SlideShare une entreprise Scribd logo
1  sur  27
Tensión y deformación Cuando se somete una pieza de metal a una fuerza de tracción se produce la deformación del mismo.
Tensión y deformación Si el metal recupera sus dimensiones cuando se elimina la fuerza, se dice que ha sufrido una  deformación elástica.
Tensión y deformación No puede soportarse mucha deformación elástica porque los átomos se desplazan de sus posiciones originales, pero sin alcanzar posiciones nuevas
Cuando el metal se deforma tanto que no puede recuperar totalmente sus dimensiones originales, se considera que ha sufrido una  deformación plástica,  en la cual los átomos se desplazan continuamente
La propiedad de algunos metales de ser extensamente deformados sin llegar a la fractura es una de las más útiles en la fabricación de objetos. Por ejemplo, la gran deformación plástica a que puede ser sometido el acero de paragolpes, capós y  puertas de automóvil sin llegar a la fractura
Por ejemplo, la gran deformación plástica a que puede ser sometido el acero de paragolpes, capós y  puertas de automóvil sin llegar a la fractura
Tensión y Deformación convencional Consideremos una barra cilíndrica de longitud l 0  y área de la sección transversal A 0  sujeta a la acción de una fuerza axial F. La tensión    sobre la barra es, por definición, igual a la fuerza media de tracción F dividida por el área de la sección transversal, o sea    = F/A 0  las unidades son  [N]/[m 2 ]= Pa (pascal)
Cuando una fuerza de tracción se aplica sobre una barra, se produce un alargamiento de la misma en la dirección de la fuerza.  Dicho desplazamiento recibe el nombre de  deformación . Se define como la relación entre el cambio en la longitud de la muestra y su longitud original.  = (l- l 0  )/ l 0   =   l/l 0 Se suele usarlo en forma de  porcentaje de deformación   o  porcentaje de alargamiento   multiplicándolo por el 100%
 
El ensayo de tracción y el diagrama  tensión-deformación En el ensayo de tracción, una muestra de metal se estira a velocidad constante hasta la fractura, que se produce en un tiempo relativamente corto.
 
 
[object Object],[object Object],[object Object]
2) Límite elástico: es el nivel de tensión al que un metal o aleación muestra una deformación plástica significativa.  Es arbitrario y normalmente se determina cuando se produce una deformación del 0,2%
3) Resistencia a la tracción: es la máxima tensión que se alcanza en la curva tensión-deformación. Si el material tiene porosidad o inclusiones, estos defectos pueden producir un descenso de la resistencia máxima respecto al valor normal.
4) Porcentaje de alargamiento: este valor proporciona un valor de la ductilidad del metal.  Tiene importancia no sólo como medida de la ductilidad, sino también como índice de la calidad del metal. Si existe porosidad o inclusiones, o deterioro debido a sobrecalentamiento, el porcentaje decrecerá por debajo del valor normal. 5) Porcentaje de estricción:  también puede expresar la ductilidad, así como un índice de su calidad.
 
 
 
 
 
 
Fractura de los metales Uno de los aspectos a tener en cuenta en la selección de materiales es la posibilidad de que el componente falle durante su funcionamiento habitual. La falla es la incapacidad del material de 1) realizar la función prevista, 2) cumplir los criterios de desempeño o 3) tener un desempeño seguro y confiable incluso después de deteriorarse
La fractura es la separación de un sólido en dos o más piezas. Se distingues dos tipos: La fractura dúctil tiene lugar después de una deformación plástica intensa Son menos frecuentes que las frágiles, su principal causa es el exceso de carga
La fractura frágil se produce en forma rápida, con una propagación veloz de la fisura Las fracturas frágiles ocurren normalmente por la existencia de defectos en el metal
 
 

Contenu connexe

Tendances (20)

ENSAYO DE IMPACTO
ENSAYO DE IMPACTOENSAYO DE IMPACTO
ENSAYO DE IMPACTO
 
Fractura fragil
Fractura fragilFractura fragil
Fractura fragil
 
Actividad #03
Actividad #03Actividad #03
Actividad #03
 
Modulo de Young
Modulo de YoungModulo de Young
Modulo de Young
 
Síntesis del tornillo
Síntesis del tornilloSíntesis del tornillo
Síntesis del tornillo
 
Ensayo de Torsion
Ensayo de TorsionEnsayo de Torsion
Ensayo de Torsion
 
Práctica 4
Práctica 4Práctica 4
Práctica 4
 
Clase 6 Diseño de Hormigón Armado -
Clase 6 Diseño de Hormigón Armado -Clase 6 Diseño de Hormigón Armado -
Clase 6 Diseño de Hormigón Armado -
 
P.5 ensayo de flexion
P.5 ensayo de flexionP.5 ensayo de flexion
P.5 ensayo de flexion
 
Teorias de fallas aplicadas a cargas electricas romer castillo
Teorias de fallas aplicadas a cargas electricas romer castilloTeorias de fallas aplicadas a cargas electricas romer castillo
Teorias de fallas aplicadas a cargas electricas romer castillo
 
