer Learning for NLP
ODSC East: Effective Transfer Learning for NLPODSC East: Effective Transfer Learning for NLP
ODSC East: Effective Transfer Learning for NLP
 
Multi modal retrieval and generation with deep distributed models
Multi modal retrieval and generation with deep distributed modelsMulti modal retrieval and generation with deep distributed models
Multi modal retrieval and generation with deep distributed models
 
Engineering Intelligent NLP Applications Using Deep Learning – Part 2
Engineering Intelligent NLP Applications Using Deep Learning – Part 2 Engineering Intelligent NLP Applications Using Deep Learning – Part 2
Engineering Intelligent NLP Applications Using Deep Learning – Part 2
 
Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Tutorial on Deep Learning in Recommender System, Lars summer school 2019Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Tutorial on Deep Learning in Recommender System, Lars summer school 2019
 
Natural Language Processing: L01 introduction
Natural Language Processing: L01 introductionNatural Language Processing: L01 introduction
Natural Language Processing: L01 introduction
 
2017 Tutorial - Deep Learning for Dialogue Systems
2017 Tutorial - Deep Learning for Dialogue Systems2017 Tutorial - Deep Learning for Dialogue Systems
2017 Tutorial - Deep Learning for Dialogue Systems
 
End-to-End Task-Completion Neural Dialogue Systems
End-to-End Task-Completion Neural Dialogue SystemsEnd-to-End Task-Completion Neural Dialogue Systems
End-to-End Task-Completion Neural Dialogue Systems
 
NLP Bootcamp
NLP BootcampNLP Bootcamp
NLP Bootcamp
 
[KDD 2018 tutorial] End to-end goal-oriented question answering systems
[KDD 2018 tutorial] End to-end goal-oriented question answering systems[KDD 2018 tutorial] End to-end goal-oriented question answering systems
[KDD 2018 tutorial] End to-end goal-oriented question answering systems
 
Deep learning for natural language embeddings
Deep learning for natural language embeddingsDeep learning for natural language embeddings
Deep learning for natural language embeddings
 
Anthiil Inside workshop on NLP
Anthiil Inside workshop on NLPAnthiil Inside workshop on NLP
Anthiil Inside workshop on NLP
 
Talk from NVidia Developer Connect
Talk from NVidia Developer ConnectTalk from NVidia Developer Connect
Talk from NVidia Developer Connect
 
Engineering Intelligent NLP Applications Using Deep Learning – Part 1
Engineering Intelligent NLP Applications Using Deep Learning – Part 1Engineering Intelligent NLP Applications Using Deep Learning – Part 1
Engineering Intelligent NLP Applications Using Deep Learning – Part 1
 
An Intelligent Assistant for High-Level Task Understanding
An Intelligent Assistant for High-Level Task UnderstandingAn Intelligent Assistant for High-Level Task Understanding
An Intelligent Assistant for High-Level Task Understanding
 
Deep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word EmbeddingsDeep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word Embeddings
 
Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken...
Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken...Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken...
Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken...
 
Recent Advances in NLP
  Recent Advances in NLP  Recent Advances in NLP
Recent Advances in NLP
 
Personalizing "The Netflix Experience" with Deep Learning
Personalizing "The Netflix Experience" with Deep LearningPersonalizing "The Netflix Experience" with Deep Learning
Personalizing "The Netflix Experience" with Deep Learning
 
An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)
 
Deep Learning for Information Retrieval
Deep Learning for Information RetrievalDeep Learning for Information Retrieval
Deep Learning for Information Retrieval
 

Viewers also liked

[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼
[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼
[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼NAVER D2
 
[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법
[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법
[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법NAVER D2
 
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기NAVER D2
 
인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템NAVER D2
 
[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...NAVER D2
 
유연하고 확장성 있는 빅데이터 처리
유연하고 확장성 있는 빅데이터 처리유연하고 확장성 있는 빅데이터 처리
유연하고 확장성 있는 빅데이터 처리NAVER D2
 
[216]네이버 검색 사용자를 만족시켜라! 의도파악과 의미검색
[216]네이버 검색 사용자를 만족시켜라!   의도파악과 의미검색[216]네이버 검색 사용자를 만족시켜라!   의도파악과 의미검색
[216]네이버 검색 사용자를 만족시켜라! 의도파악과 의미검색NAVER D2
 
