SlideShare une entreprise Scribd logo
1  sur  41
A. Postma 25 april 2013
TE LAND, TER ZEE EN IN DE LUCHT:
MET ELEKTRISCHE AANDRIJVINGEN KOM JE OVERAL.
ELEKTRISCHE VERVOERMIDDELEN VAN DE
TOEKOMST
De stand van zaken bij elektrische auto’s
• Europese uitrol van laadpalen
• De accutechnologie
Wie denkt dat snelladen voor elektrische gezinsauto’s
dé toekomst is?
Snelladen bestaat niet, nu niet en nooit niet.
Prikkelende stelling
Drivers electric transport
Source
Erns & Young Publicatie 2012
Oktober 2012
Opmerkelijke passage daarin
Internationale ontwikkelingen voor
standaardisatie en uitrol van
laadinfrastructuur
IEC SMB Ad Hoc advies groep voor: electro technology for mobility
TC 8 role models for e-mobility
TC 69 standards for EVSE
Cenelec e-Mobility Coordination Group
Ad hoc group for Smart Charging
TC 69x
EU/M490
Diverse werkgroepen waaronder Sustainable processes, Architectuur
en Interoperabiliteit.
Overview of Generic Use Cases covering the whole scenery of Smart Grids
Wat hebben we tot nu toe bereikt?
• Internationale erkenning waaronder:
• Ontwikkeling OCPP
• Ontwikkeling OCHP
• Ontwikkeling OCSP
• Invloed in Europees standaardisatie proces
• Nederland in top 3 in publieke laadinfrastructuur
• En daardoor ook in aantallen (PH)EV
• Interoperabiliteit bij alle publieke laadinfra
Door unieke aanpak uitrol publieke infrastructuur o.a door instelling van E-laad
Publicatie Eurelectric eind 2012
Gebaseerd op cijfers van stichting e-laad, EV-Box B.V, NUON en Essent, The New Motion (cijfers t/m 31-10-2012) en Oplaadpalen.nl (vanaf
cijfers t/m 30-11-2012). In de data van Oplaadpalen.nl is (nog) niet aangegeven of laadpunten (semi-)publiek zijn. Voor deze figuur is de
aanname gedaan dat laadpalen van e-laad, Nuon en Essent publiek zijn en de overige laadpalen in het bestand semi-publiek
Publicatie AgentschapNL
Geographic coverage
1. Nationwide spread
Charge point types
1. Public AC 70% 10kW
30 % 3,6 kW
2. Home AC 3,6 kW
3. High power DC 50kW
Infrastructure installed future targets (2020)
1. Public AC 2500 +10.000
2. Public DC 25 400
3. Home AC 500-1000 no target
Volledige nationale dekking
Snel groeiend aantal FEV/PHEV
http://ev-services.net/e-Laad/Statistics
Wetvoorstel Europese commissie
Article 2
Definitions
For the purpose of this Directive, the following definitions shall apply :
(1) 'Alternative fuels' mean fuels which substitute fossil oil sources in the energy supply to transport and which have a potential to contribute to its
decarbonisation. They include:
• electricity,
• hydrogen,
• biofuels as defined in Directive 2009/28/EC of the European Parliament and the Council,
• synthetic fuels,
• natural gas, including biomethane, in gaseous form (Compressed Natural Gas – CNG) and liquefied form (Liquefied Natural Gas -
LNG), and
• Liquefied Petroleum Gas (LPG).
(2) "Recharging point" means a slow recharging point or a fast recharging point or an
installation for the physical exchange of a battery of an electric vehicle.
(3) "Slow recharging point" means a recharging point that allows for a direct supply of
electricity to an electric vehicle with a power of less than or equal to 22 kW.
(4) "Fast recharging point" means a recharging point that allows for a direct supply of
electricity to an electric vehicle with a power of more than 22 kW.
(5) "Publicly accessible recharging or refuelling point" means a recharging or refuelling
point which provides non-discriminatory access to the users
Paragraaf over EV
Member State Number of
recharging points
(in thousands)
Number of publicly
accessible
recharging points
(in thousands)
BE 207 21
BG 69 7
CZ 129 13
DK 54 5
DE 1503 150
EE 12 1
IE 22 2
EL 128 13
ES 824 82
FR 969 97
IT 1255 125
CY 20 2
LV 17 2
LT 41 4
LU 14 1
HU 68 7
MT 10 1
NL 321 32
AT 116 12
PL 460 46
PT 123 12
RO 101 10
SI 26 3
SK 36 4
FI 71 7
SE 145 14
UK 1221 122
HR 38 4
Article 4 Electricity supply for transport
Member States shall ensure that a minimum number of recharging points for electric
vehicles are put into place, at least the number given in the table in Annex II, by 31
December 2020 at the latest.
Te plaatsen laadpunten per 31-12-2020
ANNEX III
Technical specifications
1. Technical specifications for electric recharging points
1.1. Slow electric recharging points for motor vehicles
Alternate Current (AC) slow recharging points for electric vehicles shall be equipped, for
interoperability purposes, with connectors of Type 2 as described in standard EN62196-
2:2012.
1.2. Fast electric recharging points for motor vehicles
Alternate Current (AC) fast recharging points for electric vehicles shall be equipped, for
interoperability purposes, with connectors of Type 2 as described in standard EN62196-
2:2012.
Direct Current (DC) fast recharging points for electric vehicles shall be equipped, for
interoperability purposes, with connectors of Type "Combo 2" as described in the
relevant EN standard, to be adopted by 2014.
Paragraaf over EV
Oudste bekende batterij?
Baghdad Battery
Of 250 BC
Baghdad Battery
Of 250 BC
1836 John Frederic Daniell1799 Alessandro Volta
200 Years Later……….. Lead Acid Battery
- Low Energy Density
- Really Need No Ventilation ?
-Thermal Run Away
-Temperature Instability
- Failure and Shorten service cycle operating above 25C
- Cell reversal
- Low discharge rate
- Bulky and Heavy
- Environmental hazardous
Lead is a toxic heavy metal and in most cases regulated as a hazardous waste.
What is C rate
The charge and discharge current of a battery is measured in C-rate
Current C Rate Discharge Time(min)
5 0.05 20 hr (1200)
10 0.1 10 hr (600)
20 0.2 5 hr (300)
30 0.3 3.3 hr (200)
40 0.4 2.5 hr (150)
50 0.5 2.0 hr (120)
100 1 1.0 hr (60)
200 2 0.50 hr (30)
300 3 0.33 hr (20)
400 4 0.25 hr (15)
500 5 0.20 hr (12)
Discharge Time = Rated Ah of Battery
(used time) Discharge Current
C rate = Rated Ah battery / 1 hour 100 Ah cel & current = 100 Amp = 1C
Beware: The Peukert Effect of Lead Acid Battery
What You See is NOT What You Get
Vmin
PE
0,05 C = 20 uur
referentie
1C = 1 uur ?
1C = 25 min
Vnom
C-rate
Discharge
Current
(A)
Lead Acid, 100Ah Kokum SLPB, 100Ah
Discharge capacity (Ah)
Related capacity
(%)
Discharge capacity (Ah)
Related capacity
(%)
0.05C 5A 100Ah 100% 100Ah 100%
0.1C 10A 88Ah (10A*8.8hr) 88% 100Ah (10A*10hr) 100%
0.2C 20A 76Ah (20A*3.8hr) 76% 100Ah (20A*5hr) 100%
0.4C 40A 64Ah (40A*1.6hr) 64% 100Ah (40A*2.5hr) 100%
0.6C 60A 49.8Ah (60A*0.83hr) 49.8% 100Ah (60A*1.66hr) 100%
1C 100A 42Ah (100A*0.42hr) 42% 100Ah (100A*1hr) 100%
Discharging at 1C deflates the overall performance of Lead Acid
Battery by 58%
2C 200A 40Ah (200A*0.20hr) 40% 98.5Ah(200A*0.492hr) 98.5%
3C 300A 36Ah (300A*0.12hr) 36% 96.5Ah(300A*0.322hr) 96.5%
5C 500A 33.3Ah (500A*0.06hr) 33.3% 94.3Ah(500A*0.189hr) 94.3%
7C 700A 8.5Ah (700A*0.0122hr) 8.5% 91.2Ah(700A*0.130hr) 91.2%
10C 1000A 1.38Ah (1000A*0.00138hr) 1.38% 88.7Ah(1000A*0.089hr) 88.7%
Actual Lab Test Result of a 100Ah of Lead acid battery vs. Kokum SLPB
with Peukert Effect on Capacity and Discharge Time
The Discharging Behavior Of Lead Acid Battery C rate Vs Capacity
Van (k)Ah naar (k)Wh
Meestal wordt de capaciteit van accu's opgegeven in Ah (Ampère uur)
Dat zegt echter niets over de opgeslagen energie maar alleen iets over de laad en
ontlaad mogelijkheden. Bij serie schakelen van cellen verandert de Ah waarde niet maar
de energie inhoud wel.
