SlideShare une entreprise Scribd logo
1  sur  11
ESTE ES UN PROBLEMA QUE SE PRESENTA EN LA MAYORIA DE LOS
ESTUDIANTES DEL DECIMO AÑO DE EDUCACION BASICA EN ADELANTE,
ESTE TRABAJO ES PARA AYUDAR A QUE PUEDAN RECONOCER ESTOS
CASOS DE FACTORIZACION, PERO PARA ESTO SE DEBEN CONOCER
LOS 10 CASOS Y PRACTICAR…
PRIMER PASO:
Determinar cuantos elementos existen en el polinomio (2 o mas términos).
SEGUNDO PASO:
Les voy a dar una tabla para que vean que los casos de factorización se aplican
según la cantidad de términos:
2 términos 3 términos 4 términos
Factor Común (Caso I) Factor Común (Caso I) Factor Común (Caso I)
Diferencia de cuadrados
perfectos (Caso IV)
Trinomio cuadrado perfecto
(Caso III)
Factor común por agrupación
de términos (Caso II)
Suma o diferencia de cubos
perfectos (Caso IX)
Trinomio cuadrado perfecto por
adición y sustracción (Caso V)
Combinación de los casos III y
IV
Suma o diferencia de dos
potencias iguales (Caso X)
Trinomio de la forma x2+bx+c
(Caso VI)
Cubo perfecto de binomios
(Caso VIII)
Trinomio de la forma ax2+bx+c
(Caso VII)
Ahora vamos a utilizar la tabla con ejemplos para diferenciar los
ejercicios. NOTA: se debe conocer el procedimiento de cada caso, pero
igual vamos a ver como se reconoce cada uno)
Pagina 171, ejercicios 106 de algebra de baldor
5a2 + a
Ejercicio 1
PRIMER PASO: En este polinomio existen 2 términos.
SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos:
2 términos
Factor Común (Caso I)
Diferencia de cuadrados
perfectos (Caso IV)
Suma o diferencia de cubos
perfectos (Caso IX)
Suma o diferencia de dos
potencias iguales (Caso X)
NOTA: Siempre empiecen con factor común ya sea
para 2,3 o 4 términos.
Vemos que si hay un factor común que es la letra a.
y resolveríamos.
5a2 + a = a(5a+1)
POR QUÉ NO PUDIERON SER LOS OTROS CASOS: En el CASO IV los 2
términos deben ser cuadrados perfectos por lo que 5 no es cuadrado, CASO IX
los 2 deben ser cubos, 5 no es cubo y “a” no esta elevada al cubo y CASO X las
dos potencias deben ser iguales “a” esta elevado a la 2 en el primer termino y en
el segundo “a” esta elevada a la 1.
Ejercicio 11
a3 - 3a2b + 5ab2
PRIMER PASO: En este polinomio existen 3 términos.
SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos:
3 términos
Factor Común (Caso I)
Trinomio cuadrado perfecto
(Caso III)
Trinomio cuadrado perfecto por
adición y sustracción (Caso V)
Trinomio de la forma x2+bx+c
(Caso VI)
Trinomio de la forma ax2+bx+c
(Caso VII)
NOTA: Siempre empiecen con factor común ya sea para 2,3 o 4 términos.
Vemos que si hay un factor común que es la letra a. y resolveríamos.
a3 - 3a2b + 5ab2 = a(a2 – 3ab + 5b2)
El trinomio a2 – 3ab + 5b2 no se lo puede resolver por caso de
factorización, entonces ahí queda el ejercicio:
Ejercicio 18
a6 + 1
PRIMER PASO: En este polinomio existen 2 términos.
SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos:
NOTA: Siempre empiecen con factor común ya sea para 2,3 o 4 términos.
Vemos que NO hay un factor común, No es diferencia de cuadrados porque el
signo debe ser negativo. Este ejercicio se lo puede resolver como caso IX o
X, según la respuesta del libro.
CASO IX (Suma o diferencia de cubos perfectos)
Primero le sacamos la raíz cubica a los 2 términos. Luego elevamos al cuadrado el primer
término a2 menos el producto de la primer por la segunda mas el cuadrado de la segunda.
2 términos
Factor Común (Caso I)
Diferencia de cuadrados
perfectos (Caso IV)
Suma o diferencia de cubos
perfectos (Caso IX)
Suma o diferencia de dos
potencias iguales (Caso X)
(a2+1)[(a2)2 - (a2)(1)+(1)2] = (a2+1)(a4 - a2 + 1)
CASO X (Suma o diferencia de dos potencias iguales)
Como están elevado a la potencia 6 les saco a los 2 términos la raíz sexta. Luego se eleva el primer término a un grado
menos de lo que estaban elevadas es decir grado 5, como es signo negativo los signos van a ir intercalados, el segundo
término es el primer termino a la cuarta y el segundo término a la primera, el tercer término será el primer termino a la
tercera y el segundo termino a la segunda, mientras el primer término va descendiendo el segundo término va ascendiendo,
ver ejercicio. Ven como los exponentes de “a” descienden mientas los exponentes de 1 ascienden
(a+1)[(a)5 - (a)4(1)+(a)3(1)2 - (a)2(1)3 + (a)(1)4 – (1)5]
(a+1)(a5 - a4+ a3 - a2 + a – 1)
En un examen las 2 respuestas son validas,
como saber si es caso X o IX, si se fijan en el
segundo termino de la respuesta siempre por el
caso X, va a tener el mismo numero de
elemento de la potencia inicial en este caso 6. si
es por el caso IX el segundo término siempre va
a tener 3 términos
Ejercicio 20
16a2 – 24ab + 9b2
PRIMER PASO: En este polinomio existen 3 términos.
SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos:
3 términos
Factor Común (Caso I)
Trinomio cuadrado perfecto
(Caso III)
Trinomio cuadrado perfecto por
adición y sustracción (Caso V)
Trinomio de la forma x2+bx+c
(Caso VI)
Trinomio de la forma ax2+bx+c
(Caso VII)
NOTA: Siempre empiecen con factor común ya sea para 2,3 o 4 términos.
Vemos que si NO hay un factor común ni en letra o coeficiente (número).
Entonces es uno de los 4 casos de trinomio. Siempre empecemos con el
trinomio cuadrado perfecto. Mas adelante les voy a enseñar a reconocer los
4 tipos de trinomio.
Primero vemos si el primer y tercer término tienen raíces cuadradas.
6a2 – 24ab + 9b2
4a 3bPrimer término: La raiz cuadrada
de 16 es 4 y la raíz de a2 es a.
Segundo término: La raíz cuadrada
de 9 es 3 y la raíz de b2 es b.
Luego multiplico los coeficientes
(números) y el valor lo duplico
4x3=12 el doble es 24, y luego
multiplico las letraa axb = ab
24ab
Como si es igual al segundo
elemento mi respuesta es
(4a - 3b)2
Ejercicio 22
8a3 – 12a2 + 6a - 1
PRIMER PASO: En este polinomio existen 4 términos.
SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos:
NOTA: Siempre empiecen con factor común ya sea para 2,3 o 4 términos.
Vemos que si NO hay un factor común ni en letra o coeficiente (número) ni
