SlideShare une entreprise Scribd logo
1  sur  13
Télécharger pour lire hors ligne
10.7 Moments of Inertia for an
                  Area about Inclined Axes
In structural and mechanical design,
necessary to calculate the moments and
product of inertia Iu, Iv and Iuv for an area
with respect to a set of inclined u and v
axes when the values
of θ, Ix, Iy and Ixy are known
Use transformation
equations which relate
the x, y and u, v coordinates
10.7 Moments of Inertia for an
                      Area about Inclined Axes

u = x cos θ + y sin θ
v = y cos θ − x sin θ
For moments and product of inertia of
dA about the u and v axes,
dI u = v 2 dA = ( y cos θ − x sin θ ) 2 dA
dI v = u 2 dA = ( x cos θ + y sin θ ) 2 dA
dI uv = uvdA = ( x cos θ + y sin θ )( y cos θ − x sin θ )dA
10.7 Moments of Inertia for an
                        Area about Inclined Axes
Integrating,

I u = I x cos 2 θ + I y sin 2 θ − 2 I xy sin θ cos θ
I v = I x sin 2 θ + I y cos 2 θ + 2 I xy sin θ cos θ
I uv = I x sin θ cos θ − I y sin θ cos θ + 2 I xy (cos 2 θ − sin 2 θ )
Simplifying using trigonometric identities,
sin 2θ = 2 sin θ cos θ
cos 2θ = cos 2 θ − sin 2 θ
10.7 Moments of Inertia for an
                                  Area about Inclined Axes
         Ix + I y       Ix − I y
Iu =                +              cos 2θ − I xy sin 2θ
            2              2
         Ix + I y       Ix − Iy
Iv =                −              cos 2θ + I xy sin 2θ
           2               2
         Ix − I y
I uv =              sin 2θ + 2 I xy cos 2θ
             2
Polar moment of inertia about the z axis
passing through point O is independent of
the u and v axes
J O = Iu + Iv = I x + I y
10.7 Moments of Inertia for an
                  Area about Inclined Axes
Principal Moments of Inertia
  Iu, Iv and Iuv depend on the angle of
  inclination θ of the u, v axes
  To determine the orientation of these axes
  about which the moments of inertia for the
  area Iu and Iv are maximum and minimum
  This particular set of axes is called the
  principal axes of the area and the
  corresponding moments of inertia with
  respect to these axes are called the principal
  moments of inertia
10.7 Moments of Inertia for an
                 Area about Inclined Axes
Principal Moments of Inertia
  There is a set of principle axes for every
  chosen origin O
  For the structural and mechanical design of a
  member, the origin O is generally located at
  the cross-sectional area’s centroid
  The angle θ = θp defines the orientation of
  the principal axes for the area. Found by
  differentiating with respect to θ and setting
  the result to zero
10.7 Moments of Inertia for an
                               Area about Inclined Axes
Principal Moments of Inertia
  dI u      Ix − Iy 
  dθ        2  sin 2θ − 2 I xy cos 2θ = 0
       = −2         
                    
  Therefore
  θ =θp
                   − I xy
  tan 2θ p =
         (I − I )/ 2
               x       y

  Equation has 2 roots, θp1 and
  θp2 which are 90° apart and
  so specify the inclination of
  the principal axes
10.7 Moments of Inertia for an
                         Area about Inclined Axes

Principal Moments of Inertia
                                               2
                            Ix − I y     2
   Forθp1,sin2θp1 = −Ixy / 
                            2        + Ixy
                                     
                                       2
              Ix − I y      Ix − I y     2
   cos2θp1 = 
              2 /         
                              2        + Ixy
                                     
                                           2
                            Ix − I y     2
   Forθp2,sin2θ p2 = Ixy / 
                            2        + Ixy
                                     
                                           2
               Ix − I y      Ix − I y     2
   cos2θp2 = −
               2 /         
                               2        + Ixy
                                      
10.7 Moments of Inertia for an
                               Area about Inclined Axes
Principal Moments of Inertia
                                           2
                  Ix + Iy      Ix − Iy   
    I   max
        min   =             ± 
                               2          + I xy
                                          