Voor EV gebruik is de energie inhoud veel belangrijker en die wordt gemeten in (k)Wh.
Normaal gesproken is de Energie = Stroom (A) * Spanning (V)
Dus je zou kunnen zeggen energie inhoud = Ah waarde * celspanning = AVh = Wh.
Zo eenvoudig is het niet want welke V geldt ? Vref ? Vmin ?
Zoals altijd ligt de waarheid ergens tussenin.
Voor een bepaalde cel met Vref = 4,2V en Vmin = 3,0V en daarmee Vgem = 3,6V
Dus één cel van 100Ah heeft energie inhoud ongeveer 360 Wh
Maar 10 cellen van 10Ah in serie hebben ook een energie inhoud van 360 Wh terwijl de
laad en ontlaad karakteristieken heel anders zijn.
Laden volgens het CCCV principe
Tijd (uur)
1
2
2010
C
Loodaccu 1/20 C continu
0,5 C
1 C
2 C
Laadprincipes
Eerst constante stroom C rate
Bij bereiken referentie spanning deze
constant houden tot stroom is
afgenomen tot 1/20 C
Vref
Vstart
Constante stroom
C rate
Constante spanning
Vref
Stroom afgenomen
tot 1/20 C
Vmin
tijd
1,000
100
10
10 100
10
1,000
10010
100
1
1
PowerDensity(W/kg)
Energy Density(Wh/kg)
PowerDensity(W/lb)
Energy Density(Wh/lb)
Lead-Acid
(1967)
High power and/or
bipolar lead-acid
(1995)
Ni-Cd
Sodium
Sulfur
Range:80km 160km 320km 640km
96km/hr
64km/hr
32km/hr
Long-term
Middle-term
Li-ion
Ni-MH
Zn-Br2
USABC
USABC
SLPB
Energy Density & Power Density
LiCoO2 + C6 Li 1-x CoO2 + C6Lix
Charge
Discharge
Kokam Superior Lithium Polymer Battery
SLPB technology contains no metal lithium.
Rather, only a Li-ion passes between the positive
and negative poles leaving the cathode and anode
materials unchanged the principle operation is
fundamentally different and safer from that of a
re-chargeable lithium metal battery.
The separator is a microporous film
acts as safety gates stopping
the avalanche of Li-ions under abnormal
stage like short circuit, operating under
extreme high temp. This prevent the battery
from thermal run-away causing fire or even
explosion
Safe, Highly Efficient, High Power, High Energy, Lightweight and Small and Green
LiCoO2 C6Li
Kokum SLPB104330 3.7V 48mAh 0.8mm thickness weight 2g
Highlights of the High5ive battery cell technology:
•4.7V chemistry
•300-350 Wh/kg
•Over 2,000 cycles
•Inherently safer relative to the best competing cells
•Up to 40% savings in battery cost
•Up to 50% savings in weight
•Enables twice the driving range
Technical overview of High5ive cell technology
Nanowire battery
A nanowire battery is a lithium-ion battery and consists of a stainless steel anode
covered in silicon nanowires to replace the traditional graphite anode. Silicon, which
stores ten times more lithium than graphite, allows a far greater energy density on the
anode, thus reducing the mass of the battery. The high surface area further allows for
fast charging and discharging.
Traditional silicon anodes were researched and dismissed due to the tendency of silicon
to crack and become useless as it swelled with lithium during operation. The nanowires,
on the other hand, do not suffer from this flaw. According to Dr. Cui, the battery only
reached 10x density on the first charge and leveled out at 8x density on subsequent
charges. Since this is only an anode advancement, an equivalent cathode advancement
would be needed to get the full energy storage density improvements; however,
lightening the anode alone would, according to the team, lead to "several" times better
energy density.
Commercialization is expected to take approximately five years[1], with the batteries
costing similar or less per watt hour than conventional lithium-ion. The next milestone,
lifecycle testing, should be completed, and the team expects to get at least a thousand
cycles out of the battery. These batteries could create revolutionary improvements in
mobile electronics and electric vehicles.
Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was
investigated. The influences of doping Y on structure, morphology and
electrochemical performance of cathode materials were investigated
systematically. The results indicated that the mechanisms of Y doping in three
cathode materials were different, so the influences on the material performance
were different. The crystal structure of the three materials was not changed by
Y doping. However, the crystal parameters were influenced. The crystal
parameters of LiMn2O4 became smaller, and the interlayer distance of (100)
crystal plane of Li1+xV3O8 was lengthened after Y doping. The grain size of Y-
doped LiFePO4 became smaller and grain morphology became more regular
than that of undoped LiFePO4. It indicated that Y doping had no influence on
crystal particle and morphology of LiMn2O4. The morphology of Li1+xV3O8
became irregular and its size became larger with the increase of Y. For
LiFePO4 and Li1+xV3O8, both the initial discharge capacities and the cyclic
performance were improved by Y doping. For LiMn2O4, the cyclic performance
became better and the initial discharge capacities declined with increasing Y
doping.
Yttrium battery
References
• http://www.actacell.com
• http://www.calcars.org/calcars-news/976.html
• http://earth2tech.com/2008/07/23/battery-startup-actacell-charges-up-with-google-dfj/
• Welcome to Amco Batteries Limited
• Electro Energy: Empowering the Future of Energy
• Air Force contract to continue work on high energy battery awarded to Electro Energy -
AutoblogGreen
• Welcome to Electrovaya
• http://www.saftbatteries.com/SAFT/UploadedFiles/PressOffice/2008/JCS-08-06_eng.pdf
• TOYOTA: News Releases
• http://mvp090-1.104web.com.tw/cetacean/front/bin/home.phtml
• http://evtransportal.com/batterycompanies.html
• Bosch, Samsung join forces for lithium ion batteries | Power Management DesignLine Europe
• http://blog.wired.com/cars/2008/09/hyundai-going-e.html
• http://blog.wired.com/cars/2008/09/hyundai-going-e.html
• http://www.trojanbattery.com
• Power Systems Research
lithium metal polymer DBM Energy Lekker Energie Audi A2 Kolibri AlphaPolymer Technology.mp4
1 . Impact Tester
2 . Penetration Tester
3 . Heating Tester
4 . Crush Tester
5 . Overcharge / Reverse charge Tester
6 . External short Tester
7 . Drop Tester (KERI)
8 . Vibration Tester
Safety Test Procedure & Equipments
Accu testen
Laadvermogen
Tank 60 l voltanken in 1 minuut
Goed voor 780 km (1 : 13)
60 * 10kWh / 1 minuut = 36 MWatt
Stel dat je evenveel km elektrisch in dezelfde tijd wilt laden!
Aanname dat de EV 7 km per kWh rijdt
Batterij 100 kWh (700km) laden in 1 minuut
Bij 500V systeem is dat
Batterij 36 kWh (250 km) laden in 1 minuut
Bij 500V systeem is dat
6 MWatt
12 kA
2,2 MWatt
4,3 kA
Beide zijn onrealistisch
De 1 minuut tank tijd en de vooraf wachttijd ed en
achteraf administratieve afhandeling zorgen ervoor dat
de totale tijd ca. 5 minuten wordt. Dat vind ik als
consument aanvaardbaar, maar langer niet. Dan begint
ongeduld.
Tank 60 l voltanken in 1 minuut
Goed voor 780 km (1 : 13)
60 * 10kWh / 1 minuut = 36 MWatt
Stel dat je evenveel km elektrisch in dezelfde tijd wilt laden!
Aanname dat de EV 7 km per kWh rijdt
Batterij 100 kWh (700km) laden in 10 minuten
Bij 500V systeem is dat
Batterij 36 kWh (250 km) laden in 10 minuten
Bij 500V systeem is dat
600 kWatt
1,2 kA
216 kWatt
432 A
Beide zijn onrealistisch
Laadvermogen
Elektrische auto’s alleen voor korte afstanden?
De ENEXIS EV Vloot heeft inmiddels meer dan 1.000.000 km afgelegd
Dat is gemiddeld zo’n 25.000 km per auto/jaar
Enkele hebben zelfs meer al dan 100.000 km gereden
Integendeel!
Elektrisch vervoer van de toekomst