factor común por agrupación de términos. Combinación de los casos III y IV
no es los 3 primeros términos deben formar un TCP y el 8 no es cuadrado
perfecto. Así que solo nos queda el CASO VIII
Primero vemos si el primer y el cuarto término son cubos perfectos.
Primer término: La raíz cubica de 8 es 2 y
de a3 es a.
Segundo término: La cúbica de 1 es 1.
Para comprobar el segundo término es el
triplo de la primera cantidad al cuadrado por
la segunda 3(2a)2(1) = 3(4a2)(1)=12a2.
Para comprobar el tercer término es el
triplo pero ahora del primero por el segundo
al cuadrado 3(2a)(1)2 = 3(2a)(1) = 6a
2a 1
Como coinciden el segundo y
tercer termino y los signos
pueden ser todos positivos o
alternados en este caso como
son alternados la respuesta va
con signo negativo.
(2a - 1)3
4 términos
Factor Común (Caso I)
Factor común por
agrupación de términos
(Caso II)
Combinación de los casos
III y IV
Cubo perfecto de binomios
(Caso VIII)
8a3 – 12a2 + 6a - 1
COMO RECONOCER LOS 4 TIPOS DE TRINOMIO
Trinomio cuadrado
perfecto (TCP)
Trinomio de la forma
x2+bx+c
Trinomio de la forma
ax2+bx+c
Trinomio cuadrado
perfecto por adición y
sustracción
Primer término y tercer
término cuadrados
perfectos y siempre son
positivos
El primer término solo
lleva la parte literal (letra)
elevada a potencia par
El primer término su
parte literal (letra) esta
elevada a potencia par
pero su coeficiente
generalmente es un
número que no es raíz
cuadrada.
Primer término y tercer
término cuadrados
perfectos y siempre
están elevadas la parte
literal a potencia par
superior a 4.
El segundo término
puede ser positivo o
negativo y es el doble
producto de la raíz del
primer término por la raíz
del segundo termino
El tercer termino puede o
no ser cuadrado perfecto
y llevar signo – o +, pero
generalmente es un
número que no es
cuadrado perfecto.
El segundo y tercer
término puede ser
positivo o negativo
Al segundo término hay
que siempre sumarle
para que sea un
cuadrado perfecto.
El segundo término
puede ser positivo o
negativo
El primer y tercer termino
son siempre positivos.
Vamos a ver con estas características como reconocer los trinomios con ejercicios
del algebra de la miscelánea.
NOTA: para cualquier tipo de trinomio el segundo término debe contener las letras del primer y
tercer término a la mitad de sus exponentes: Ejemplo si el primer termino tiene m4 y el segundo
termino n2, el segundo término debe tener m2 y n. Y deben estar siempre ordenados.
Ejercicio 5 Ejercicio 14 Ejercicio 29
9x2 – 6xy + y2 4x4 +3x2y2+ y4 6x2 +19x – 20
ANALICEMOS CADA UNO
Primer y tercer termino son
cuadrados perfectos y positivos
Primer y tercer termino son
cuadrados perfectos y positivos
Primer término su coeficiente
(número) no es cuadrado perfecto.
El segundo término es el doble
producto de la raíz del primer
término por la raiz del segundo:
2(3x)(y)=6xy
El segundo término NO es el
doble producto de la raíz del
primer término por la raiz del
segundo: 2(2x2)(y2)=4x2y2
Tercer término es negativo.
Veamos si con esa característica podemos determinar a que trinomio pertenecen, veamos nuestra tabla:
Trinomio cuadrado perfecto
(TCP)
Trinomio de la forma x2+bx+c Trinomio de la forma ax2+bx+c
Trinomio cuadrado perfecto
por adición y sustracción
Primer término y tercer término
cuadrados perfectos y siempre
son positivos
El primer término solo lleva la
parte literal (letra) elevada a
potencia par
El primer término su parte literal
(letra) esta elevada a potencia
par pero su coeficiente
generalmente es un número que
no es cuadrado perfecto.
Primer término y tercer término
cuadrados perfectos y siempre
están elevadas la parte literal a
potencia par superior a 4.
El segundo término puede ser
positivo o negativo y es el doble
producto de la raíz del primer
término por la raíz del segundo
termino
El tercer termino puede o no ser
cuadrado perfecto y llevar signo –
o +, pero generalmente es un
número que no es cuadrado
perfecto.
El segundo y tercer término
puede ser positivo o negativo
Al segundo término hay que
siempre sumarle para que sea un
cuadrado perfecto.
El segundo término puede ser
positivo o negativo
El primer y tercer termino son
siempre positivos.
Para el ejercicio 5 sabemos que es un trinomio cuadrado perfecto (TCP), ejercicio 29 sabemos que es un
trinomio de la forma ax2+bc-x+c, el ejercicio 14 queda descartado TCP, queda descartado de la forma
x2+bx+c, se debería ver otra característica para ver que tipo de trinomio es si ax2+bx+c o por adición y
sustracción
Ejercicio 5 Ejercicio 14 Ejercicio 29
9x2 – 6xy + y2 4x4 +3x2y2+ y4 6x2 +19x – 20
3x y
2(3x)(y) = 6xy
Respuesta (3x – y)2
Primer y tercer termino son
cuadrados perfectos y positivos
36x2 + 19(6)x – 120
6
(6x + 24)(6x – 5)
6 x 1
(x + 4)(6x – 5)
El segundo término NO es el
doble producto de la raíz del
primer término por la raiz del
segundo: 2(2x2)(y2)=4x2y2
El ejercicio 14 queda descartado TCP, queda descartado de la forma x2+bx+c, se debería ver otra característica para ver que
tipo de trinomio es si ax2+bx+c o por adición y sustracción. Si lo resolvemos por la forma ax2+bx+c el 4 debemos multiplicarlo
para cada término y tendríamos 16x4 +3(4)x2y2+ 4y4 pero no va a ver 2 números que multiplicados den 4 y que sumados den
3, porque las alternativas son 4x1=4 y 2x2=4 pero 4+1=5 y 2+2=4, por eso no se lo puede resolver como este trinomio. Ahora
veamos por adición y sustracción, si notan en una de las características decía que las letras del primer y tercer término
estaban elevados a potencia par superior a 4.
4x4 +3x2y2+ y4
+x2y2 – x2y2
4x4 +4x2y2+ y4 – x2y2
(2x2 +y2)2 – x2y2
Vemos que los 3 primeros términos es un cuadrado perfecto
[(2x2 +y2) – xy] [(2x2 +y2)2 + xy]
(2x2 + y2 – xy)(2x2 + y2 + xy)
Para estos ejercicios se necesita practicar y rapidez
mental abajo les dejare un link donde están
resueltos los ejercicios, por favor úsenlos como
guía y traten de seguir estos consejos, espero les
haya servido cualquier comentario hacerlo saber
para mejorar la presentación. GRACIAS