                                                2

                    2                    
  Depending on the sign chosen, this result gives
  the maximum or minimum moment of inertia for
  the area
  It can be shown that Iuv = 0, that is, the product
  of inertia with respect to the principal axes is
  zero
  Any symmetric axis represent a principal axis of
  inertia for the area
10.7 Moments of Inertia for an
                   Area about Inclined Axes

Example 10.9
Determine the principal moments of inertia
for the beam’s
cross-sectional area with
respect to an axis passing
through the centroid.
10.7 Moments of Inertia for an
                       Area about Inclined Axes
Solution
  Moment and product of inertia of the cross-sectional
  area with respect to the x, y axes have been
  computed in the previous examples
                      ( )
           I x = 2.90 109 mm 4                          ( )
                                              I y = 5.60 109 mm 4                ( )
                                                                     I z = −3.00 109 mm 4
  Using the angles of inclination of principal axes u
  and v              − I xy        3.00(109 )
           tan 2θ p =                         =                               = −2.22
                        (I   x   − I y )/ 2       [2.90(10 )− 5.60(10 )]/ 2
                                                          9          9


           2θ p1 = −65.8o ,2θ p 2 = 114.2o


  Thus,    θ p1 = −32.9o , θ p 2 = 57.1o
10.7 Moments of Inertia for an
                               Area about Inclined Axes
Solution
  For principal of inertia with respect to the u
  and v axes                    2
            Ix + Iy      Ix − Iy 
  I min =
    max
                      ± 
                         2  + I xy
                                  
                                    2

              2                  

  =
            ( )
    2.90 109 + 5.60 109 ( )
             2

    ± 
                  ( )
       2.90 109 − 5.60 109  ( )   2

                                        [         ( )]
                                                     2
                             + − 3.00 10
                                          9

                2          
                  ( )       ( )
  I min = 4.25 109 ± 3.29 109
    max


  or
                  ( )                       ( )
  I max = 7.54 109 mm 4 , I min = 0.960 109 mm 4
10.7 Moments of Inertia for an
                Area about Inclined Axes

Solution
  Maximum moment of inertia occurs with
  respect to the selected u axis since by
  inspection, most of the cross-sectional area is
  farthest away from this axis
  Maximum moment of inertia occurs at the u
  axis since it is located within ±45° of the y
  axis, which has the largest value of I

Contenu connexe

Tendances

Ch4 answer to the homework problem
Ch4 answer to the homework problemCh4 answer to the homework problem
Ch4 answer to the homework problem
imshizuchan
 
Chapter 11 kinematics of particles
Chapter 11 kinematics of particlesChapter 11 kinematics of particles
Chapter 11 kinematics of particles
Rogin Beldeneza
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
Deepak Agarwal
 
Kinematics of-rigid-body
Kinematics of-rigid-bodyKinematics of-rigid-body
Kinematics of-rigid-body
sharancm2009
 

Tendances (20)

Ch4 answer to the homework problem
Ch4 answer to the homework problemCh4 answer to the homework problem
Ch4 answer to the homework problem
 
Potential flow
Potential flowPotential flow
Potential flow
 
005 first law
005 first law005 first law
005 first law
 
Energy methods for damped systems
Energy methods for damped systemsEnergy methods for damped systems
Energy methods for damped systems
 
Rigid body
Rigid bodyRigid body
Rigid body
 
Resultant of forces
Resultant of forcesResultant of forces
Resultant of forces
 
Kinetics of particles work energy method
Kinetics of particles work energy methodKinetics of particles work energy method
Kinetics of particles work energy method
 
Mohr circle
Mohr circleMohr circle
Mohr circle
 
Chapter 11 kinematics of particles
Chapter 11 kinematics of particlesChapter 11 kinematics of particles
Chapter 11 kinematics of particles
 
capitulo 16 de dinamica
capitulo 16 de dinamicacapitulo 16 de dinamica
capitulo 16 de dinamica
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
 
Unit9
Unit9Unit9
Unit9
 
Chapter 1- Thermodynamic 1
Chapter 1- Thermodynamic 1Chapter 1- Thermodynamic 1
Chapter 1- Thermodynamic 1
 
General Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a ProjectileGeneral Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a Projectile
 
Marine hydrodynamics
Marine hydrodynamicsMarine hydrodynamics
Marine hydrodynamics
 
equilibrium-of-rigid-body
equilibrium-of-rigid-bodyequilibrium-of-rigid-body
equilibrium-of-rigid-body
 
Kinematics of-rigid-body
Kinematics of-rigid-bodyKinematics of-rigid-body
Kinematics of-rigid-body
 
Shear force and bending moment diagram for simply supported beam _1P
Shear force and bending moment diagram for simply supported beam _1PShear force and bending moment diagram for simply supported beam _1P
Shear force and bending moment diagram for simply supported beam _1P
 
6. deflection
6. deflection6. deflection
6. deflection
 

En vedette

6161103 10.8 mohr’s circle for moments of inertia
6161103 10.8 mohr’s circle for moments of inertia6161103 10.8 mohr’s circle for moments of inertia
6161103 10.8 mohr’s circle for moments of inertia
etcenterrbru
 
6161103 10.6 inertia for an area
6161103 10.6 inertia for an area6161103 10.6 inertia for an area
6161103 10.6 inertia for an area
etcenterrbru
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
etcenterrbru
 
Role Conflict Among Service Employees
Role Conflict Among Service EmployeesRole Conflict Among Service Employees
Role Conflict Among Service Employees
Syaff Hk
 
6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review
etcenterrbru
 
6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia
etcenterrbru
 
Mc clelland's three needs theory & Cognitive Evaluation Theory
Mc clelland's three needs theory & Cognitive Evaluation TheoryMc clelland's three needs theory & Cognitive Evaluation Theory
Mc clelland's three needs theory & Cognitive Evaluation Theory
Himanshu Jain
 
Fluid Mechanics Properties
Fluid Mechanics PropertiesFluid Mechanics Properties
Fluid Mechanics Properties
stooty s
 

En vedette (20)

6161103 10.8 mohr’s circle for moments of inertia
6161103 10.8 mohr’s circle for moments of inertia6161103 10.8 mohr’s circle for moments of inertia
6161103 10.8 mohr’s circle for moments of inertia
 
6161103 10.6 inertia for an area
6161103 10.6 inertia for an area6161103 10.6 inertia for an area
6161103 10.6 inertia for an area
 
6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas6161103 10.5 moments of inertia for composite areas
6161103 10.5 moments of inertia for composite areas
 
Role Conflict Among Service Employees
Role Conflict Among Service EmployeesRole Conflict Among Service Employees
Role Conflict Among Service Employees
 
Stress management slide show Ethan
Stress management slide show EthanStress management slide show Ethan
Stress management slide show Ethan
 
6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review6161103 9.7 chapter summary and review
6161103 9.7 chapter summary and review
 
Fm hydrostatics
Fm hydrostaticsFm hydrostatics
Fm hydrostatics
 
Theorem pappus (1)
Theorem pappus (1)Theorem pappus (1)
Theorem pappus (1)
 
centroid & moment of inertia
centroid & moment of inertiacentroid & moment of inertia
centroid & moment of inertia
 
6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia6161103 10.9 mass moment of inertia
6161103 10.9 mass moment of inertia
 
McClelland's theory of needs
McClelland's theory of needsMcClelland's theory of needs
McClelland's theory of needs
 
Mc clelland's three needs theory & Cognitive Evaluation Theory
Mc clelland's three needs theory & Cognitive Evaluation TheoryMc clelland's three needs theory & Cognitive Evaluation Theory
Mc clelland's three needs theory & Cognitive Evaluation Theory
 
AP Physics 2 - Hydrostatics
AP Physics 2 - HydrostaticsAP Physics 2 - Hydrostatics
AP Physics 2 - Hydrostatics
 
Chapter 3 static forces on surfaces [compatibility mode]
Chapter 3  static forces on surfaces [compatibility mode]Chapter 3  static forces on surfaces [compatibility mode]
Chapter 3 static forces on surfaces [compatibility mode]
 
