SlideShare une entreprise Scribd logo
1  sur  33
Principal Component Analysis
(Dimensionality Reduction)

By:
Tarun Bhatia
Y7475
Overview:

•
•
•
•
•
•
•

What is Principal Component Analysis
Computing the compnents in PCA
Dimensionality Reduction using PCA
A 2D example in PCA
Applications of PCA in computer vision
Importance of PCA in analysing data in higher dimensions
Questions
Principal Component Analysis
• Most common form of factor analysis

• The new variables/dimensions
– Are linear combinations of the original ones
– Are uncorrelated with one another
• Orthogonal in original dimension space
– Capture as much of the original variance in the
data as possible
– Are called Principal Components
What are the new axes?

• Orthogonal directions of greatest variance in data
• Projections along PC1 discriminate the data most along any one axis
Principal Components
• First principal component is the direction of greatest
variability (covariance) in the data

• Second is the next orthogonal (uncorrelated) direction of greatest variability
– So first remove all the variability along the first
component, and then find the next direction of
greatest variability
• And so on …
Principal Components Analysis (PCA)
• Principle
– Linear projection method to reduce the number of parameters
– Transfer a set of correlated variables into a new set of uncorrelated
variables
– Map the data into a space of lower dimensionality
– Form of unsupervised learning
• Properties
– It can be viewed as a rotation of the existing axes to new positions in the
space defined by original variables
– New axes are orthogonal and represent the directions with maximum
variability
Computing the Components
• Data points are vectors in a multidimensional space
• Projection of vector x onto an axis (dimension) u is u.x
• Direction of greatest variability is that in which the average square of the
projection is greatest
– I.e. u such that E((u.x)2) over all x is maximized
– (we subtract the mean along each dimension, and center the original axis
system at the centroid of all data points, for simplicity)
– This direction of u is the direction of the first Principal Component
Computing the Components
• E((u.x)2) = E ((u.x) (u.x)T) = E (u.x.x T.uT)
• The matrix S = x.xT contains the correlations (similarities) of the original axes based
on how the data values project onto them
• So we are looking for w that maximizes uSuT, subject to u being unit-length
• It is maximized when w is the principal eigenvector of the matrix S, in which case
– uCuT = uλuT = λ if u is unit-length, where λ is the principal eigenvalue of the
correlation matrix C
– The eigenvalue denotes the amount of variability captured along that dimension
Why the Eigenvectors?
Maximise uTxxTu s.t uTu = 1
Construct Langrangian uTxxTu – λuTu
Vector of partial derivatives set to zero
xxTu – λu = (xxT – λI) u = 0
As u ≠ 0 then u must be an eigenvector of xxT with eigenvalue λ
Computing the Components
• Similarly for the next axis, etc.
• So, the new axes are the eigenvectors of the matrix of correlations of the
original variables, which captures the similarities of the original variables
based on how data samples project to them

• Geometrically: centering followed by rotation
• – Linear transformation
PCs, Variance and Least-Squares

• The first PC retains the greatest amount of variation in the sample
• The kth PC retains the kth greatest fraction of the variation in the sample
• The kth largest eigenvalue of the correlation matrix C is the variance in the
sample along the kth PC
• The least-squares view: PCs are a series of linear least
squares fits to a sample, each orthogonal to all previous ones
How Many PCs?
• For n original dimensions, correlation matrix is
nxn, and has up to n eigenvectors. So n PCs.
• Where does dimensionality reduction come
from?
Dimensionality Reduction
Can ignore the components of lesser significance.

You do lose some information, but if the eigenvalues are small, you don’t lose
much
– n dimensions in original data
– calculate n eigenvectors and eigenvalues
– choose only the first p eigenvectors, based on their eigenvalues
– final data set has only p dimensions
Eigenvectors of a Correlation Matrix
PCA Example –STEP 1
• Subtract the mean
from each of the data dimensions. All the x values
have x subtracted and y values have y subtracted
from them. This produces a data set whose mean is
zero.
Subtracting the mean makes variance and covariance
calculation easier by simplifying their equations. The
variance and co-variance values are not affected by
the mean value.
PCA Example –STEP 1
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