Contenu connexe

Tendances

European Regulation N 548/14 on power transformers
European Regulation N 548/14 on power transformersEuropean Regulation N 548/14 on power transformers
European Regulation N 548/14 on power transformersLeonardo ENERGY
 
ABB Training Colombia Inverters - Focus on residential and commercial solutio...
ABB Training Colombia Inverters - Focus on residential and commercial solutio...ABB Training Colombia Inverters - Focus on residential and commercial solutio...
ABB Training Colombia Inverters - Focus on residential and commercial solutio...Jesús Leyton P
 
Technovations at Su-Kam
Technovations at Su-KamTechnovations at Su-Kam
Technovations at Su-KamSu-kam
 
Modeling and analysis of power transformers under ferroresonance phenomenon
Modeling and analysis of power transformers under ferroresonance phenomenonModeling and analysis of power transformers under ferroresonance phenomenon
Modeling and analysis of power transformers under ferroresonance phenomenonGilberto Mejía
 
Power Transformers regulations - MEPS
Power Transformers regulations - MEPSPower Transformers regulations - MEPS
Power Transformers regulations - MEPSLeonardo ENERGY
 
Power transformers rating
Power transformers ratingPower transformers rating
Power transformers ratingLeonardo ENERGY
 
Solar street light controller
Solar street light controllerSolar street light controller
Solar street light controllerchhaviprasad
 
insulation monitoring in electrical machine
insulation monitoring in electrical machine insulation monitoring in electrical machine
insulation monitoring in electrical machine Molla Morshad
 
KEMET MLCCs to Polymer Webinar
KEMET MLCCs to Polymer WebinarKEMET MLCCs to Polymer Webinar
KEMET MLCCs to Polymer WebinarNick Stephen
 
Automatic mains failure panel 62.5 kva (2)
Automatic mains failure panel 62.5 kva (2)Automatic mains failure panel 62.5 kva (2)
Automatic mains failure panel 62.5 kva (2)latesh sharma
 
Internship Report at a 132/33 KV transmission station
Internship Report at a 132/33 KV transmission stationInternship Report at a 132/33 KV transmission station
Internship Report at a 132/33 KV transmission stationOluwaseun Amodu
 
Electrical Power Experience1
Electrical Power Experience1Electrical Power Experience1
Electrical Power Experience1Kendall Pinder
 
220kv grid wapda town lahore
220kv grid wapda town lahore220kv grid wapda town lahore
220kv grid wapda town lahoresammy9916
 
Transformer failure case study
Transformer failure case studyTransformer failure case study
Transformer failure case studyLeonardo ENERGY
 
Product: Battery Monitoring: FirstLine BMS
Product: Battery Monitoring: FirstLine BMSProduct: Battery Monitoring: FirstLine BMS
Product: Battery Monitoring: FirstLine BMSStaco Energy
 
How to conduct the lightning impulse withstand test on 550kv GIS?
How to conduct the lightning impulse withstand test on 550kv GIS?How to conduct the lightning impulse withstand test on 550kv GIS?
How to conduct the lightning impulse withstand test on 550kv GIS?Fang Sam
 

Tendances (20)

European Regulation N 548/14 on power transformers
European Regulation N 548/14 on power transformersEuropean Regulation N 548/14 on power transformers
European Regulation N 548/14 on power transformers
 
ABB Training Colombia Inverters - Focus on residential and commercial solutio...
ABB Training Colombia Inverters - Focus on residential and commercial solutio...ABB Training Colombia Inverters - Focus on residential and commercial solutio...
ABB Training Colombia Inverters - Focus on residential and commercial solutio...
 