6.2 volume of solid of revolution dfs
6.2  volume of solid of revolution dfs6.2  volume of solid of revolution dfs
6.2 volume of solid of revolution dfs
 
McClelland’s Human Motivation Theory
McClelland’s Human Motivation TheoryMcClelland’s Human Motivation Theory
McClelland’s Human Motivation Theory
 
3. fs submerged bodies class 3
3. fs submerged bodies class 33. fs submerged bodies class 3
3. fs submerged bodies class 3
 
HBO Handout Chapter 1 (Introduction to Organizational Behavior)
HBO Handout Chapter 1 (Introduction to Organizational Behavior)HBO Handout Chapter 1 (Introduction to Organizational Behavior)
HBO Handout Chapter 1 (Introduction to Organizational Behavior)
 
Statics
StaticsStatics
Statics
 
Fluid Mechanics Properties
Fluid Mechanics PropertiesFluid Mechanics Properties
Fluid Mechanics Properties
 

Similaire à 6161103 10.7 moments of inertia for an area about inclined axes

6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration
etcenterrbru
 
Lecture 3 mohr’s circle and theory of failure
Lecture 3 mohr’s circle and theory of failure Lecture 3 mohr’s circle and theory of failure
Lecture 3 mohr’s circle and theory of failure
Deepak Agarwal
 
Complex dynamics of superior phoenix set
Complex dynamics of superior phoenix setComplex dynamics of superior phoenix set
Complex dynamics of superior phoenix set
IAEME Publication
 
pdfslide.net_unsymmetrical-bendingppt.pdf
pdfslide.net_unsymmetrical-bendingppt.pdfpdfslide.net_unsymmetrical-bendingppt.pdf
pdfslide.net_unsymmetrical-bendingppt.pdf
AkhileshKumar374947
 
(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf
RajuSingh806014
 
Question 1. a) (i)(4+i2).(1+i3)4(1+i3)+i2(1+i3)4+i12+i2-6.docx
Question 1.  a) (i)(4+i2).(1+i3)4(1+i3)+i2(1+i3)4+i12+i2-6.docxQuestion 1.  a) (i)(4+i2).(1+i3)4(1+i3)+i2(1+i3)4+i12+i2-6.docx
Question 1. a) (i)(4+i2).(1+i3)4(1+i3)+i2(1+i3)4+i12+i2-6.docx
IRESH3
 
Ellipses drawing algo.
Ellipses drawing algo.Ellipses drawing algo.
Ellipses drawing algo.
Mohd Arif
 

Similaire à 6161103 10.7 moments of inertia for an area about inclined axes (20)

Prof. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numericalProf. V. V. Nalawade, Notes CGMI with practice numerical
Prof. V. V. Nalawade, Notes CGMI with practice numerical
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration6161103 10.4 moments of inertia for an area by integration
6161103 10.4 moments of inertia for an area by integration
 
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of InertiaProf. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
Prof. V. V. Nalawade, UNIT-3 Centroid, Centre off Gravity and Moment of Inertia
 
Mi2
Mi2Mi2
Mi2
 
Lecture 3 mohr’s circle and theory of failure
Lecture 3 mohr’s circle and theory of failure Lecture 3 mohr’s circle and theory of failure
Lecture 3 mohr’s circle and theory of failure
 
J3010 Unit 2
J3010   Unit 2J3010   Unit 2
J3010 Unit 2
 
Complex dynamics of superior phoenix set
Complex dynamics of superior phoenix setComplex dynamics of superior phoenix set
Complex dynamics of superior phoenix set
 
pdfslide.net_unsymmetrical-bendingppt.pdf
pdfslide.net_unsymmetrical-bendingppt.pdfpdfslide.net_unsymmetrical-bendingppt.pdf
pdfslide.net_unsymmetrical-bendingppt.pdf
 
Robot Manipulation Basics
Robot Manipulation BasicsRobot Manipulation Basics
Robot Manipulation Basics
 
(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf(6) Hyperbola (Theory).Module-3pdf
(6) Hyperbola (Theory).Module-3pdf
 