DATA:
x
2.5
0.5
2.2
1.9
3.1
2.3
2
1
1.5
1.1

y
2.4
0.7
2.9
2.2
3.0
2.7
1.6
1.1
1.6
0.9

ZERO MEAN DATA:
x
y
.69
.49
-1.31
-1.21
.39
.99
.09
.29
1.29
1.09
.49
.79
.19
-.31
-.81
-.81
-.31
-.31
-.71
-1.01
PCA Example –STEP 1
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
PCA Example –STEP 2
• Calculate the covariance matrix
cov =
.616555556 .615444444
.615444444 .716555556
• since the non-diagonal elements in this covariance
matrix are positive, we should expect that both the x
and y variable increase together.
PCA Example –STEP 3
• Calculate the eigenvectors and eigenvalues of
the covariance matrix
eigenvalues = .0490833989
1.28402771
eigenvectors = -.735178656 -.677873399
.677873399 -.735178656
PCA Example –STEP 3
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
•eigenvectors are plotted as
diagonal dotted lines on the
plot.
•Note they are
perpendicular to each other.
•Note one of the
eigenvectors goes through
the middle of the points, like
drawing a line of best fit.
•The second eigenvector
gives us the other, less
important, pattern in the
data, that all the points
follow the main line, but are
off to the side of the main
line by some amount.
PCA Example –STEP 4
• Reduce dimensionality and form feature vector
the eigenvector with the highest eigenvalue is the principle
component of the data set.
In our example, the eigenvector with the larges eigenvalue
was the one that pointed down the middle of the data.
Once eigenvectors are found from the covariance matrix, the
next step is to order them by eigenvalue, highest to lowest.
This gives you the components in order of significance.
PCA Example –STEP 4
Now, if you like, you can decide to ignore the components of
lesser significance.
You do lose some information, but if the eigenvalues are
small, you don’t lose much

•
•
•
•

n dimensions in your data
calculate n eigenvectors and eigenvalues
choose only the first p eigenvectors
final data set has only p dimensions.
PCA Example –STEP 4
• Feature Vector
FeatureVector = (eig1 eig2 eig3 … eign)
We can either form a feature vector with both of the
eigenvectors:
-.677873399 -.735178656
-.735178656 .677873399
or, we can choose to leave out the smaller, less
significant component and only have a single
column:
- .677873399
- .735178656
PCA Example –STEP 5
• Deriving the new data
FinalData = RowFeatureVector x RowZeroMeanData

RowFeatureVector is the matrix with the eigenvectors in the
columns transposed so that the eigenvectors are now in the
rows, with the most significant eigenvector at the top
RowZeroMeanData is the mean-adjusted data

transposed, ie. the data items are in each column,
with each row holding a separate dimension.
PCA Example –STEP 5
FinalData transpose: dimensions
along columns
x
y
-.827970186 -.175115307
1.77758033
.142857227
-.992197494
.384374989
-.274210416
.130417207
-1.67580142
-.209498461
-.912949103
.175282444
.0991094375 -.349824698
1.14457216
.0464172582
.438046137
.0177646297
1.22382056
-.162675287
PCA Example –STEP 5
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
Reconstruction of original Data
• If we reduced the dimensionality, obviously, when
reconstructing the data we would lose those
dimensions we chose to discard. In our example let
us assume that we considered only the x dimension…
Reconstruction of original Data
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf

x
-.827970186
1.77758033
-.992197494
-.274210416
-1.67580142
-.912949103
.0991094375
1.14457216
.438046137
1.22382056
Applications in computer visionPCA to find patterns• 20 face images: NxN size
• One image represented as follows-

• Putting all 20 images in 1 big matrix as follows-

• Performing PCA to find patterns in the face images
• Idenifying faces by measuring differences along the new axes (PCs)
PCA for image compression:

•

Compile a dataset of 20 images

•

Build the covariance matrix of 20 dimensions

•

Compute the eigenvectors and eigenvalues

•

Based on the eigenvalues, 5 dimensions can be left out, those with the least
eigenvalues.

•

1/4th of the space is saved.
Importance of PCA
•

In data of high dimensions, where graphical representation is difficult, PCA is a
powerful tool for analysing data and finding patterns in it.

•

Data compression is possible using PCA

•

The most efficient expression of data is by the use of perpendicular components,
as done in PCA.
Questions:
•

What do the eigenvectors of the covariance matrix while computing the principal
components give us?

•

At what point in the PCA process can we decide to compress the data?

•

Why are the principal components orthogonal?