Technovations at Su-Kam
Technovations at Su-KamTechnovations at Su-Kam
Technovations at Su-Kam
 
Modeling and analysis of power transformers under ferroresonance phenomenon
Modeling and analysis of power transformers under ferroresonance phenomenonModeling and analysis of power transformers under ferroresonance phenomenon
Modeling and analysis of power transformers under ferroresonance phenomenon
 
FRETS1 Satellite
FRETS1 SatelliteFRETS1 Satellite
FRETS1 Satellite
 
Power Transformers regulations - MEPS
Power Transformers regulations - MEPSPower Transformers regulations - MEPS
Power Transformers regulations - MEPS
 
Power transformers rating
Power transformers ratingPower transformers rating
Power transformers rating
 
Ashwani kumar
Ashwani kumarAshwani kumar
Ashwani kumar
 
Solar street light controller
Solar street light controllerSolar street light controller
Solar street light controller
 
insulation monitoring in electrical machine
insulation monitoring in electrical machine insulation monitoring in electrical machine
insulation monitoring in electrical machine
 
Olympus Power
Olympus PowerOlympus Power
Olympus Power
 
KEMET MLCCs to Polymer Webinar
KEMET MLCCs to Polymer WebinarKEMET MLCCs to Polymer Webinar
KEMET MLCCs to Polymer Webinar
 
Automatic mains failure panel 62.5 kva (2)
Automatic mains failure panel 62.5 kva (2)Automatic mains failure panel 62.5 kva (2)
Automatic mains failure panel 62.5 kva (2)
 
Internship Report at a 132/33 KV transmission station
Internship Report at a 132/33 KV transmission stationInternship Report at a 132/33 KV transmission station
Internship Report at a 132/33 KV transmission station
 
46584589 substation-design-data
46584589 substation-design-data46584589 substation-design-data
46584589 substation-design-data
 
Electrical Power Experience1
Electrical Power Experience1Electrical Power Experience1
Electrical Power Experience1
 
220kv grid wapda town lahore
220kv grid wapda town lahore220kv grid wapda town lahore
220kv grid wapda town lahore
 
Transformer failure case study
Transformer failure case studyTransformer failure case study
Transformer failure case study
 
Product: Battery Monitoring: FirstLine BMS
Product: Battery Monitoring: FirstLine BMSProduct: Battery Monitoring: FirstLine BMS
Product: Battery Monitoring: FirstLine BMS
 
How to conduct the lightning impulse withstand test on 550kv GIS?
How to conduct the lightning impulse withstand test on 550kv GIS?How to conduct the lightning impulse withstand test on 550kv GIS?
How to conduct the lightning impulse withstand test on 550kv GIS?
 

Similaire à Elektrisch vervoer van de toekomst

2019-02-19_IEEE Lithium Ion Presentation Complete.pptx
2019-02-19_IEEE Lithium Ion Presentation Complete.pptx2019-02-19_IEEE Lithium Ion Presentation Complete.pptx
2019-02-19_IEEE Lithium Ion Presentation Complete.pptxlehaphuong03
 
CSIR-CECRI-Industrial Conclave - Energy
CSIR-CECRI-Industrial Conclave - EnergyCSIR-CECRI-Industrial Conclave - Energy
CSIR-CECRI-Industrial Conclave - EnergyD Murali ☆
 
UNIT-IV-EV .pptx
UNIT-IV-EV .pptxUNIT-IV-EV .pptx
UNIT-IV-EV .pptxSengolrajan
 
Batteries (modern electric storage systems)
Batteries (modern electric storage systems)Batteries (modern electric storage systems)
Batteries (modern electric storage systems)MOAZZAM KAPDE
 
wire less charging in electric vehicles
wire less charging in electric vehicleswire less charging in electric vehicles
wire less charging in electric vehiclesShrikantkumar21
 
Printed Supercapacitors
Printed SupercapacitorsPrinted Supercapacitors
Printed SupercapacitorsBing Hsieh
 
LUCENSE - Workshop trasporto merci a breve raggio con veicoli elettrici
LUCENSE - Workshop trasporto merci a breve raggio con veicoli elettriciLUCENSE - Workshop trasporto merci a breve raggio con veicoli elettrici
LUCENSE - Workshop trasporto merci a breve raggio con veicoli elettriciLUCENSE
 
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...IRJET Journal
 
Multi-Objective design optimization of a Superconducting Fault Current Limiter
Multi-Objective design optimization of a Superconducting Fault Current LimiterMulti-Objective design optimization of a Superconducting Fault Current Limiter
Multi-Objective design optimization of a Superconducting Fault Current LimiterFranco Moriconi
 
Battery report - FirstGroup
Battery report - FirstGroupBattery report - FirstGroup
Battery report - FirstGroupJing Deng
 
Energy Storage Seminar and Assignment Group 1.pptx
Energy Storage Seminar and Assignment Group 1.pptxEnergy Storage Seminar and Assignment Group 1.pptx
Energy Storage Seminar and Assignment Group 1.pptxAshutosh Tripathy
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitTsuyoshi Horigome
 
EV Charger SMPS Based.pdf
EV Charger SMPS Based.pdfEV Charger SMPS Based.pdf
EV Charger SMPS Based.pdfLalitKapoor7
 
Imperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsImperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsimperix
 
IRJET-Demon: An Electric Bike
IRJET-Demon: An Electric BikeIRJET-Demon: An Electric Bike
IRJET-Demon: An Electric BikeIRJET Journal
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書spicepark
 
Floating Power Plant
Floating Power PlantFloating Power Plant
Floating Power PlantIvec01
 
Development of a novel ultracapacitor electric
Development of a novel ultracapacitor electricDevelopment of a novel ultracapacitor electric
Development of a novel ultracapacitor electricTania Martinez
 

Similaire à Elektrisch vervoer van de toekomst (20)