Contenu connexe

Tendances

Casos de factorización
Casos de factorizaciónCasos de factorización
Casos de factorización
Domiitha
 
Ejercicios resueltos de radicales
Ejercicios resueltos de radicalesEjercicios resueltos de radicales
Ejercicios resueltos de radicales
Twitter
 
Ejercicios y soluciones de funciones lineales
Ejercicios y soluciones de funciones linealesEjercicios y soluciones de funciones lineales
Ejercicios y soluciones de funciones lineales
cepa_los_llanos
 

Tendances (20)

Casos de factorización
Casos de factorizaciónCasos de factorización
Casos de factorización
 
Lenguaje verbal y enguaje algebraico 1
Lenguaje verbal y enguaje algebraico 1Lenguaje verbal y enguaje algebraico 1
Lenguaje verbal y enguaje algebraico 1
 
Ejercicios de ecuaciones Cuadráticas resueltos.
Ejercicios de ecuaciones Cuadráticas resueltos.Ejercicios de ecuaciones Cuadráticas resueltos.
Ejercicios de ecuaciones Cuadráticas resueltos.
 
Taller de polinomios aritmeticos
Taller de polinomios aritmeticosTaller de polinomios aritmeticos
Taller de polinomios aritmeticos
 
Formula general
Formula generalFormula general
Formula general
 
Desigualdades e intervalos calculo.
Desigualdades e intervalos calculo.Desigualdades e intervalos calculo.
Desigualdades e intervalos calculo.
 