•

How many different covariance values can you calculate for an n-dimensional data
set?
THANK YOU

Contenu connexe

Tendances

Logistic regression
Logistic regressionLogistic regression
Logistic regression
saba khan
 

Tendances (20)

Pca(principal components analysis)
Pca(principal components analysis)Pca(principal components analysis)
Pca(principal components analysis)
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
 
PCA (Principal component analysis)
PCA (Principal component analysis)PCA (Principal component analysis)
PCA (Principal component analysis)
 
Principal component analysis and lda
Principal component analysis and ldaPrincipal component analysis and lda
Principal component analysis and lda
 
Pca
PcaPca
Pca
 
Hierarchical Clustering
Hierarchical ClusteringHierarchical Clustering
Hierarchical Clustering
 
Exploratory data analysis data visualization
Exploratory data analysis data visualizationExploratory data analysis data visualization
Exploratory data analysis data visualization
 
Decision tree
Decision treeDecision tree
Decision tree
 
K mean-clustering algorithm
K mean-clustering algorithmK mean-clustering algorithm
K mean-clustering algorithm
 
Feature selection
Feature selectionFeature selection
Feature selection
 
Principal Component Analysis and Clustering
Principal Component Analysis and ClusteringPrincipal Component Analysis and Clustering
Principal Component Analysis and Clustering
 
Introduction to Principle Component Analysis
Introduction to Principle Component AnalysisIntroduction to Principle Component Analysis
Introduction to Principle Component Analysis
 
Feature selection
Feature selectionFeature selection
Feature selection
 
Introduction to Linear Discriminant Analysis
Introduction to Linear Discriminant AnalysisIntroduction to Linear Discriminant Analysis
Introduction to Linear Discriminant Analysis
 
Logistic regression
Logistic regressionLogistic regression
Logistic regression
 
Feature Selection in Machine Learning
Feature Selection in Machine LearningFeature Selection in Machine Learning
Feature Selection in Machine Learning
 
CART – Classification & Regression Trees
CART – Classification & Regression TreesCART – Classification & Regression Trees
CART – Classification & Regression Trees
 
Introduction to Clustering algorithm
Introduction to Clustering algorithmIntroduction to Clustering algorithm
Introduction to Clustering algorithm
 
Missing data handling
Missing data handlingMissing data handling
Missing data handling
 
Introduction to R Graphics with ggplot2
Introduction to R Graphics with ggplot2Introduction to R Graphics with ggplot2
Introduction to R Graphics with ggplot2
 

Similaire à Pca ppt

Excel and research
Excel and researchExcel and research
Excel and research
Nursing Path
 
Excel and research
Excel and researchExcel and research
Excel and research
Nursing Path
 

Similaire à Pca ppt (20)

pcappt-140121072949-phpapp01.pptx
pcappt-140121072949-phpapp01.pptxpcappt-140121072949-phpapp01.pptx
pcappt-140121072949-phpapp01.pptx
 
PCA Final.pptx
PCA Final.pptxPCA Final.pptx
PCA Final.pptx
 
Covariance.pdf
Covariance.pdfCovariance.pdf
Covariance.pdf
 
DimensionalityReduction.pptx
DimensionalityReduction.pptxDimensionalityReduction.pptx
DimensionalityReduction.pptx
 
Feature selection using PCA.pptx
Feature selection using PCA.pptxFeature selection using PCA.pptx
Feature selection using PCA.pptx
 
Lecture1_jps (1).ppt
Lecture1_jps (1).pptLecture1_jps (1).ppt
Lecture1_jps (1).ppt
 
Lecture1_jps.ppt
Lecture1_jps.pptLecture1_jps.ppt
Lecture1_jps.ppt
 
Understandig PCA and LDA
Understandig PCA and LDAUnderstandig PCA and LDA
Understandig PCA and LDA
 
pca.ppt
pca.pptpca.ppt
pca.ppt
 
The following ppt is about principal component analysis
The following ppt is about principal component analysisThe following ppt is about principal component analysis
The following ppt is about principal component analysis
 
Dimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptxDimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptx
 
Matrix Factorization In Recommender Systems
Matrix Factorization In Recommender SystemsMatrix Factorization In Recommender Systems
Matrix Factorization In Recommender Systems
 
Unit3_1.pptx
Unit3_1.pptxUnit3_1.pptx
Unit3_1.pptx
 
dimension reduction.ppt
dimension reduction.pptdimension reduction.ppt
dimension reduction.ppt
 
Daamen r 2010scwr-cpaper
Daamen r 2010scwr-cpaperDaamen r 2010scwr-cpaper
Daamen r 2010scwr-cpaper
 
machine learning.pptx
machine learning.pptxmachine learning.pptx
machine learning.pptx
 