2019-02-19_IEEE Lithium Ion Presentation Complete.pptx
2019-02-19_IEEE Lithium Ion Presentation Complete.pptx2019-02-19_IEEE Lithium Ion Presentation Complete.pptx
2019-02-19_IEEE Lithium Ion Presentation Complete.pptx
 
CSIR-CECRI-Industrial Conclave - Energy
CSIR-CECRI-Industrial Conclave - EnergyCSIR-CECRI-Industrial Conclave - Energy
CSIR-CECRI-Industrial Conclave - Energy
 
UNIT-IV-EV .pptx
UNIT-IV-EV .pptxUNIT-IV-EV .pptx
UNIT-IV-EV .pptx
 
Batteries (modern electric storage systems)
Batteries (modern electric storage systems)Batteries (modern electric storage systems)
Batteries (modern electric storage systems)
 
wire less charging in electric vehicles
wire less charging in electric vehicleswire less charging in electric vehicles
wire less charging in electric vehicles
 
CK2017: Benefits of Electric Buses
CK2017: Benefits of Electric BusesCK2017: Benefits of Electric Buses
CK2017: Benefits of Electric Buses
 
Printed Supercapacitors
Printed SupercapacitorsPrinted Supercapacitors
Printed Supercapacitors
 
LUCENSE - Workshop trasporto merci a breve raggio con veicoli elettrici
LUCENSE - Workshop trasporto merci a breve raggio con veicoli elettriciLUCENSE - Workshop trasporto merci a breve raggio con veicoli elettrici
LUCENSE - Workshop trasporto merci a breve raggio con veicoli elettrici
 
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
Brushless DC Motor Drive using an Isolated-Luo Converter for Power Factor Cor...
 
Combined report
Combined reportCombined report
Combined report
 
Multi-Objective design optimization of a Superconducting Fault Current Limiter
Multi-Objective design optimization of a Superconducting Fault Current LimiterMulti-Objective design optimization of a Superconducting Fault Current Limiter
Multi-Objective design optimization of a Superconducting Fault Current Limiter
 
Battery report - FirstGroup
Battery report - FirstGroupBattery report - FirstGroup
Battery report - FirstGroup
 
Energy Storage Seminar and Assignment Group 1.pptx
Energy Storage Seminar and Assignment Group 1.pptxEnergy Storage Seminar and Assignment Group 1.pptx
Energy Storage Seminar and Assignment Group 1.pptx
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
EV Charger SMPS Based.pdf
EV Charger SMPS Based.pdfEV Charger SMPS Based.pdf
EV Charger SMPS Based.pdf
 
Imperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsImperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronics
 
IRJET-Demon: An Electric Bike
IRJET-Demon: An Electric BikeIRJET-Demon: An Electric Bike
IRJET-Demon: An Electric Bike
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Floating Power Plant
Floating Power PlantFloating Power Plant
Floating Power Plant
 
Development of a novel ultracapacitor electric
Development of a novel ultracapacitor electricDevelopment of a novel ultracapacitor electric
Development of a novel ultracapacitor electric
 

Plus de Dutch Power

Dutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular PlasticsDutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular PlasticsDutch Power
 
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D EuropeDutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D EuropeDutch Power
 
Dutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
Dutch Power - 26 maart 2024 - Pim Loef & Paolo PeraniDutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
Dutch Power - 26 maart 2024 - Pim Loef & Paolo PeraniDutch Power
 
Dutch Power - 26 maart 2024 - Hans Nooter - Groene netten
Dutch Power - 26 maart 2024 - Hans Nooter - Groene nettenDutch Power - 26 maart 2024 - Hans Nooter - Groene netten
Dutch Power - 26 maart 2024 - Hans Nooter - Groene nettenDutch Power
 
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwC
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwCDutch Power - 26 maart 2024 - Mark Tesselaar - PwC
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwCDutch Power
 
Dutch Power Event 1. Ruut Schalij - eRiskgroep
Dutch Power Event 1. Ruut Schalij - eRiskgroepDutch Power Event 1. Ruut Schalij - eRiskgroep
Dutch Power Event 1. Ruut Schalij - eRiskgroepDutch Power
 
Dutch Power Event 2. Joost Greunsven - TenneT
Dutch Power Event 2. Joost Greunsven - TenneTDutch Power Event 2. Joost Greunsven - TenneT
Dutch Power Event 2. Joost Greunsven - TenneTDutch Power
 
Dutch Power Event 3. Marieke van Gemert - NRG
Dutch Power Event 3. Marieke van Gemert - NRGDutch Power Event 3. Marieke van Gemert - NRG
Dutch Power Event 3. Marieke van Gemert - NRGDutch Power
 
Dutch Power Event 4. Rick Bulk - ANVS.pdf
Dutch Power Event 4. Rick Bulk - ANVS.pdfDutch Power Event 4. Rick Bulk - ANVS.pdf
Dutch Power Event 4. Rick Bulk - ANVS.pdfDutch Power
 
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdf
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdfDutch Power Event 5. Dirk Rabelink - ULC energy.pdf
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdfDutch Power
 
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMRDutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMRDutch Power
 
Dutch Power Event 7. Titus Tielens - Thorizon.pdf
Dutch Power Event 7. Titus Tielens - Thorizon.pdfDutch Power Event 7. Titus Tielens - Thorizon.pdf
Dutch Power Event 7. Titus Tielens - Thorizon.pdfDutch Power
 
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFERPresentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFERDutch Power
 
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseurDutch Power
 
2. Soe van Dijk - Topsector Energie
2. Soe van Dijk - Topsector Energie2. Soe van Dijk - Topsector Energie
2. Soe van Dijk - Topsector EnergieDutch Power
 
3. Philip Westbroek & Vincent van Esbroek - Enexis
3. Philip Westbroek & Vincent van Esbroek - Enexis3. Philip Westbroek & Vincent van Esbroek - Enexis
3. Philip Westbroek & Vincent van Esbroek - EnexisDutch Power
 
4. Tom Wolters - Chapter8
4. Tom Wolters - Chapter84. Tom Wolters - Chapter8
4. Tom Wolters - Chapter8Dutch Power
 
5. Ingmar van der Steen - Info Support
5. Ingmar van der Steen - Info Support5. Ingmar van der Steen - Info Support
5. Ingmar van der Steen - Info SupportDutch Power
 
6. Sander Speek - Scalys
6. Sander Speek - Scalys6. Sander Speek - Scalys
6. Sander Speek - ScalysDutch Power
 
7. Olaf Peters - Technolution
7. Olaf Peters - Technolution7. Olaf Peters - Technolution
7. Olaf Peters - TechnolutionDutch Power
 