Question 1. a) (i)(4+i2).(1+i3)4(1+i3)+i2(1+i3)4+i12+i2-6.docx
Question 1.  a) (i)(4+i2).(1+i3)4(1+i3)+i2(1+i3)4+i12+i2-6.docxQuestion 1.  a) (i)(4+i2).(1+i3)4(1+i3)+i2(1+i3)4+i12+i2-6.docx
Question 1. a) (i)(4+i2).(1+i3)4(1+i3)+i2(1+i3)4+i12+i2-6.docx
 
L10-T7 MOS Jul 2019-1.pptx .
L10-T7 MOS Jul 2019-1.pptx                        .L10-T7 MOS Jul 2019-1.pptx                        .
L10-T7 MOS Jul 2019-1.pptx .
 
Unsymmetrical bending.ppt
Unsymmetrical bending.pptUnsymmetrical bending.ppt
Unsymmetrical bending.ppt
 
Solution set 3
Solution set 3Solution set 3
Solution set 3
 
G e hay's
G e hay'sG e hay's
G e hay's
 
System Of Particles And Rotational Motion
System Of Particles And Rotational MotionSystem Of Particles And Rotational Motion
System Of Particles And Rotational Motion
 
Maths05
Maths05Maths05
Maths05
 
Moment of inertia
Moment of inertiaMoment of inertia
Moment of inertia
 
Ellipses drawing algo.
Ellipses drawing algo.Ellipses drawing algo.
Ellipses drawing algo.
 

Plus de etcenterrbru

บทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาดบทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาด
etcenterrbru
 
บทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคลบทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคล
etcenterrbru
 
6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium
etcenterrbru
 
6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies
etcenterrbru
 
6161103 11 virtual work
6161103 11 virtual work6161103 11 virtual work
6161103 11 virtual work
etcenterrbru
 
6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review
etcenterrbru
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body
etcenterrbru
 
6161103 9.6 fluid pressure
6161103 9.6 fluid pressure6161103 9.6 fluid pressure
6161103 9.6 fluid pressure
etcenterrbru
 
6161103 9.3 composite bodies
6161103 9.3 composite bodies6161103 9.3 composite bodies
6161103 9.3 composite bodies
etcenterrbru
 
6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws
etcenterrbru
 
6161103 8.3 wedges
6161103 8.3 wedges6161103 8.3 wedges
6161103 8.3 wedges
etcenterrbru
 
6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction
etcenterrbru
 
6161103 8.9 chapter summary and review
6161103 8.9 chapter summary and review6161103 8.9 chapter summary and review
6161103 8.9 chapter summary and review
etcenterrbru
 
6161103 7.5 chapter summary and review
6161103 7.5 chapter summary and review6161103 7.5 chapter summary and review
6161103 7.5 chapter summary and review
etcenterrbru
 
6161103 7.3 relations between distributed load, shear and moment
6161103 7.3 relations between distributed load, shear and moment6161103 7.3 relations between distributed load, shear and moment
6161103 7.3 relations between distributed load, shear and moment
etcenterrbru
 
6161103 7.2 shear and moment equations and diagrams
6161103 7.2 shear and moment equations and diagrams6161103 7.2 shear and moment equations and diagrams
6161103 7.2 shear and moment equations and diagrams
etcenterrbru
 
6161103 7.1 internal forces developed in structural members
6161103 7.1 internal forces developed in structural members6161103 7.1 internal forces developed in structural members
6161103 7.1 internal forces developed in structural members
etcenterrbru
 
6161103 7.4 cables
6161103 7.4 cables6161103 7.4 cables
6161103 7.4 cables
etcenterrbru
 
6161103 6.6 frames and machines
6161103 6.6 frames and machines6161103 6.6 frames and machines
6161103 6.6 frames and machines
etcenterrbru
 

Plus de etcenterrbru (20)

บทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาดบทที่ 11 การสื่อสารการตลาด
บทที่ 11 การสื่อสารการตลาด
 
บทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคลบทที่ 8 การขายโดยบุคคล
บทที่ 8 การขายโดยบุคคล
 