Data Mining Lecture_9.pptx
Data Mining Lecture_9.pptxData Mining Lecture_9.pptx
Data Mining Lecture_9.pptx
 
introduction to Statistical Theory.pptx
 introduction to Statistical Theory.pptx introduction to Statistical Theory.pptx
introduction to Statistical Theory.pptx
 
Excel and research
Excel and researchExcel and research
Excel and research
 
Excel and research
Excel and researchExcel and research
Excel and research
 

Dernier

Dernier (20)

Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 

Pca ppt

  • 1. Principal Component Analysis (Dimensionality Reduction) By: Tarun Bhatia Y7475
  • 2. Overview: • • • • • • • What is Principal Component Analysis Computing the compnents in PCA Dimensionality Reduction using PCA A 2D example in PCA Applications of PCA in computer vision Importance of PCA in analysing data in higher dimensions Questions
  • 3. Principal Component Analysis • Most common form of factor analysis • The new variables/dimensions – Are linear combinations of the original ones – Are uncorrelated with one another • Orthogonal in original dimension space – Capture as much of the original variance in the data as possible – Are called Principal Components
  • 4. What are the new axes? • Orthogonal directions of greatest variance in data • Projections along PC1 discriminate the data most along any one axis
  • 5. Principal Components • First principal component is the direction of greatest variability (covariance) in the data • Second is the next orthogonal (uncorrelated) direction of greatest variability – So first remove all the variability along the first component, and then find the next direction of greatest variability • And so on …
  • 6. Principal Components Analysis (PCA) • Principle – Linear projection method to reduce the number of parameters – Transfer a set of correlated variables into a new set of uncorrelated variables – Map the data into a space of lower dimensionality – Form of unsupervised learning • Properties – It can be viewed as a rotation of the existing axes to new positions in the space defined by original variables – New axes are orthogonal and represent the directions with maximum variability
  • 7. Computing the Components • Data points are vectors in a multidimensional space • Projection of vector x onto an axis (dimension) u is u.x • Direction of greatest variability is that in which the average square of the projection is greatest – I.e. u such that E((u.x)2) over all x is maximized – (we subtract the mean along each dimension, and center the original axis system at the centroid of all data points, for simplicity) – This direction of u is the direction of the first Principal Component
  • 8. Computing the Components • E((u.x)2) = E ((u.x) (u.x)T) = E (u.x.x T.uT) • The matrix S = x.xT contains the correlations (similarities) of the original axes based on how the data values project onto them • So we are looking for w that maximizes uSuT, subject to u being unit-length • It is maximized when w is the principal eigenvector of the matrix S, in which case – uCuT = uλuT = λ if u is unit-length, where λ is the principal eigenvalue of the correlation matrix C – The eigenvalue denotes the amount of variability captured along that dimension
  • 9. Why the Eigenvectors? Maximise uTxxTu s.t uTu = 1 Construct Langrangian uTxxTu – λuTu Vector of partial derivatives set to zero xxTu – λu = (xxT – λI) u = 0 As u ≠ 0 then u must be an eigenvector of xxT with eigenvalue λ
  • 10. Computing the Components • Similarly for the next axis, etc. • So, the new axes are the eigenvectors of the matrix of correlations of the original variables, which captures the similarities of the original variables based on how data samples project to them • Geometrically: centering followed by rotation • – Linear transformation
  • 11. PCs, Variance and Least-Squares • The first PC retains the greatest amount of variation in the sample • The kth PC retains the kth greatest fraction of the variation in the sample • The kth largest eigenvalue of the correlation matrix C is the variance in the sample along the kth PC • The least-squares view: PCs are a series of linear least squares fits to a sample, each orthogonal to all previous ones
  • 12. How Many PCs? • For n original dimensions, correlation matrix is nxn, and has up to n eigenvectors. So n PCs. • Where does dimensionality reduction come from?
  • 13. Dimensionality Reduction Can ignore the components of lesser significance. You do lose some information, but if the eigenvalues are small, you don’t lose much – n dimensions in original data – calculate n eigenvectors and eigenvalues – choose only the first p eigenvectors, based on their eigenvalues – final data set has only p dimensions
  • 14. Eigenvectors of a Correlation Matrix
  • 15. PCA Example –STEP 1 • Subtract the mean from each of the data dimensions. All the x values have x subtracted and y values have y subtracted from them. This produces a data set whose mean is zero. Subtracting the mean makes variance and covariance calculation easier by simplifying their equations. The variance and co-variance values are not affected by the mean value.