[234]멀티테넌트 하둡 클러스터 운영 경험기
[234]멀티테넌트 하둡 클러스터 운영 경험기[234]멀티테넌트 하둡 클러스터 운영 경험기
[234]멀티테넌트 하둡 클러스터 운영 경험기NAVER D2
 
[241]large scale search with polysemous codes
[241]large scale search with polysemous codes[241]large scale search with polysemous codes
[241]large scale search with polysemous codesNAVER D2
 
[242]open stack neutron dataplane 구현
[242]open stack neutron   dataplane 구현[242]open stack neutron   dataplane 구현
[242]open stack neutron dataplane 구현NAVER D2
 
[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화
[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화
[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화NAVER D2
 
[246]reasoning, attention and memory toward differentiable reasoning machines
[246]reasoning, attention and memory   toward differentiable reasoning machines[246]reasoning, attention and memory   toward differentiable reasoning machines
[246]reasoning, attention and memory toward differentiable reasoning machinesNAVER D2
 
[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbms
[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbms[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbms
[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbmsNAVER D2
 
[213]building ai to recreate our visual world
[213]building ai to recreate our visual world[213]building ai to recreate our visual world
[213]building ai to recreate our visual worldNAVER D2
 
[215]streetwise machine learning for painless parking
[215]streetwise machine learning for painless parking[215]streetwise machine learning for painless parking
[215]streetwise machine learning for painless parkingNAVER D2
 
[232]mist 고성능 iot 스트림 처리 시스템
[232]mist 고성능 iot 스트림 처리 시스템[232]mist 고성능 iot 스트림 처리 시스템
[232]mist 고성능 iot 스트림 처리 시스템NAVER D2
 
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기NAVER D2
 
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스NAVER D2
 
[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)NAVER D2
 
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술NAVER D2
 

Viewers also liked (20)

[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼
[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼
[224]nsml 상상하는 모든 것이 이루어지는 클라우드 머신러닝 플랫폼
 
[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법
[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법
[222]neural machine translation (nmt) 동작의 시각화 및 분석 방법
 
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
[225]빅데이터를 위한 분산 딥러닝 플랫폼 만들기
 
인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템인공지능추천시스템 airs개발기_모델링과시스템
인공지능추천시스템 airs개발기_모델링과시스템
 
[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...[212]big models without big data using domain specific deep networks in data-...
[212]big models without big data using domain specific deep networks in data-...
 
유연하고 확장성 있는 빅데이터 처리
유연하고 확장성 있는 빅데이터 처리유연하고 확장성 있는 빅데이터 처리
유연하고 확장성 있는 빅데이터 처리
 
[216]네이버 검색 사용자를 만족시켜라! 의도파악과 의미검색
[216]네이버 검색 사용자를 만족시켜라!   의도파악과 의미검색[216]네이버 검색 사용자를 만족시켜라!   의도파악과 의미검색
[216]네이버 검색 사용자를 만족시켜라! 의도파악과 의미검색
 
[234]멀티테넌트 하둡 클러스터 운영 경험기
[234]멀티테넌트 하둡 클러스터 운영 경험기[234]멀티테넌트 하둡 클러스터 운영 경험기
[234]멀티테넌트 하둡 클러스터 운영 경험기
 
[241]large scale search with polysemous codes
[241]large scale search with polysemous codes[241]large scale search with polysemous codes
[241]large scale search with polysemous codes
 
[242]open stack neutron dataplane 구현
[242]open stack neutron   dataplane 구현[242]open stack neutron   dataplane 구현
[242]open stack neutron dataplane 구현
 
[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화
[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화
[231]운영체제 수준에서의 데이터베이스 성능 분석과 최적화
 
[246]reasoning, attention and memory toward differentiable reasoning machines
[246]reasoning, attention and memory   toward differentiable reasoning machines[246]reasoning, attention and memory   toward differentiable reasoning machines
[246]reasoning, attention and memory toward differentiable reasoning machines
 
[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbms
[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbms[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbms
[223]rye, 샤딩을 지원하는 오픈소스 관계형 dbms
 
[213]building ai to recreate our visual world
[213]building ai to recreate our visual world[213]building ai to recreate our visual world
[213]building ai to recreate our visual world
 
[215]streetwise machine learning for painless parking
[215]streetwise machine learning for painless parking[215]streetwise machine learning for painless parking
[215]streetwise machine learning for painless parking
 