Plus de Dutch Power (20)

Dutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular PlasticsDutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
 
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D EuropeDutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
 
Dutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
Dutch Power - 26 maart 2024 - Pim Loef & Paolo PeraniDutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
Dutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
 
Dutch Power - 26 maart 2024 - Hans Nooter - Groene netten
Dutch Power - 26 maart 2024 - Hans Nooter - Groene nettenDutch Power - 26 maart 2024 - Hans Nooter - Groene netten
Dutch Power - 26 maart 2024 - Hans Nooter - Groene netten
 
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwC
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwCDutch Power - 26 maart 2024 - Mark Tesselaar - PwC
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwC
 
Dutch Power Event 1. Ruut Schalij - eRiskgroep
Dutch Power Event 1. Ruut Schalij - eRiskgroepDutch Power Event 1. Ruut Schalij - eRiskgroep
Dutch Power Event 1. Ruut Schalij - eRiskgroep
 
Dutch Power Event 2. Joost Greunsven - TenneT
Dutch Power Event 2. Joost Greunsven - TenneTDutch Power Event 2. Joost Greunsven - TenneT
Dutch Power Event 2. Joost Greunsven - TenneT
 
Dutch Power Event 3. Marieke van Gemert - NRG
Dutch Power Event 3. Marieke van Gemert - NRGDutch Power Event 3. Marieke van Gemert - NRG
Dutch Power Event 3. Marieke van Gemert - NRG
 
Dutch Power Event 4. Rick Bulk - ANVS.pdf
Dutch Power Event 4. Rick Bulk - ANVS.pdfDutch Power Event 4. Rick Bulk - ANVS.pdf
Dutch Power Event 4. Rick Bulk - ANVS.pdf
 
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdf
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdfDutch Power Event 5. Dirk Rabelink - ULC energy.pdf
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdf
 
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMRDutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
 
Dutch Power Event 7. Titus Tielens - Thorizon.pdf
Dutch Power Event 7. Titus Tielens - Thorizon.pdfDutch Power Event 7. Titus Tielens - Thorizon.pdf
Dutch Power Event 7. Titus Tielens - Thorizon.pdf
 
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFERPresentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
 
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
 
2. Soe van Dijk - Topsector Energie
2. Soe van Dijk - Topsector Energie2. Soe van Dijk - Topsector Energie
2. Soe van Dijk - Topsector Energie
 
3. Philip Westbroek & Vincent van Esbroek - Enexis
3. Philip Westbroek & Vincent van Esbroek - Enexis3. Philip Westbroek & Vincent van Esbroek - Enexis
3. Philip Westbroek & Vincent van Esbroek - Enexis
 
4. Tom Wolters - Chapter8
4. Tom Wolters - Chapter84. Tom Wolters - Chapter8
4. Tom Wolters - Chapter8
 
5. Ingmar van der Steen - Info Support
5. Ingmar van der Steen - Info Support5. Ingmar van der Steen - Info Support
5. Ingmar van der Steen - Info Support
 