  • 16. PCA Example –STEP 1 http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf DATA: x 2.5 0.5 2.2 1.9 3.1 2.3 2 1 1.5 1.1 y 2.4 0.7 2.9 2.2 3.0 2.7 1.6 1.1 1.6 0.9 ZERO MEAN DATA: x y .69 .49 -1.31 -1.21 .39 .99 .09 .29 1.29 1.09 .49 .79 .19 -.31 -.81 -.81 -.31 -.31 -.71 -1.01
  • 17. PCA Example –STEP 1 http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
  • 18. PCA Example –STEP 2 • Calculate the covariance matrix cov = .616555556 .615444444 .615444444 .716555556 • since the non-diagonal elements in this covariance matrix are positive, we should expect that both the x and y variable increase together.
  • 19. PCA Example –STEP 3 • Calculate the eigenvectors and eigenvalues of the covariance matrix eigenvalues = .0490833989 1.28402771 eigenvectors = -.735178656 -.677873399 .677873399 -.735178656
  • 20. PCA Example –STEP 3 http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf •eigenvectors are plotted as diagonal dotted lines on the plot. •Note they are perpendicular to each other. •Note one of the eigenvectors goes through the middle of the points, like drawing a line of best fit. •The second eigenvector gives us the other, less important, pattern in the data, that all the points follow the main line, but are off to the side of the main line by some amount.
  • 21. PCA Example –STEP 4 • Reduce dimensionality and form feature vector the eigenvector with the highest eigenvalue is the principle component of the data set. In our example, the eigenvector with the larges eigenvalue was the one that pointed down the middle of the data. Once eigenvectors are found from the covariance matrix, the next step is to order them by eigenvalue, highest to lowest. This gives you the components in order of significance.
  • 22. PCA Example –STEP 4 Now, if you like, you can decide to ignore the components of lesser significance. You do lose some information, but if the eigenvalues are small, you don’t lose much • • • • n dimensions in your data calculate n eigenvectors and eigenvalues choose only the first p eigenvectors final data set has only p dimensions.
  • 23. PCA Example –STEP 4 • Feature Vector FeatureVector = (eig1 eig2 eig3 … eign) We can either form a feature vector with both of the eigenvectors: -.677873399 -.735178656 -.735178656 .677873399 or, we can choose to leave out the smaller, less significant component and only have a single column: - .677873399 - .735178656
  • 24. PCA Example –STEP 5 • Deriving the new data FinalData = RowFeatureVector x RowZeroMeanData RowFeatureVector is the matrix with the eigenvectors in the columns transposed so that the eigenvectors are now in the rows, with the most significant eigenvector at the top RowZeroMeanData is the mean-adjusted data transposed, ie. the data items are in each column, with each row holding a separate dimension.
  • 25. PCA Example –STEP 5 FinalData transpose: dimensions along columns x y -.827970186 -.175115307 1.77758033 .142857227 -.992197494 .384374989 -.274210416 .130417207 -1.67580142 -.209498461 -.912949103 .175282444 .0991094375 -.349824698 1.14457216 .0464172582 .438046137 .0177646297 1.22382056 -.162675287
  • 26. PCA Example –STEP 5 http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
  • 27. Reconstruction of original Data • If we reduced the dimensionality, obviously, when reconstructing the data we would lose those dimensions we chose to discard. In our example let us assume that we considered only the x dimension…
  • 28. Reconstruction of original Data http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf x -.827970186 1.77758033 -.992197494 -.274210416 -1.67580142 -.912949103 .0991094375 1.14457216 .438046137 1.22382056
  • 29. Applications in computer visionPCA to find patterns• 20 face images: NxN size • One image represented as follows- • Putting all 20 images in 1 big matrix as follows- • Performing PCA to find patterns in the face images • Idenifying faces by measuring differences along the new axes (PCs)
  • 30. PCA for image compression: • Compile a dataset of 20 images • Build the covariance matrix of 20 dimensions • Compute the eigenvectors and eigenvalues • Based on the eigenvalues, 5 dimensions can be left out, those with the least eigenvalues. • 1/4th of the space is saved.
  • 31. Importance of PCA • In data of high dimensions, where graphical representation is difficult, PCA is a powerful tool for analysing data and finding patterns in it. • Data compression is possible using PCA • The most efficient expression of data is by the use of perpendicular components, as done in PCA.
  • 32. Questions: • What do the eigenvectors of the covariance matrix while computing the principal components give us? • At what point in the PCA process can we decide to compress the data? • Why are the principal components orthogonal? • How many different covariance values can you calculate for an n-dimensional data set?