[232]mist 고성능 iot 스트림 처리 시스템
[232]mist 고성능 iot 스트림 처리 시스템[232]mist 고성능 iot 스트림 처리 시스템
[232]mist 고성능 iot 스트림 처리 시스템
 
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
[213] 의료 ai를 위해 세상에 없는 양질의 data 만드는 도구 제작하기
 
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
백억개의 로그를 모아 검색하고 분석하고 학습도 시켜보자 : 로기스
 
[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)[211] HBase 기반 검색 데이터 저장소 (공개용)
[211] HBase 기반 검색 데이터 저장소 (공개용)
 
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
[244]네트워크 모니터링 시스템(nms)을 지탱하는 기술
 

Similar to [221]똑똑한 인공지능 dj 비서 clova music

Deep Learning Meetup #5
Deep Learning Meetup #5Deep Learning Meetup #5
Deep Learning Meetup #5Aloïs Gruson
 
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Timo van Niedek
 
Deezer - Big data as a streaming service
Deezer - Big data as a streaming serviceDeezer - Big data as a streaming service
Deezer - Big data as a streaming serviceJulie Knibbe
 
Understanding Music Playlists
Understanding Music PlaylistsUnderstanding Music Playlists
Understanding Music PlaylistsKeunwoo Choi
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018Fabien Gouyon
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Karthik Murugesan
 
SoundSoftware.ac.uk: Sustainable software for audio and music research (DMRN 5+)
SoundSoftware.ac.uk: Sustainable software for audio and music research (DMRN 5+)SoundSoftware.ac.uk: Sustainable software for audio and music research (DMRN 5+)
SoundSoftware.ac.uk: Sustainable software for audio and music research (DMRN 5+)SoundSoftware ac.uk
 
Deep learning: the future of recommendations
Deep learning: the future of recommendationsDeep learning: the future of recommendations
Deep learning: the future of recommendationsBalázs Hidasi
 
Music Objects to Social Machines
Music Objects to Social MachinesMusic Objects to Social Machines
Music Objects to Social MachinesDavid De Roure
 
More Like This: Machine Learning Approaches to Music similarity
More Like This: Machine Learning Approaches to Music similarityMore Like This: Machine Learning Approaches to Music similarity
More Like This: Machine Learning Approaches to Music similarityBrian McFee
 
From Idea to Execution: Spotify's Discover Weekly
From Idea to Execution: Spotify's Discover WeeklyFrom Idea to Execution: Spotify's Discover Weekly
From Idea to Execution: Spotify's Discover WeeklyChris Johnson
 
Random Forests R vs Python by Linda Uruchurtu
Random Forests R vs Python by Linda UruchurtuRandom Forests R vs Python by Linda Uruchurtu
Random Forests R vs Python by Linda UruchurtuPyData
 
Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Esh Vckay
 
A Unified Music Recommender System Using Listening Habits and Semantics of Tags
A Unified Music Recommender System Using Listening Habits and Semantics of TagsA Unified Music Recommender System Using Listening Habits and Semantics of Tags
A Unified Music Recommender System Using Listening Habits and Semantics of Tagsdatasciencekorea
 
Data science-2013-heekim
Data science-2013-heekimData science-2013-heekim
Data science-2013-heekimHaklae Kim
 
Recommender Systems in a nutshell
Recommender Systems in a nutshellRecommender Systems in a nutshell
Recommender Systems in a nutshellKonstantin Savenkov
 
Recommendations 101
Recommendations 101 Recommendations 101
Recommendations 101 Esh Vckay
 

Similar to [221]똑똑한 인공지능 dj 비서 clova music (20)

Deep Learning Meetup #5
Deep Learning Meetup #5Deep Learning Meetup #5
Deep Learning Meetup #5
 
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
Random Walk with Restart for Automatic Playlist Continuation and Query-specif...
 