63987901 modulo-de-elasticidad
63987901 modulo-de-elasticidad63987901 modulo-de-elasticidad
63987901 modulo-de-elasticidad
 
Práctica 4 ensayo péndulo charpy y fluencia
Práctica 4 ensayo péndulo charpy y fluenciaPráctica 4 ensayo péndulo charpy y fluencia
Práctica 4 ensayo péndulo charpy y fluencia
 
Cuestiones sobre el ensayo de tracción virtual
Cuestiones sobre el ensayo de tracción virtualCuestiones sobre el ensayo de tracción virtual
Cuestiones sobre el ensayo de tracción virtual
 
Yosmarymartinez
YosmarymartinezYosmarymartinez
Yosmarymartinez
 
Fisica modulo de young
Fisica modulo de youngFisica modulo de young
Fisica modulo de young
 
propiedades mecanicas
propiedades mecanicaspropiedades mecanicas
propiedades mecanicas
 
Desformacion y resistencia de los materiales aceros
Desformacion y resistencia de los materiales acerosDesformacion y resistencia de los materiales aceros
Desformacion y resistencia de los materiales aceros
 
Ensayo de flexion por impacto
Ensayo de flexion por impactoEnsayo de flexion por impacto
Ensayo de flexion por impacto
 
Endis moreno
Endis morenoEndis moreno
Endis moreno
 
ENSAYO DE TRACCION
ENSAYO DE TRACCIONENSAYO DE TRACCION
ENSAYO DE TRACCION
 

Similaire à Propiedades mecánicas 2011 di

Propiedades mecánicas 2011
Propiedades mecánicas 2011Propiedades mecánicas 2011
Propiedades mecánicas 2011lucas crotti
 
4.2 Propiedades Mecánicas de los Materiales Young y Hooke (2).pdf
4.2 Propiedades Mecánicas de los Materiales Young y Hooke (2).pdf4.2 Propiedades Mecánicas de los Materiales Young y Hooke (2).pdf
4.2 Propiedades Mecánicas de los Materiales Young y Hooke (2).pdfLVellido
 
Clase 20 Propiedades MecáNicas
Clase 20   Propiedades MecáNicasClase 20   Propiedades MecáNicas
Clase 20 Propiedades MecáNicaslucas crotti
 
MS-II-PROPIEDADES+C-3.pdf
MS-II-PROPIEDADES+C-3.pdfMS-II-PROPIEDADES+C-3.pdf
MS-II-PROPIEDADES+C-3.pdfJimmyBallon1
 
Ductilidad
DuctilidadDuctilidad
DuctilidadBe To
 
Ductilidad
DuctilidadDuctilidad
DuctilidadBe To
 
Propiedades mecanicas
Propiedades mecanicasPropiedades mecanicas
Propiedades mecanicaslucas crotti
 
Materiales metálicos (2011)
Materiales metálicos (2011)Materiales metálicos (2011)
Materiales metálicos (2011)Tandanor SACIyN
 
I nforme 01 unidad flexion (3)
I nforme 01 unidad flexion (3)I nforme 01 unidad flexion (3)
I nforme 01 unidad flexion (3)Deisbis Gonzalez
 
Prm 3 materiales
Prm 3 materialesPrm 3 materiales
Prm 3 materialesKBKB VLVLV
 
Chávez y ruiz
Chávez y ruizChávez y ruiz
Chávez y ruizagra_labs
 
Clasificación de las aleaciones
Clasificación de las aleacionesClasificación de las aleaciones
Clasificación de las aleacionesLuAngBG
 
Elemento de maquina capitulo III
Elemento de maquina capitulo IIIElemento de maquina capitulo III
Elemento de maquina capitulo IIImarielis gonzalez
 

Similaire à Propiedades mecánicas 2011 di (20)

Propiedades mecánicas 2011
Propiedades mecánicas 2011Propiedades mecánicas 2011
Propiedades mecánicas 2011
 
4.2 Propiedades Mecánicas de los Materiales Young y Hooke (2).pdf
4.2 Propiedades Mecánicas de los Materiales Young y Hooke (2).pdf4.2 Propiedades Mecánicas de los Materiales Young y Hooke (2).pdf
4.2 Propiedades Mecánicas de los Materiales Young y Hooke (2).pdf
 
Clase 2 propiedad de los materiales 25.08.11
Clase 2  propiedad de los materiales 25.08.11Clase 2  propiedad de los materiales 25.08.11
Clase 2 propiedad de los materiales 25.08.11
 
Clase 20 Propiedades MecáNicas
Clase 20   Propiedades MecáNicasClase 20   Propiedades MecáNicas
Clase 20 Propiedades MecáNicas
 
MS-II-PROPIEDADES+C-3.pdf
MS-II-PROPIEDADES+C-3.pdfMS-II-PROPIEDADES+C-3.pdf
MS-II-PROPIEDADES+C-3.pdf
 
Ductilidad
DuctilidadDuctilidad
Ductilidad
 
Ensayo de tracción / Tecnologia de Materiales
Ensayo de tracción / Tecnologia de MaterialesEnsayo de tracción / Tecnologia de Materiales
Ensayo de tracción / Tecnologia de Materiales
 