Problemas de razones y proporciones
Problemas de razones y proporcionesProblemas de razones y proporciones
Problemas de razones y proporciones
 
Funciones exponenciales
Funciones exponencialesFunciones exponenciales
Funciones exponenciales
 
Ejercicios resueltos: LENGUAJE ALGEBRAICO. ECUACIONES
Ejercicios resueltos: LENGUAJE ALGEBRAICO. ECUACIONESEjercicios resueltos: LENGUAJE ALGEBRAICO. ECUACIONES
Ejercicios resueltos: LENGUAJE ALGEBRAICO. ECUACIONES
 
Funcion lineal en la vida real diaria
Funcion lineal en la vida real diariaFuncion lineal en la vida real diaria
Funcion lineal en la vida real diaria
 
Ejercicios resueltos de radicales
Ejercicios resueltos de radicalesEjercicios resueltos de radicales
Ejercicios resueltos de radicales
 
Relación entre Productos notables y Factorización
Relación entre Productos notables y FactorizaciónRelación entre Productos notables y Factorización
Relación entre Productos notables y Factorización
 
Ejercicios de suma y resta de polinomios
Ejercicios de suma y resta de polinomiosEjercicios de suma y resta de polinomios
Ejercicios de suma y resta de polinomios
 
Evaluación de Funciones - EMdH
Evaluación de Funciones - EMdHEvaluación de Funciones - EMdH
Evaluación de Funciones - EMdH
 
Estadistica, poblacion, muestra y variables
Estadistica, poblacion, muestra y variablesEstadistica, poblacion, muestra y variables
Estadistica, poblacion, muestra y variables
 
PRODUCTOS NOTABLES
PRODUCTOS NOTABLESPRODUCTOS NOTABLES
PRODUCTOS NOTABLES
 
Factorización y productos notables 2° a b-c
Factorización y productos notables 2° a b-cFactorización y productos notables 2° a b-c
Factorización y productos notables 2° a b-c
 
Ejercicios de Factorización
Ejercicios de FactorizaciónEjercicios de Factorización
Ejercicios de Factorización
 
Ejercicios y soluciones de funciones lineales
Ejercicios y soluciones de funciones linealesEjercicios y soluciones de funciones lineales
Ejercicios y soluciones de funciones lineales
 
NOMENCLATURA Y FORMULACIÓN DE SALES
NOMENCLATURA Y FORMULACIÓN DE SALES NOMENCLATURA Y FORMULACIÓN DE SALES
NOMENCLATURA Y FORMULACIÓN DE SALES
 

En vedette

Ejercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldorEjercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldor
DiegoMendoz
 
Factorizacion de expresiones algebraicas ppt
Factorizacion de expresiones algebraicas pptFactorizacion de expresiones algebraicas ppt
Factorizacion de expresiones algebraicas ppt
Oscar Ruiz Marin
 
Factor comun
Factor  comunFactor  comun
Factor comun
Abnrito14
 
Diapositivas factorización
Diapositivas factorizaciónDiapositivas factorización
Diapositivas factorización
leiner1031
 
Factorizacion de expresiones algebraicas
Factorizacion de expresiones algebraicasFactorizacion de expresiones algebraicas
Factorizacion de expresiones algebraicas
mirocoyote
 

En vedette (20)

10 casos de factoreo
10 casos de factoreo10 casos de factoreo
10 casos de factoreo
 
Ejercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldorEjercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldor
 
CASOS DE FACTORIZACIÓN
CASOS DE FACTORIZACIÓNCASOS DE FACTORIZACIÓN
CASOS DE FACTORIZACIÓN
 
Silogismos categóricosvf
Silogismos categóricosvfSilogismos categóricosvf
Silogismos categóricosvf
 
Factor Común
Factor ComúnFactor Común
Factor Común
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
Factor común
Factor comúnFactor común
Factor común
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
Factorizacion de expresiones algebraicas ppt
Factorizacion de expresiones algebraicas pptFactorizacion de expresiones algebraicas ppt
Factorizacion de expresiones algebraicas ppt
 
Mapa conceptual casos de factorizacion
Mapa conceptual casos de factorizacionMapa conceptual casos de factorizacion
Mapa conceptual casos de factorizacion
 
Factor comun
Factor  comunFactor  comun
Factor comun
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
1.2 factorizacion
1.2 factorizacion1.2 factorizacion
1.2 factorizacion
 
Factor Comun
Factor ComunFactor Comun
Factor Comun
 
Factorización algebraica
Factorización algebraicaFactorización algebraica
Factorización algebraica
 
Diapositivas factorización
Diapositivas factorizaciónDiapositivas factorización
Diapositivas factorización
 
Factorizacion y productos notables
Factorizacion y productos notablesFactorizacion y productos notables
Factorizacion y productos notables
 
Factorizacion de expresiones algebraicas
Factorizacion de expresiones algebraicasFactorizacion de expresiones algebraicas
Factorizacion de expresiones algebraicas
 
Resumen casos de factorizacion
Resumen casos de factorizacionResumen casos de factorizacion
Resumen casos de factorizacion
 