Deezer - Big data as a streaming service
Deezer - Big data as a streaming serviceDeezer - Big data as a streaming service
Deezer - Big data as a streaming service
 
Understanding Music Playlists
Understanding Music PlaylistsUnderstanding Music Playlists
Understanding Music Playlists
 
Music Recommendation 2018
Music Recommendation 2018Music Recommendation 2018
Music Recommendation 2018
 
Trends in Music Recommendations 2018
Trends in Music Recommendations 2018Trends in Music Recommendations 2018
Trends in Music Recommendations 2018
 
SoundSoftware.ac.uk: Sustainable software for audio and music research (DMRN 5+)
SoundSoftware.ac.uk: Sustainable software for audio and music research (DMRN 5+)SoundSoftware.ac.uk: Sustainable software for audio and music research (DMRN 5+)
SoundSoftware.ac.uk: Sustainable software for audio and music research (DMRN 5+)
 
Deep learning: the future of recommendations
Deep learning: the future of recommendationsDeep learning: the future of recommendations
Deep learning: the future of recommendations
 
MULHER@AVI2012
MULHER@AVI2012MULHER@AVI2012
MULHER@AVI2012
 
Music Objects to Social Machines
Music Objects to Social MachinesMusic Objects to Social Machines
Music Objects to Social Machines
 
More Like This: Machine Learning Approaches to Music similarity
More Like This: Machine Learning Approaches to Music similarityMore Like This: Machine Learning Approaches to Music similarity
More Like This: Machine Learning Approaches to Music similarity
 
From Idea to Execution: Spotify's Discover Weekly
From Idea to Execution: Spotify's Discover WeeklyFrom Idea to Execution: Spotify's Discover Weekly
From Idea to Execution: Spotify's Discover Weekly
 
Random Forests R vs Python by Linda Uruchurtu
Random Forests R vs Python by Linda UruchurtuRandom Forests R vs Python by Linda Uruchurtu
Random Forests R vs Python by Linda Uruchurtu
 
Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.Music Personalization : Real time Platforms.
Music Personalization : Real time Platforms.
 
A Unified Music Recommender System Using Listening Habits and Semantics of Tags
A Unified Music Recommender System Using Listening Habits and Semantics of TagsA Unified Music Recommender System Using Listening Habits and Semantics of Tags
A Unified Music Recommender System Using Listening Habits and Semantics of Tags
 
Data science-2013-heekim
Data science-2013-heekimData science-2013-heekim
Data science-2013-heekim
 
Let the Computer Do the Work
Let the Computer Do the WorkLet the Computer Do the Work
Let the Computer Do the Work
 
Groeling, Tim: NewsScape: Preserving TV News
Groeling, Tim: NewsScape: Preserving TV NewsGroeling, Tim: NewsScape: Preserving TV News
Groeling, Tim: NewsScape: Preserving TV News
 
Recommender Systems in a nutshell
Recommender Systems in a nutshellRecommender Systems in a nutshell
Recommender Systems in a nutshell
 
Recommendations 101
Recommendations 101 Recommendations 101
Recommendations 101
 

More from NAVER D2

[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다NAVER D2
 
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...NAVER D2
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기NAVER D2
 
[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발NAVER D2
 
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈NAVER D2
 
[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&ANAVER D2
 
[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기NAVER D2
 
[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep LearningNAVER D2
 
[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applicationsNAVER D2
 
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingOld version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingNAVER D2
 
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지NAVER D2
 
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기NAVER D2
 
[224]네이버 검색과 개인화
[224]네이버 검색과 개인화[224]네이버 검색과 개인화
[224]네이버 검색과 개인화NAVER D2
 
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)NAVER D2
 
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기NAVER D2
 
[213] Fashion Visual Search
[213] Fashion Visual Search[213] Fashion Visual Search
[213] Fashion Visual SearchNAVER D2
 
[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화NAVER D2
 
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지NAVER D2
 
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터NAVER D2
 
[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?NAVER D2
 

More from NAVER D2 (20)

[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다
 
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기
 
[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발
 
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
 
[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A
 
[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기
 
[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning
 
[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications
 
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingOld version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
 
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
 
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
 
[224]네이버 검색과 개인화
[224]네이버 검색과 개인화[224]네이버 검색과 개인화
[224]네이버 검색과 개인화
 
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
 
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
 
[213] Fashion Visual Search
[213] Fashion Visual Search[213] Fashion Visual Search
[213] Fashion Visual Search
 
[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화
 
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
 
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
 
[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?
 