6. Sander Speek - Scalys
6. Sander Speek - Scalys6. Sander Speek - Scalys
6. Sander Speek - Scalys
 
7. Olaf Peters - Technolution
7. Olaf Peters - Technolution7. Olaf Peters - Technolution
7. Olaf Peters - Technolution
 

Elektrisch vervoer van de toekomst

  • 1. A. Postma 25 april 2013 TE LAND, TER ZEE EN IN DE LUCHT: MET ELEKTRISCHE AANDRIJVINGEN KOM JE OVERAL. ELEKTRISCHE VERVOERMIDDELEN VAN DE TOEKOMST De stand van zaken bij elektrische auto’s • Europese uitrol van laadpalen • De accutechnologie
  • 2. Wie denkt dat snelladen voor elektrische gezinsauto’s dé toekomst is? Snelladen bestaat niet, nu niet en nooit niet. Prikkelende stelling
  • 4. Erns & Young Publicatie 2012 Oktober 2012
  • 6.
  • 7. Internationale ontwikkelingen voor standaardisatie en uitrol van laadinfrastructuur IEC SMB Ad Hoc advies groep voor: electro technology for mobility TC 8 role models for e-mobility TC 69 standards for EVSE Cenelec e-Mobility Coordination Group Ad hoc group for Smart Charging TC 69x EU/M490 Diverse werkgroepen waaronder Sustainable processes, Architectuur en Interoperabiliteit.
  • 8. Overview of Generic Use Cases covering the whole scenery of Smart Grids
  • 9. Wat hebben we tot nu toe bereikt? • Internationale erkenning waaronder: • Ontwikkeling OCPP • Ontwikkeling OCHP • Ontwikkeling OCSP • Invloed in Europees standaardisatie proces • Nederland in top 3 in publieke laadinfrastructuur • En daardoor ook in aantallen (PH)EV • Interoperabiliteit bij alle publieke laadinfra Door unieke aanpak uitrol publieke infrastructuur o.a door instelling van E-laad
  • 11. Gebaseerd op cijfers van stichting e-laad, EV-Box B.V, NUON en Essent, The New Motion (cijfers t/m 31-10-2012) en Oplaadpalen.nl (vanaf cijfers t/m 30-11-2012). In de data van Oplaadpalen.nl is (nog) niet aangegeven of laadpunten (semi-)publiek zijn. Voor deze figuur is de aanname gedaan dat laadpalen van e-laad, Nuon en Essent publiek zijn en de overige laadpalen in het bestand semi-publiek Publicatie AgentschapNL
  • 12. Geographic coverage 1. Nationwide spread Charge point types 1. Public AC 70% 10kW 30 % 3,6 kW 2. Home AC 3,6 kW 3. High power DC 50kW Infrastructure installed future targets (2020) 1. Public AC 2500 +10.000 2. Public DC 25 400 3. Home AC 500-1000 no target Volledige nationale dekking
  • 14.
  • 17. Article 2 Definitions For the purpose of this Directive, the following definitions shall apply : (1) 'Alternative fuels' mean fuels which substitute fossil oil sources in the energy supply to transport and which have a potential to contribute to its decarbonisation. They include: • electricity, • hydrogen, • biofuels as defined in Directive 2009/28/EC of the European Parliament and the Council, • synthetic fuels, • natural gas, including biomethane, in gaseous form (Compressed Natural Gas – CNG) and liquefied form (Liquefied Natural Gas - LNG), and • Liquefied Petroleum Gas (LPG). (2) "Recharging point" means a slow recharging point or a fast recharging point or an installation for the physical exchange of a battery of an electric vehicle. (3) "Slow recharging point" means a recharging point that allows for a direct supply of electricity to an electric vehicle with a power of less than or equal to 22 kW. (4) "Fast recharging point" means a recharging point that allows for a direct supply of electricity to an electric vehicle with a power of more than 22 kW. (5) "Publicly accessible recharging or refuelling point" means a recharging or refuelling point which provides non-discriminatory access to the users Paragraaf over EV
  • 18. Member State Number of recharging points (in thousands) Number of publicly accessible recharging points (in thousands) BE 207 21 BG 69 7 CZ 129 13 DK 54 5 DE 1503 150 EE 12 1 IE 22 2 EL 128 13 ES 824 82 FR 969 97 IT 1255 125 CY 20 2 LV 17 2 LT 41 4 LU 14 1 HU 68 7 MT 10 1 NL 321 32 AT 116 12 PL 460 46 PT 123 12 RO 101 10 SI 26 3 SK 36 4 FI 71 7 SE 145 14 UK 1221 122 HR 38 4 Article 4 Electricity supply for transport Member States shall ensure that a minimum number of recharging points for electric vehicles are put into place, at least the number given in the table in Annex II, by 31 December 2020 at the latest. Te plaatsen laadpunten per 31-12-2020
  • 19. ANNEX III Technical specifications 1. Technical specifications for electric recharging points 1.1. Slow electric recharging points for motor vehicles Alternate Current (AC) slow recharging points for electric vehicles shall be equipped, for interoperability purposes, with connectors of Type 2 as described in standard EN62196- 2:2012. 1.2. Fast electric recharging points for motor vehicles Alternate Current (AC) fast recharging points for electric vehicles shall be equipped, for interoperability purposes, with connectors of Type 2 as described in standard EN62196- 2:2012. Direct Current (DC) fast recharging points for electric vehicles shall be equipped, for interoperability purposes, with connectors of Type "Combo 2" as described in the relevant EN standard, to be adopted by 2014. Paragraaf over EV
  • 20. Oudste bekende batterij? Baghdad Battery Of 250 BC
  • 21. Baghdad Battery Of 250 BC 1836 John Frederic Daniell1799 Alessandro Volta
  • 22. 200 Years Later……….. Lead Acid Battery - Low Energy Density - Really Need No Ventilation ? -Thermal Run Away -Temperature Instability - Failure and Shorten service cycle operating above 25C - Cell reversal - Low discharge rate - Bulky and Heavy - Environmental hazardous Lead is a toxic heavy metal and in most cases regulated as a hazardous waste.
  • 23. What is C rate The charge and discharge current of a battery is measured in C-rate Current C Rate Discharge Time(min) 5 0.05 20 hr (1200) 10 0.1 10 hr (600) 20 0.2 5 hr (300) 30 0.3 3.3 hr (200) 40 0.4 2.5 hr (150) 50 0.5 2.0 hr (120) 100 1 1.0 hr (60) 200 2 0.50 hr (30) 300 3 0.33 hr (20) 400 4 0.25 hr (15) 500 5 0.20 hr (12) Discharge Time = Rated Ah of Battery (used time) Discharge Current C rate = Rated Ah battery / 1 hour 100 Ah cel & current = 100 Amp = 1C
  • 24. Beware: The Peukert Effect of Lead Acid Battery What You See is NOT What You Get Vmin PE 0,05 C = 20 uur referentie 1C = 1 uur ? 1C = 25 min Vnom
  • 25. C-rate Discharge Current (A) Lead Acid, 100Ah Kokum SLPB, 100Ah Discharge capacity (Ah) Related capacity (%) Discharge capacity (Ah) Related capacity (%) 0.05C 5A 100Ah 100% 100Ah 100% 0.1C 10A 88Ah (10A*8.8hr) 88% 100Ah (10A*10hr) 100% 0.2C 20A 76Ah (20A*3.8hr) 76% 100Ah (20A*5hr) 100% 0.4C 40A 64Ah (40A*1.6hr) 64% 100Ah (40A*2.5hr) 100% 0.6C 60A 49.8Ah (60A*0.83hr) 49.8% 100Ah (60A*1.66hr) 100% 1C 100A 42Ah (100A*0.42hr) 42% 100Ah (100A*1hr) 100% Discharging at 1C deflates the overall performance of Lead Acid Battery by 58% 2C 200A 40Ah (200A*0.20hr) 40% 98.5Ah(200A*0.492hr) 98.5% 3C 300A 36Ah (300A*0.12hr) 36% 96.5Ah(300A*0.322hr) 96.5% 5C 500A 33.3Ah (500A*0.06hr) 33.3% 94.3Ah(500A*0.189hr) 94.3% 7C 700A 8.5Ah (700A*0.0122hr) 8.5% 91.2Ah(700A*0.130hr) 91.2% 10C 1000A 1.38Ah (1000A*0.00138hr) 1.38% 88.7Ah(1000A*0.089hr) 88.7% Actual Lab Test Result of a 100Ah of Lead acid battery vs. Kokum SLPB with Peukert Effect on Capacity and Discharge Time The Discharging Behavior Of Lead Acid Battery C rate Vs Capacity