20. factorizacion de expresiones algebraicas
20. factorizacion de expresiones algebraicas20. factorizacion de expresiones algebraicas
20. factorizacion de expresiones algebraicas
 

Similaire à COMO RECONOCER LOS CASOS DE FACTORIZACION (20)

Tutorial de factorización
Tutorial de factorizaciónTutorial de factorización
Tutorial de factorización
 
Casos de factorización (1)
Casos de factorización (1)Casos de factorización (1)
Casos de factorización (1)
 
Factorización
FactorizaciónFactorización
Factorización
 
Factorización
FactorizaciónFactorización
Factorización
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
Casos de factorización
Casos de factorizaciónCasos de factorización
Casos de factorización
 
Numeros reales casos de factorización
Numeros reales casos de factorizaciónNumeros reales casos de factorización
Numeros reales casos de factorización
 
Modulo factorización
Modulo factorizaciónModulo factorización
Modulo factorización
 
Modulo factorización
Modulo factorizaciónModulo factorización
Modulo factorización
 
Modulo factorización
Modulo factorizaciónModulo factorización
Modulo factorización
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
Tipos de Factorizacion
Tipos de FactorizacionTipos de Factorizacion
Tipos de Factorizacion
 
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
 
Factorizacion
FactorizacionFactorizacion
Factorizacion
 
10-casos-de-factorizacion
 10-casos-de-factorizacion 10-casos-de-factorizacion
10-casos-de-factorizacion
 
Modulo factorizacion
Modulo factorizacionModulo factorizacion
Modulo factorizacion
 
Factorización
FactorizaciónFactorización
Factorización
 
En álgebra
En álgebraEn álgebra
En álgebra
 

Plus de enrique0975

CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NOCUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
enrique0975
 
Resuelva el siguiente sistema de ecuaciones y graficarlo - GAMBOA
Resuelva el siguiente sistema de ecuaciones y graficarlo - GAMBOAResuelva el siguiente sistema de ecuaciones y graficarlo - GAMBOA
Resuelva el siguiente sistema de ecuaciones y graficarlo - GAMBOA
enrique0975
 

Plus de enrique0975 (20)

Dominio de una funcion
Dominio de una funcionDominio de una funcion
Dominio de una funcion
 
Ecuaciones metodos gauss jordan
Ecuaciones metodos gauss jordanEcuaciones metodos gauss jordan
Ecuaciones metodos gauss jordan
 
Funcion exponencial ejercicios sullivan
Funcion exponencial ejercicios sullivanFuncion exponencial ejercicios sullivan
Funcion exponencial ejercicios sullivan
 
matematicas funcion exponencial EJERCICIOS
matematicas funcion exponencial EJERCICIOSmatematicas funcion exponencial EJERCICIOS
matematicas funcion exponencial EJERCICIOS
 
Matematicas funcion exponencial
Matematicas funcion exponencialMatematicas funcion exponencial
Matematicas funcion exponencial
 
EXPOSICION DE QUIMICA - FUENTE DE LOS ALCANOS Y PROPIEDADES FISICAS Y QUIMICAS
EXPOSICION DE QUIMICA -  FUENTE DE LOS ALCANOS Y PROPIEDADES FISICAS Y QUIMICASEXPOSICION DE QUIMICA -  FUENTE DE LOS ALCANOS Y PROPIEDADES FISICAS Y QUIMICAS
EXPOSICION DE QUIMICA - FUENTE DE LOS ALCANOS Y PROPIEDADES FISICAS Y QUIMICAS
 
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NOCUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
CUESTIONARIO MATEMÁTICAS - TAREA VACACIONAL 9NO
 
Cuestionario matematicas
Cuestionario matematicasCuestionario matematicas
Cuestionario matematicas
 
EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...
EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...
EJERCICIOS RESUELTOS DE ENERGIA CINETICA, ENERGIA POTENCIAL, TRABAJO Y POTENC...
 
Deber de fisica
Deber de fisicaDeber de fisica
Deber de fisica
 
BISECTRIZ Y MEDIATRIZ DE UN TRIANGULO - GEOMETRIA ANALITICA
BISECTRIZ Y MEDIATRIZ DE UN TRIANGULO - GEOMETRIA ANALITICABISECTRIZ Y MEDIATRIZ DE UN TRIANGULO - GEOMETRIA ANALITICA
BISECTRIZ Y MEDIATRIZ DE UN TRIANGULO - GEOMETRIA ANALITICA
 
INECUACIONES SEGUNDO GRADO - GAMBOA
INECUACIONES SEGUNDO GRADO - GAMBOAINECUACIONES SEGUNDO GRADO - GAMBOA
INECUACIONES SEGUNDO GRADO - GAMBOA
 
Resuelva el siguiente sistema de ecuaciones y graficarlo - GAMBOA
Resuelva el siguiente sistema de ecuaciones y graficarlo - GAMBOAResuelva el siguiente sistema de ecuaciones y graficarlo - GAMBOA
Resuelva el siguiente sistema de ecuaciones y graficarlo - GAMBOA
 