Recently uploaded

08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 

Recently uploaded (20)

08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 

[221]똑똑한 인공지능 dj 비서 clova music

  • 1. Clova Music: Smart AI-DJ Assistant Jung-Woo Ha Leader, Clova AI Research (CLAIR) Chanju Kim Tech Leader, Clova Music
  • 2. Clova: Cloud-based Virtual Assistant Clova: General-purpose AI platform for empowering user values Clova-inside
  • 3. Vision of Clova • Jarvis-like AGI platform for H.E.M Augmentation • Real-time, Real-world, Real-life • Tacking enormous technical and challenging huddles • Fundamental and advanced AI Human Environ ment Machine CLOVA
  • 4. CLAIR: Clova AI Research • Team responsible for Clova-oriented advanced AI research • Open, Collaborative, and Self-motivated • Outstanding global team (working language: English) • Position: Research scientists, PostDoc, AI SW engineers, Internship researchers • Research infrastructure and supporting: nsml (presented by Nako Sung) • Your KPI may include research publication • Advisory members: Active research involvement + authorships 조경현(NYU) 임재환(USC) 김성훈(HKUST) 박혜원(MIT) 신진우(KAIST) 주재걸(고려대) …
  • 5. 1. Recommendation in online music services 2. Recommendation in Clova Music - Playing log analysis - Musical semantic embedding - MF-based personalization 3. Music content modeling for Clova Music - Highlight extraction via CRAN - Emotional recognition via MCRN 4. Discussion & Future work Contents
  • 7. How to Recommend • More similar users, more similar items • Focusing on relationships Collaborative Filtering Content-based Filtering • Representing the contents of users and items • Focusing on the contents of each entity
  • 8. Collaborative Filtering … User … Item 0.5 0.3 0.2 … Co-occurrence based Model Users watching the same items as Recommended items for [Choi, 2017]
  • 9. Collaborative Filtering Methods • Latent factor model • Assumption • There exist latent features representing user and item characteristics • Matrix (Tensor) factorization: • SVD, ALS, NMF, pMF, etc.. • Topic model: LDA, HDP etc • NN-based CF [Dziugaite & Roy, 2015, Wang et al. 2015, Kim et al, 2016, Seo et al. 2017] ܹ H × ܸ ≈
  • 10. Collaborative Filtering • Sparsity • User-item matrix  Most slots are unknown. • Scalability • User size and item size: real-world cases • Synonyms: Same or similar items but different indices • Gray sheep: Not consistent users = not reflecting true distribution • Shilling attack: Not fair rating • Diversity and long-tail: Untrusty features for few log (long-tail data) • Cold-start problem Challenges
  • 11. Hybrid with content-based method • Content-based method: user / item / etc • Hybrid concept is not new. • Deep learning enables it to be valuable • Text, image, video, audio, music, webtoon, etc. • CNN, RNN, DNN • Requires a safety logic • Description is valuable How to hybridize
  • 12. Neural Hybrid Models [Kim et al, 2016]ConvMF More and more NN-based hybrid models
  • 13. Remaining Challenges • Ambiguous objective function • Changing user preference • Gap between model metrics and user satisfaction • Now correct, at that time wrong • Still require post processing
  • 14. 2. Recommendation in Clova Music - Playing log analysis - Musical semantic embedding - MF-based personalization - Challenges
  • 15. AI Speaker vs Conventional Platforms • WAVE: Clova-inside AI speaker • Playing music is the key feature of AI speakers • Compare usage patterns of AI speaker with those of conventional platforms
  • 16. Top Music Sentences • 노래 틀어줘 • 자장가 틀어줘 • 동요틀어줘 • 신나는 노래 틀어줘 • 조용한 노래 틀어줘 • 핑크퐁 노래 틀어줘 • 아이유 노래 틀어줘 • 클래식 틀어줘 • 분위기 좋은 음악 틀어줘 • 잔잔한 음악 틀어줘 • 발라드 틀어줘 • 팝송 틀어줘 • Artists rather than tracks • Genres, moods, and themes rather than artists • Just play rather than genres
  • 17. Playing Pattern : Hour of day 0 5 10 15 20 25 NAVER_APP NAVER_PC WAVE CLOVA_APP Hour of day Playing ratio
  • 18. Playing Pattern : Genre 가요 기능성음악 팝 동요 OST 클래식 재즈 종교음악 일렉트로니카 락 힙합 기타 NAVER_APP WAVE Playing ratio Genre
  • 19. Playing Pattern : Genre 가요 기능성음악 팝 동요 OST 클래식 재즈 종교음악 일렉트로니카 락 힙합 기타 NAVER_APP WAVE 재생 비율 장르 May be caused by home environments