  • 26. Van (k)Ah naar (k)Wh Meestal wordt de capaciteit van accu's opgegeven in Ah (Ampère uur) Dat zegt echter niets over de opgeslagen energie maar alleen iets over de laad en ontlaad mogelijkheden. Bij serie schakelen van cellen verandert de Ah waarde niet maar de energie inhoud wel. Voor EV gebruik is de energie inhoud veel belangrijker en die wordt gemeten in (k)Wh. Normaal gesproken is de Energie = Stroom (A) * Spanning (V) Dus je zou kunnen zeggen energie inhoud = Ah waarde * celspanning = AVh = Wh. Zo eenvoudig is het niet want welke V geldt ? Vref ? Vmin ? Zoals altijd ligt de waarheid ergens tussenin. Voor een bepaalde cel met Vref = 4,2V en Vmin = 3,0V en daarmee Vgem = 3,6V Dus één cel van 100Ah heeft energie inhoud ongeveer 360 Wh Maar 10 cellen van 10Ah in serie hebben ook een energie inhoud van 360 Wh terwijl de laad en ontlaad karakteristieken heel anders zijn.
  • 27. Laden volgens het CCCV principe Tijd (uur) 1 2 2010 C Loodaccu 1/20 C continu 0,5 C 1 C 2 C Laadprincipes Eerst constante stroom C rate Bij bereiken referentie spanning deze constant houden tot stroom is afgenomen tot 1/20 C Vref Vstart Constante stroom C rate Constante spanning Vref Stroom afgenomen tot 1/20 C Vmin tijd
  • 28. 1,000 100 10 10 100 10 1,000 10010 100 1 1 PowerDensity(W/kg) Energy Density(Wh/kg) PowerDensity(W/lb) Energy Density(Wh/lb) Lead-Acid (1967) High power and/or bipolar lead-acid (1995) Ni-Cd Sodium Sulfur Range:80km 160km 320km 640km 96km/hr 64km/hr 32km/hr Long-term Middle-term Li-ion Ni-MH Zn-Br2 USABC USABC SLPB Energy Density & Power Density
  • 29.
  • 30. LiCoO2 + C6 Li 1-x CoO2 + C6Lix Charge Discharge Kokam Superior Lithium Polymer Battery SLPB technology contains no metal lithium. Rather, only a Li-ion passes between the positive and negative poles leaving the cathode and anode materials unchanged the principle operation is fundamentally different and safer from that of a re-chargeable lithium metal battery. The separator is a microporous film acts as safety gates stopping the avalanche of Li-ions under abnormal stage like short circuit, operating under extreme high temp. This prevent the battery from thermal run-away causing fire or even explosion Safe, Highly Efficient, High Power, High Energy, Lightweight and Small and Green LiCoO2 C6Li Kokum SLPB104330 3.7V 48mAh 0.8mm thickness weight 2g
  • 31. Highlights of the High5ive battery cell technology: •4.7V chemistry •300-350 Wh/kg •Over 2,000 cycles •Inherently safer relative to the best competing cells •Up to 40% savings in battery cost •Up to 50% savings in weight •Enables twice the driving range Technical overview of High5ive cell technology
  • 32. Nanowire battery A nanowire battery is a lithium-ion battery and consists of a stainless steel anode covered in silicon nanowires to replace the traditional graphite anode. Silicon, which stores ten times more lithium than graphite, allows a far greater energy density on the anode, thus reducing the mass of the battery. The high surface area further allows for fast charging and discharging. Traditional silicon anodes were researched and dismissed due to the tendency of silicon to crack and become useless as it swelled with lithium during operation. The nanowires, on the other hand, do not suffer from this flaw. According to Dr. Cui, the battery only reached 10x density on the first charge and leveled out at 8x density on subsequent charges. Since this is only an anode advancement, an equivalent cathode advancement would be needed to get the full energy storage density improvements; however, lightening the anode alone would, according to the team, lead to "several" times better energy density. Commercialization is expected to take approximately five years[1], with the batteries costing similar or less per watt hour than conventional lithium-ion. The next milestone, lifecycle testing, should be completed, and the team expects to get at least a thousand cycles out of the battery. These batteries could create revolutionary improvements in mobile electronics and electric vehicles.
  • 33. Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was investigated. The influences of doping Y on structure, morphology and electrochemical performance of cathode materials were investigated systematically. The results indicated that the mechanisms of Y doping in three cathode materials were different, so the influences on the material performance were different. The crystal structure of the three materials was not changed by Y doping. However, the crystal parameters were influenced. The crystal parameters of LiMn2O4 became smaller, and the interlayer distance of (100) crystal plane of Li1+xV3O8 was lengthened after Y doping. The grain size of Y- doped LiFePO4 became smaller and grain morphology became more regular than that of undoped LiFePO4. It indicated that Y doping had no influence on crystal particle and morphology of LiMn2O4. The morphology of Li1+xV3O8 became irregular and its size became larger with the increase of Y. For LiFePO4 and Li1+xV3O8, both the initial discharge capacities and the cyclic performance were improved by Y doping. For LiMn2O4, the cyclic performance became better and the initial discharge capacities declined with increasing Y doping. Yttrium battery
  • 34. References • http://www.actacell.com • http://www.calcars.org/calcars-news/976.html • http://earth2tech.com/2008/07/23/battery-startup-actacell-charges-up-with-google-dfj/ • Welcome to Amco Batteries Limited • Electro Energy: Empowering the Future of Energy • Air Force contract to continue work on high energy battery awarded to Electro Energy - AutoblogGreen • Welcome to Electrovaya • http://www.saftbatteries.com/SAFT/UploadedFiles/PressOffice/2008/JCS-08-06_eng.pdf • TOYOTA: News Releases • http://mvp090-1.104web.com.tw/cetacean/front/bin/home.phtml • http://evtransportal.com/batterycompanies.html • Bosch, Samsung join forces for lithium ion batteries | Power Management DesignLine Europe • http://blog.wired.com/cars/2008/09/hyundai-going-e.html • http://blog.wired.com/cars/2008/09/hyundai-going-e.html • http://www.trojanbattery.com • Power Systems Research
  • 35. lithium metal polymer DBM Energy Lekker Energie Audi A2 Kolibri AlphaPolymer Technology.mp4
  • 36. 1 . Impact Tester 2 . Penetration Tester 3 . Heating Tester 4 . Crush Tester 5 . Overcharge / Reverse charge Tester 6 . External short Tester 7 . Drop Tester (KERI) 8 . Vibration Tester Safety Test Procedure & Equipments
  • 38. Laadvermogen Tank 60 l voltanken in 1 minuut Goed voor 780 km (1 : 13) 60 * 10kWh / 1 minuut = 36 MWatt Stel dat je evenveel km elektrisch in dezelfde tijd wilt laden! Aanname dat de EV 7 km per kWh rijdt Batterij 100 kWh (700km) laden in 1 minuut Bij 500V systeem is dat Batterij 36 kWh (250 km) laden in 1 minuut Bij 500V systeem is dat 6 MWatt 12 kA 2,2 MWatt 4,3 kA Beide zijn onrealistisch De 1 minuut tank tijd en de vooraf wachttijd ed en achteraf administratieve afhandeling zorgen ervoor dat de totale tijd ca. 5 minuten wordt. Dat vind ik als consument aanvaardbaar, maar langer niet. Dan begint ongeduld.
  • 39. Tank 60 l voltanken in 1 minuut Goed voor 780 km (1 : 13) 60 * 10kWh / 1 minuut = 36 MWatt Stel dat je evenveel km elektrisch in dezelfde tijd wilt laden! Aanname dat de EV 7 km per kWh rijdt Batterij 100 kWh (700km) laden in 10 minuten Bij 500V systeem is dat Batterij 36 kWh (250 km) laden in 10 minuten Bij 500V systeem is dat 600 kWatt 1,2 kA 216 kWatt 432 A Beide zijn onrealistisch Laadvermogen
  • 40. Elektrische auto’s alleen voor korte afstanden? De ENEXIS EV Vloot heeft inmiddels meer dan 1.000.000 km afgelegd Dat is gemiddeld zo’n 25.000 km per auto/jaar Enkele hebben zelfs meer al dan 100.000 km gereden Integendeel!