MRU COMIL
MRU COMILMRU COMIL
MRU COMIL
 
SUMA Y RESTA DE VECTORES GRAFICA Y ANALITICAMENTE
SUMA Y RESTA DE VECTORES GRAFICA Y ANALITICAMENTESUMA Y RESTA DE VECTORES GRAFICA Y ANALITICAMENTE
SUMA Y RESTA DE VECTORES GRAFICA Y ANALITICAMENTE
 
DEBER DE LAS MOCOCHITAS DEL GAMBOA JAJAJAJA
DEBER DE LAS MOCOCHITAS DEL GAMBOA JAJAJAJADEBER DE LAS MOCOCHITAS DEL GAMBOA JAJAJAJA
DEBER DE LAS MOCOCHITAS DEL GAMBOA JAJAJAJA
 
Numeros imaginarios - COMIL
Numeros imaginarios - COMILNumeros imaginarios - COMIL
Numeros imaginarios - COMIL
 
Sistema de inecuaciones - COMIL
Sistema de inecuaciones - COMILSistema de inecuaciones - COMIL
Sistema de inecuaciones - COMIL
 
Inecuaciones lineales y cuadraticas COMIL - enrique0975
Inecuaciones lineales y cuadraticas COMIL - enrique0975Inecuaciones lineales y cuadraticas COMIL - enrique0975
Inecuaciones lineales y cuadraticas COMIL - enrique0975
 
ANUALIDADES E INTERES COMPUESTO
ANUALIDADES E INTERES COMPUESTOANUALIDADES E INTERES COMPUESTO
ANUALIDADES E INTERES COMPUESTO
 

Dernier

PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
lupitavic
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
El Fortí
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
NancyLoaa
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
JonathanCovena1
 

Dernier (20)

Sesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronósticoSesión de clase: Fe contra todo pronóstico
Sesión de clase: Fe contra todo pronóstico
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.Fe contra todo pronóstico. La fe es confianza.
Fe contra todo pronóstico. La fe es confianza.
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° grado
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 