  • 20. Playing Pattern : Long-tail distribution Artist Playing ratio • ‘Artists’–‘Play count ratio’ log-log scale graph • Long-tail distribution • No difference in distribution, but…
  • 21. Playing Pattern : Long-tail distribution WAVE NAVER MUSIC APP 핑크퐁 EXO 아이유 아이유 동요 젝스키스 동요 방탄소년단 EXO 뉴이스트(NU`EST) 윤종신 Wanna One 별하나 동요 윤종신 이루마 우원재 오르골뮤직 볼빨간사춘기 볼빨간사춘기 뉴이스트 W 젝스키스 황치열 트니트니 헤이즈 헤이즈 선미 성시경 WINNER 힐링 피아노 자장가 Top Artists Artist Playing ratio
  • 22. Implication • Paradigm shift of music consumption via AI speakers • New market • Kids • Lean-out music • Classical / jazz • Music recommendation will play more important roles for AI assistant platforms
  • 23. Clova Music Recommendation Two main challenging issues • Lack of well-refined metadata • “~~한 노래 틀어줘” • 신나는 노래 • 혼자 듣기 좋은 노래 • Personalized playlists • 발화에 부합하고 다양한
  • 24. Musical Semantic Embedding • Map musical items (tracks, artists, words) to the same semantic space as vector of real numbers • Word2vec • Feature learning • Usages • Item similarities • Input of deep neural network Goal & Usages
  • 25. Musical Semantic Embedding • Embedding keywords and tracks (artists) to the same space • JAMM data • User-created playlist with hash tags in the Naver music • About 72,000 playlists • Treat a track-id as a symbol with semantics as a textual word Word2Vec with tagged playlists
  • 26. Examples ‘가을 ’ • Similar keywords and tracks
  • 28. Examples 벛꽃엔딩 / 버스커 버스커 • Similar keywords and tracks
  • 29. Multimodal Semantic Embedding Embedding tracks with session data • Regards user music playing sequence data as documents • For multiple track meanings, use multimodal word distributions formed from Gaussian mixtures. Ben Athiwaratkun and Andrew Gordon Wilson, Multimodal Word Distributions, 2017
  • 30. Examples 밤편지 / 아이유 • Similar tracks of two different ‘밤편지’ embedding < 밤편지_2 >< 밤편지_1 >
  • 31. MF for Personalized Recommendation Matrix Factorization • Select tracks and artists that user prefers when generating a playlist • Simple but hard to apply • Evaluation • Overfitting / Underfitting • Combining with other models
  • 32. MF for Personalized Recommendation • Relatively huge item set • Long-term batch learning for a compact model • Short-term incremental learning • Proper regularization factors • Consider item distribution when performing the negative sampling • Remove abusing users (ex. Top100 users) Tips Fundamental Problem of Collaborative Filtering • Assumption: Users who have similar preferences are likely to have similar preferences • When a user violate the assumption? • Familiarity vs. discovery
  • 33. MF for Personalized Recommendation Sparkline Chart Precision@30 for Top 10,000 Users https://en.wikipedia.org/wiki/Sparkline
  • 34. Remaining Challenges • Interactive recommendation • Lean-in vs lean-out • More personalized and context-aware recommendation • Familiarity vs discovery Conventional Problems Music recommendation for AI speakers • Sparsity • Harry Porter effect (Top 100) • Cold-start problems • Explanatory recommendation
  • 35. 3. Music content modeling for Clova Music - Highlight extraction via CRAN (Ha et al, ICML ML4MD Workshop 2017) - Emotional recognition via MCRN (Jeon et al, RECSYS 2017)
  • 36. Music Highlight Extraction (MHE) Motivation Why only the first 1 minute? Improved user experiences and recommendations Increase in potential customers Valuable data sets Definition Extract a representative snippet from a given track
  • 37. Main Task in MHE Task Finding significant snippets within a track is an interesting and valuable task Given a track x, where should a ‘Highlight’ start? 40000 H H+S mel-spectrogram of x Input: mel-spectrogram of x Output: Starting frame (H) of highlight
  • 38. Structure of MHE Track file Mel-spectrogram Deep learning model Attention layer Convolutional & pooling layer Recurrent layer Fully connected & output layer Candidate generation Candidate selection Highlight extraction Highlight Clip [Ha et al. 2017]