บทที่ 7 การประชาสัมพันธ์
บทที่ 7 การประชาสัมพันธ์บทที่ 7 การประชาสัมพันธ์
บทที่ 7 การประชาสัมพันธ์
 
6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium6161103 11.7 stability of equilibrium
6161103 11.7 stability of equilibrium
 
6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies6161103 11.3 principle of virtual work for a system of connected rigid bodies
6161103 11.3 principle of virtual work for a system of connected rigid bodies
 
6161103 11 virtual work
6161103 11 virtual work6161103 11 virtual work
6161103 11 virtual work
 
6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review6161103 10.10 chapter summary and review
6161103 10.10 chapter summary and review
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body
 
6161103 9.6 fluid pressure
6161103 9.6 fluid pressure6161103 9.6 fluid pressure
6161103 9.6 fluid pressure
 
6161103 9.3 composite bodies
6161103 9.3 composite bodies6161103 9.3 composite bodies
6161103 9.3 composite bodies
 
6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws6161103 8.4 frictional forces on screws
6161103 8.4 frictional forces on screws
 
6161103 8.3 wedges
6161103 8.3 wedges6161103 8.3 wedges
6161103 8.3 wedges
 
6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction6161103 8.2 problems involving dry friction
6161103 8.2 problems involving dry friction
 
6161103 8.9 chapter summary and review
6161103 8.9 chapter summary and review6161103 8.9 chapter summary and review
6161103 8.9 chapter summary and review
 
6161103 7.5 chapter summary and review
6161103 7.5 chapter summary and review6161103 7.5 chapter summary and review
6161103 7.5 chapter summary and review
 
6161103 7.3 relations between distributed load, shear and moment
6161103 7.3 relations between distributed load, shear and moment6161103 7.3 relations between distributed load, shear and moment
6161103 7.3 relations between distributed load, shear and moment
 
6161103 7.2 shear and moment equations and diagrams
6161103 7.2 shear and moment equations and diagrams6161103 7.2 shear and moment equations and diagrams
6161103 7.2 shear and moment equations and diagrams
 
6161103 7.1 internal forces developed in structural members
6161103 7.1 internal forces developed in structural members6161103 7.1 internal forces developed in structural members
6161103 7.1 internal forces developed in structural members
 
6161103 7.4 cables
6161103 7.4 cables6161103 7.4 cables
6161103 7.4 cables
 
6161103 6.6 frames and machines
6161103 6.6 frames and machines6161103 6.6 frames and machines
6161103 6.6 frames and machines
 

Dernier

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
Enterprise Knowledge
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
Earley Information Science
 

Dernier (20)

Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 

6161103 10.7 moments of inertia for an area about inclined axes

  • 1. 10.7 Moments of Inertia for an Area about Inclined Axes In structural and mechanical design, necessary to calculate the moments and product of inertia Iu, Iv and Iuv for an area with respect to a set of inclined u and v axes when the values of θ, Ix, Iy and Ixy are known Use transformation equations which relate the x, y and u, v coordinates
  • 2. 10.7 Moments of Inertia for an Area about Inclined Axes u = x cos θ + y sin θ v = y cos θ − x sin θ For moments and product of inertia of dA about the u and v axes, dI u = v 2 dA = ( y cos θ − x sin θ ) 2 dA dI v = u 2 dA = ( x cos θ + y sin θ ) 2 dA dI uv = uvdA = ( x cos θ + y sin θ )( y cos θ − x sin θ )dA
  • 3. 10.7 Moments of Inertia for an Area about Inclined Axes Integrating, I u = I x cos 2 θ + I y sin 2 θ − 2 I xy sin θ cos θ I v = I x sin 2 θ + I y cos 2 θ + 2 I xy sin θ cos θ I uv = I x sin θ cos θ − I y sin θ cos θ + 2 I xy (cos 2 θ − sin 2 θ ) Simplifying using trigonometric identities, sin 2θ = 2 sin θ cos θ cos 2θ = cos 2 θ − sin 2 θ
  • 4. 10.7 Moments of Inertia for an Area about Inclined Axes Ix + I y Ix − I y Iu = + cos 2θ − I xy sin 2θ 2 2 Ix + I y Ix − Iy Iv = − cos 2θ + I xy sin 2θ 2 2 Ix − I y I uv = sin 2θ + 2 I xy cos 2θ 2 Polar moment of inertia about the z axis passing through point O is independent of the u and v axes J O = Iu + Iv = I x + I y
  • 5. 10.7 Moments of Inertia for an Area about Inclined Axes Principal Moments of Inertia Iu, Iv and Iuv depend on the angle of inclination θ of the u, v axes To determine the orientation of these axes about which the moments of inertia for the area Iu and Iv are maximum and minimum This particular set of axes is called the principal axes of the area and the corresponding moments of inertia with respect to these axes are called the principal moments of inertia
  • 6. 10.7 Moments of Inertia for an Area about Inclined Axes Principal Moments of Inertia There is a set of principle axes for every chosen origin O For the structural and mechanical design of a member, the origin O is generally located at the cross-sectional area’s centroid The angle θ = θp defines the orientation of the principal axes for the area. Found by differentiating with respect to θ and setting the result to zero
  • 7. 10.7 Moments of Inertia for an Area about Inclined Axes Principal Moments of Inertia dI u  Ix − Iy  dθ  2  sin 2θ − 2 I xy cos 2θ = 0 = −2    Therefore θ =θp − I xy tan 2θ p = (I − I )/ 2 x y Equation has 2 roots, θp1 and θp2 which are 90° apart and so specify the inclination of the principal axes
  • 8. 10.7 Moments of Inertia for an Area about Inclined Axes Principal Moments of Inertia 2  Ix − I y  2 Forθp1,sin2θp1 = −Ixy /   2   + Ixy   2  Ix − I y   Ix − I y  2 cos2θp1 =   2 /    2   + Ixy     2  Ix − I y  2 Forθp2,sin2θ p2 = Ixy /   2   + Ixy   2  Ix − I y   Ix − I y  2 cos2θp2 = −  2 /    2   + Ixy    
  • 9. 10.7 Moments of Inertia for an Area about Inclined Axes Principal Moments of Inertia 2 Ix + Iy  Ix − Iy  I max min = ±   2  + I xy  2 2   Depending on the sign chosen, this result gives the maximum or minimum moment of inertia for the area It can be shown that Iuv = 0, that is, the product of inertia with respect to the principal axes is zero Any symmetric axis represent a principal axis of inertia for the area
  • 10. 10.7 Moments of Inertia for an Area about Inclined Axes Example 10.9 Determine the principal moments of inertia for the beam’s cross-sectional area with respect to an axis passing through the centroid.
  • 11. 10.7 Moments of Inertia for an Area about Inclined Axes Solution Moment and product of inertia of the cross-sectional area with respect to the x, y axes have been computed in the previous examples ( ) I x = 2.90 109 mm 4 ( ) I y = 5.60 109 mm 4 ( ) I z = −3.00 109 mm 4 Using the angles of inclination of principal axes u and v − I xy 3.00(109 ) tan 2θ p = = = −2.22 (I x − I y )/ 2 [2.90(10 )− 5.60(10 )]/ 2 9 9 2θ p1 = −65.8o ,2θ p 2 = 114.2o Thus, θ p1 = −32.9o , θ p 2 = 57.1o
  • 12. 10.7 Moments of Inertia for an Area about Inclined Axes Solution For principal of inertia with respect to the u and v axes 2 Ix + Iy  Ix − Iy  I min = max ±   2  + I xy  2 2   = ( ) 2.90 109 + 5.60 109 ( ) 2 ±  ( )  2.90 109 − 5.60 109  ( ) 2 [ ( )] 2  + − 3.00 10 9  2  ( ) ( ) I min = 4.25 109 ± 3.29 109 max or ( ) ( ) I max = 7.54 109 mm 4 , I min = 0.960 109 mm 4
  • 13. 10.7 Moments of Inertia for an Area about Inclined Axes Solution Maximum moment of inertia occurs with respect to the selected u axis since by inspection, most of the cross-sectional area is farthest away from this axis Maximum moment of inertia occurs at the u axis since it is located within ±45° of the y axis, which has the largest value of I