COMO RECONOCER LOS CASOS DE FACTORIZACION

  • 1. ESTE ES UN PROBLEMA QUE SE PRESENTA EN LA MAYORIA DE LOS ESTUDIANTES DEL DECIMO AÑO DE EDUCACION BASICA EN ADELANTE, ESTE TRABAJO ES PARA AYUDAR A QUE PUEDAN RECONOCER ESTOS CASOS DE FACTORIZACION, PERO PARA ESTO SE DEBEN CONOCER LOS 10 CASOS Y PRACTICAR…
  • 2. PRIMER PASO: Determinar cuantos elementos existen en el polinomio (2 o mas términos). SEGUNDO PASO: Les voy a dar una tabla para que vean que los casos de factorización se aplican según la cantidad de términos: 2 términos 3 términos 4 términos Factor Común (Caso I) Factor Común (Caso I) Factor Común (Caso I) Diferencia de cuadrados perfectos (Caso IV) Trinomio cuadrado perfecto (Caso III) Factor común por agrupación de términos (Caso II) Suma o diferencia de cubos perfectos (Caso IX) Trinomio cuadrado perfecto por adición y sustracción (Caso V) Combinación de los casos III y IV Suma o diferencia de dos potencias iguales (Caso X) Trinomio de la forma x2+bx+c (Caso VI) Cubo perfecto de binomios (Caso VIII) Trinomio de la forma ax2+bx+c (Caso VII) Ahora vamos a utilizar la tabla con ejemplos para diferenciar los ejercicios. NOTA: se debe conocer el procedimiento de cada caso, pero igual vamos a ver como se reconoce cada uno)
  • 3. Pagina 171, ejercicios 106 de algebra de baldor 5a2 + a Ejercicio 1 PRIMER PASO: En este polinomio existen 2 términos. SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos: 2 términos Factor Común (Caso I) Diferencia de cuadrados perfectos (Caso IV) Suma o diferencia de cubos perfectos (Caso IX) Suma o diferencia de dos potencias iguales (Caso X) NOTA: Siempre empiecen con factor común ya sea para 2,3 o 4 términos. Vemos que si hay un factor común que es la letra a. y resolveríamos. 5a2 + a = a(5a+1) POR QUÉ NO PUDIERON SER LOS OTROS CASOS: En el CASO IV los 2 términos deben ser cuadrados perfectos por lo que 5 no es cuadrado, CASO IX los 2 deben ser cubos, 5 no es cubo y “a” no esta elevada al cubo y CASO X las dos potencias deben ser iguales “a” esta elevado a la 2 en el primer termino y en el segundo “a” esta elevada a la 1.
  • 4. Ejercicio 11 a3 - 3a2b + 5ab2 PRIMER PASO: En este polinomio existen 3 términos. SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos: 3 términos Factor Común (Caso I) Trinomio cuadrado perfecto (Caso III) Trinomio cuadrado perfecto por adición y sustracción (Caso V) Trinomio de la forma x2+bx+c (Caso VI) Trinomio de la forma ax2+bx+c (Caso VII) NOTA: Siempre empiecen con factor común ya sea para 2,3 o 4 términos. Vemos que si hay un factor común que es la letra a. y resolveríamos. a3 - 3a2b + 5ab2 = a(a2 – 3ab + 5b2) El trinomio a2 – 3ab + 5b2 no se lo puede resolver por caso de factorización, entonces ahí queda el ejercicio:
  • 5. Ejercicio 18 a6 + 1 PRIMER PASO: En este polinomio existen 2 términos. SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos: NOTA: Siempre empiecen con factor común ya sea para 2,3 o 4 términos. Vemos que NO hay un factor común, No es diferencia de cuadrados porque el signo debe ser negativo. Este ejercicio se lo puede resolver como caso IX o X, según la respuesta del libro. CASO IX (Suma o diferencia de cubos perfectos) Primero le sacamos la raíz cubica a los 2 términos. Luego elevamos al cuadrado el primer término a2 menos el producto de la primer por la segunda mas el cuadrado de la segunda. 2 términos Factor Común (Caso I) Diferencia de cuadrados perfectos (Caso IV) Suma o diferencia de cubos perfectos (Caso IX) Suma o diferencia de dos potencias iguales (Caso X) (a2+1)[(a2)2 - (a2)(1)+(1)2] = (a2+1)(a4 - a2 + 1) CASO X (Suma o diferencia de dos potencias iguales) Como están elevado a la potencia 6 les saco a los 2 términos la raíz sexta. Luego se eleva el primer término a un grado menos de lo que estaban elevadas es decir grado 5, como es signo negativo los signos van a ir intercalados, el segundo término es el primer termino a la cuarta y el segundo término a la primera, el tercer término será el primer termino a la tercera y el segundo termino a la segunda, mientras el primer término va descendiendo el segundo término va ascendiendo, ver ejercicio. Ven como los exponentes de “a” descienden mientas los exponentes de 1 ascienden (a+1)[(a)5 - (a)4(1)+(a)3(1)2 - (a)2(1)3 + (a)(1)4 – (1)5] (a+1)(a5 - a4+ a3 - a2 + a – 1) En un examen las 2 respuestas son validas, como saber si es caso X o IX, si se fijan en el segundo termino de la respuesta siempre por el caso X, va a tener el mismo numero de elemento de la potencia inicial en este caso 6. si es por el caso IX el segundo término siempre va a tener 3 términos
  • 6. Ejercicio 20 16a2 – 24ab + 9b2 PRIMER PASO: En este polinomio existen 3 términos. SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos: 3 términos Factor Común (Caso I) Trinomio cuadrado perfecto (Caso III) Trinomio cuadrado perfecto por adición y sustracción (Caso V) Trinomio de la forma x2+bx+c (Caso VI) Trinomio de la forma ax2+bx+c (Caso VII) NOTA: Siempre empiecen con factor común ya sea para 2,3 o 4 términos. Vemos que si NO hay un factor común ni en letra o coeficiente (número). Entonces es uno de los 4 casos de trinomio. Siempre empecemos con el trinomio cuadrado perfecto. Mas adelante les voy a enseñar a reconocer los 4 tipos de trinomio. Primero vemos si el primer y tercer término tienen raíces cuadradas. 6a2 – 24ab + 9b2 4a 3bPrimer término: La raiz cuadrada de 16 es 4 y la raíz de a2 es a. Segundo término: La raíz cuadrada de 9 es 3 y la raíz de b2 es b. Luego multiplico los coeficientes (números) y el valor lo duplico 4x3=12 el doble es 24, y luego multiplico las letraa axb = ab 24ab Como si es igual al segundo elemento mi respuesta es (4a - 3b)2