  • 39. CRAN: Convolutional Recurrent Attention Networks Track file Mel-spectrogram Deep learning model Attention layer Convolutional & pooling layer Recurrent layer Fully connected & output layer Candidate generation Candidate selection Highlight extraction Highlight Clip
  • 40. CRAN: Convolutional Recurrent Attention Networks LSTM Multiple mel-channel 1D-convolution & max pooling layers Input layer Feature concatenation Time separation LSTM LSTM LSTM Multiple bidirectional recurrent layers LSTM output Attention-weighted Attention (softmax) Output layer Element-wise multiplication Fully-connected layer Convolution & pooling Channel summation Attention layer • Output: 10 genres • Input: mel-spectrogram • 128 mel bins • Maximum 4000 frames • 0.061s per frame • Training Details • 32,083 tracks (80/10/10) • Adam (LR = 0.005) • 100 epochs
  • 41. Highlight Extraction via CRAN Attention Mel energy Attention-weighted Energy from frame n Cumulative Sum of S energy values Speed/Acceleration of energy change Highlight score of frame n Frame on where highlight of length S starts
  • 43. Data Description • 32,083 full tracks with genres tagged as multi-labels Chosen based on played frequency from December 2016 – January 2017 • 10 representative genres • Korean music market has a strongly-biased taste to specific genres (Ballad, Dance, Hiphop, and R&B) • Idol musicians make up the majority of K-pop. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Total Popular (Top 10%) New Released (Top 10%)
  • 44. Extraction Results • Quantitative evaluation • Ground truth highlights of 280 tracks from 8 experts • Metric definition: Overlap lengths with ground truth • Qualitative evaluation • Explicit scoring from 8 experts with [1, 5] score window • Results • Web demo
  • 45. Genre Similarity Results • Confusion Matrix of classifying 3 genres per track
  • 46. Musical Emotion Recognition Motivation Definition Classify emotional characteristics from a given track
  • 47. MCRN: Multimodal Convolutional Recurrent Networks Overview : Our model directly predicts track’s polarity (pos / neg) from audio and lyrics; it consists of audio and lyrics branches. Layer (1) : Input layer, Audio – (128, 1024) mel-spectograms, Lyrics – (27496, 400) padded word vectors Layer (2) : Conv layers in audio branch, activation function : ELU, Output of conv layers, Layer (3) : RNN layers in audio branch, output dims : 64 Output of RNN layers, Layer (4) : Conv layers in lyrics branch, activation function : ELU, output dims : 64, Output of conv layers, Layer (5) : Output layer, merge two branches with concatenation activation function : ReLU, final output,
  • 48. Data Description • Naver Music Polarity Emotion Dataset • 7,484 tracks (Pos : Neg = 1:1) • Polarity emotion label (pos or neg) • Lyrics: (27496, 400) word vectors (|V| = 27,496) • Mel-spectograms: (128 mels, 1,024 time slots = 1 min) • Dataset creation process • Seperate pos/neg emotion tags of Naver Jamm Editor’s tags with polarity emotion word dictionary • Editor’s tags are more reliable than users’ tags • Filter out the tracks whose tags include both positive and negative words • Reject the tracks whose length is less than a minute or lyrics include less than 30 words • Use the first one minute of each mel-spectrogram • Only use noun, verb, adjective, and adverb in words of lyrics
  • 49. MER Results Data Model Accuracy Audio CNN 0.6479 RNN 0.6303 MCRN 0.6619 Lyrics CNN 0.7815 RNN 0.7716 Both MCRN, CNN 0.8046
  • 51. MER Results: Lyrics Cloud [Positive lyrics] [Negative lyrics]
  • 52. 4. Discussion and Future Work
  • 53. More Smart AI DJ Assitant? • More proactive interaction • Human-in-the loop • Real context-aware • Real personalized • Balance between familiarity and novelty
  • 54. Future Direction • More coverage for users’ intent • Proactive interaction • More visualization and explanation • Rich intelligent services • Discovery • From smart to touching
  • 55. Concluding Remarks • Importance of human evaluation • Untrusty numerical model metrics • A/B test • Proper evaluation design • Do not trust user logs blindly • Rich curation data by human experts • Maybe reinforcement learning ? • Conferences: KDD, RECSYS, CIKM, AAAI, IJCAI, ICDM, …
  • 56. Q & A