  • 7. Ejercicio 22 8a3 – 12a2 + 6a - 1 PRIMER PASO: En este polinomio existen 4 términos. SEGUNDO PASO: Revisando nuestra tabla tenemos los siguientes casos: NOTA: Siempre empiecen con factor común ya sea para 2,3 o 4 términos. Vemos que si NO hay un factor común ni en letra o coeficiente (número) ni factor común por agrupación de términos. Combinación de los casos III y IV no es los 3 primeros términos deben formar un TCP y el 8 no es cuadrado perfecto. Así que solo nos queda el CASO VIII Primero vemos si el primer y el cuarto término son cubos perfectos. Primer término: La raíz cubica de 8 es 2 y de a3 es a. Segundo término: La cúbica de 1 es 1. Para comprobar el segundo término es el triplo de la primera cantidad al cuadrado por la segunda 3(2a)2(1) = 3(4a2)(1)=12a2. Para comprobar el tercer término es el triplo pero ahora del primero por el segundo al cuadrado 3(2a)(1)2 = 3(2a)(1) = 6a 2a 1 Como coinciden el segundo y tercer termino y los signos pueden ser todos positivos o alternados en este caso como son alternados la respuesta va con signo negativo. (2a - 1)3 4 términos Factor Común (Caso I) Factor común por agrupación de términos (Caso II) Combinación de los casos III y IV Cubo perfecto de binomios (Caso VIII) 8a3 – 12a2 + 6a - 1
  • 8. COMO RECONOCER LOS 4 TIPOS DE TRINOMIO Trinomio cuadrado perfecto (TCP) Trinomio de la forma x2+bx+c Trinomio de la forma ax2+bx+c Trinomio cuadrado perfecto por adición y sustracción Primer término y tercer término cuadrados perfectos y siempre son positivos El primer término solo lleva la parte literal (letra) elevada a potencia par El primer término su parte literal (letra) esta elevada a potencia par pero su coeficiente generalmente es un número que no es raíz cuadrada. Primer término y tercer término cuadrados perfectos y siempre están elevadas la parte literal a potencia par superior a 4. El segundo término puede ser positivo o negativo y es el doble producto de la raíz del primer término por la raíz del segundo termino El tercer termino puede o no ser cuadrado perfecto y llevar signo – o +, pero generalmente es un número que no es cuadrado perfecto. El segundo y tercer término puede ser positivo o negativo Al segundo término hay que siempre sumarle para que sea un cuadrado perfecto. El segundo término puede ser positivo o negativo El primer y tercer termino son siempre positivos. Vamos a ver con estas características como reconocer los trinomios con ejercicios del algebra de la miscelánea. NOTA: para cualquier tipo de trinomio el segundo término debe contener las letras del primer y tercer término a la mitad de sus exponentes: Ejemplo si el primer termino tiene m4 y el segundo termino n2, el segundo término debe tener m2 y n. Y deben estar siempre ordenados.
  • 9. Ejercicio 5 Ejercicio 14 Ejercicio 29 9x2 – 6xy + y2 4x4 +3x2y2+ y4 6x2 +19x – 20 ANALICEMOS CADA UNO Primer y tercer termino son cuadrados perfectos y positivos Primer y tercer termino son cuadrados perfectos y positivos Primer término su coeficiente (número) no es cuadrado perfecto. El segundo término es el doble producto de la raíz del primer término por la raiz del segundo: 2(3x)(y)=6xy El segundo término NO es el doble producto de la raíz del primer término por la raiz del segundo: 2(2x2)(y2)=4x2y2 Tercer término es negativo. Veamos si con esa característica podemos determinar a que trinomio pertenecen, veamos nuestra tabla: Trinomio cuadrado perfecto (TCP) Trinomio de la forma x2+bx+c Trinomio de la forma ax2+bx+c Trinomio cuadrado perfecto por adición y sustracción Primer término y tercer término cuadrados perfectos y siempre son positivos El primer término solo lleva la parte literal (letra) elevada a potencia par El primer término su parte literal (letra) esta elevada a potencia par pero su coeficiente generalmente es un número que no es cuadrado perfecto. Primer término y tercer término cuadrados perfectos y siempre están elevadas la parte literal a potencia par superior a 4. El segundo término puede ser positivo o negativo y es el doble producto de la raíz del primer término por la raíz del segundo termino El tercer termino puede o no ser cuadrado perfecto y llevar signo – o +, pero generalmente es un número que no es cuadrado perfecto. El segundo y tercer término puede ser positivo o negativo Al segundo término hay que siempre sumarle para que sea un cuadrado perfecto. El segundo término puede ser positivo o negativo El primer y tercer termino son siempre positivos. Para el ejercicio 5 sabemos que es un trinomio cuadrado perfecto (TCP), ejercicio 29 sabemos que es un trinomio de la forma ax2+bc-x+c, el ejercicio 14 queda descartado TCP, queda descartado de la forma x2+bx+c, se debería ver otra característica para ver que tipo de trinomio es si ax2+bx+c o por adición y sustracción
  • 10. Ejercicio 5 Ejercicio 14 Ejercicio 29 9x2 – 6xy + y2 4x4 +3x2y2+ y4 6x2 +19x – 20 3x y 2(3x)(y) = 6xy Respuesta (3x – y)2 Primer y tercer termino son cuadrados perfectos y positivos 36x2 + 19(6)x – 120 6 (6x + 24)(6x – 5) 6 x 1 (x + 4)(6x – 5) El segundo término NO es el doble producto de la raíz del primer término por la raiz del segundo: 2(2x2)(y2)=4x2y2 El ejercicio 14 queda descartado TCP, queda descartado de la forma x2+bx+c, se debería ver otra característica para ver que tipo de trinomio es si ax2+bx+c o por adición y sustracción. Si lo resolvemos por la forma ax2+bx+c el 4 debemos multiplicarlo para cada término y tendríamos 16x4 +3(4)x2y2+ 4y4 pero no va a ver 2 números que multiplicados den 4 y que sumados den 3, porque las alternativas son 4x1=4 y 2x2=4 pero 4+1=5 y 2+2=4, por eso no se lo puede resolver como este trinomio. Ahora veamos por adición y sustracción, si notan en una de las características decía que las letras del primer y tercer término estaban elevados a potencia par superior a 4. 4x4 +3x2y2+ y4 +x2y2 – x2y2 4x4 +4x2y2+ y4 – x2y2 (2x2 +y2)2 – x2y2 Vemos que los 3 primeros términos es un cuadrado perfecto [(2x2 +y2) – xy] [(2x2 +y2)2 + xy] (2x2 + y2 – xy)(2x2 + y2 + xy)
  • 11. Para estos ejercicios se necesita practicar y rapidez mental abajo les dejare un link donde están resueltos los ejercicios, por favor úsenlos como guía y traten de seguir estos consejos, espero les haya servido cualquier comentario hacerlo saber para mejorar la presentación. GRACIAS