Ductilidad
DuctilidadDuctilidad
Ductilidad
 
Presentación1
Presentación1Presentación1
Presentación1
 
Materiales 6.ppt
Materiales 6.pptMateriales 6.ppt
Materiales 6.ppt
 
Jv trabajo final de resistencia de materiales (1)
Jv trabajo final de resistencia de materiales (1)Jv trabajo final de resistencia de materiales (1)
Jv trabajo final de resistencia de materiales (1)
 
Propiedades mecanicas
Propiedades mecanicasPropiedades mecanicas
Propiedades mecanicas
 
Materiales metálicos (2011)
Materiales metálicos (2011)Materiales metálicos (2011)
Materiales metálicos (2011)
 
I nforme 01 unidad flexion (3)
I nforme 01 unidad flexion (3)I nforme 01 unidad flexion (3)
I nforme 01 unidad flexion (3)
 
Prm 3 materiales
Prm 3 materialesPrm 3 materiales
Prm 3 materiales
 
Chávez y ruiz
Chávez y ruizChávez y ruiz
Chávez y ruiz
 
Clasificación de las aleaciones
Clasificación de las aleacionesClasificación de las aleaciones
Clasificación de las aleaciones
 
Propiedades de mecanica com apli
Propiedades de mecanica com apliPropiedades de mecanica com apli
Propiedades de mecanica com apli
 
Propiedades mecánicas
Propiedades mecánicasPropiedades mecánicas
Propiedades mecánicas
 
Elemento de maquina capitulo III
Elemento de maquina capitulo IIIElemento de maquina capitulo III
Elemento de maquina capitulo III
 

Plus de lucas crotti

Estructura cristalina 2011
Estructura cristalina 2011Estructura cristalina 2011
Estructura cristalina 2011lucas crotti
 
Estructura cristalina 2011
Estructura cristalina 2011Estructura cristalina 2011
Estructura cristalina 2011lucas crotti
 
Rampas y trabajo_2011
Rampas y trabajo_2011Rampas y trabajo_2011
Rampas y trabajo_2011lucas crotti
 
Rampas y trabajo_2011
Rampas y trabajo_2011Rampas y trabajo_2011
Rampas y trabajo_2011lucas crotti
 
Fundamentos de fisica
Fundamentos de fisicaFundamentos de fisica
Fundamentos de fisicalucas crotti
 
Rampas y trabajo_2010
Rampas y trabajo_2010Rampas y trabajo_2010
Rampas y trabajo_2010lucas crotti
 
Estructura cristalina 2010
Estructura cristalina   2010Estructura cristalina   2010
Estructura cristalina 2010lucas crotti
 
Programa fisicoquimica 2011
Programa fisicoquimica 2011Programa fisicoquimica 2011
Programa fisicoquimica 2011lucas crotti
 
Trabajo práctico nº 2 diseño industrial
Trabajo práctico nº 2   diseño industrialTrabajo práctico nº 2   diseño industrial
Trabajo práctico nº 2 diseño industriallucas crotti
 
Nota de clase - Madera
Nota de clase - MaderaNota de clase - Madera
Nota de clase - Maderalucas crotti
 

Plus de lucas crotti (20)

Estructura cristalina 2011
Estructura cristalina 2011Estructura cristalina 2011
Estructura cristalina 2011
 
Estructura cristalina 2011
Estructura cristalina 2011Estructura cristalina 2011
Estructura cristalina 2011
 
Rampas y trabajo_2011
Rampas y trabajo_2011Rampas y trabajo_2011
Rampas y trabajo_2011
 
Rampas y trabajo_2011
Rampas y trabajo_2011Rampas y trabajo_2011
Rampas y trabajo_2011
 
Materiales
MaterialesMateriales
Materiales
 
Energía 2011
Energía 2011Energía 2011
Energía 2011
 
Enlaces atómicos
Enlaces atómicosEnlaces atómicos
Enlaces atómicos
 
Clase 3 2011
Clase 3  2011Clase 3  2011
Clase 3 2011
 
Clase 2 2011
Clase 2  2011Clase 2  2011
Clase 2 2011
 
Clase 3 2011
Clase 3  2011Clase 3  2011
Clase 3 2011
 
Energía nuclear
Energía nuclearEnergía nuclear
Energía nuclear
 
Fundamentos de fisica
Fundamentos de fisicaFundamentos de fisica
Fundamentos de fisica
 
Rampas y trabajo_2010
Rampas y trabajo_2010Rampas y trabajo_2010
Rampas y trabajo_2010
 
Polímeros 2010
Polímeros 2010Polímeros 2010
Polímeros 2010
 
Energía 2010
Energía 2010Energía 2010
Energía 2010
 
Leyes de newton
Leyes de newtonLeyes de newton
Leyes de newton
 
Estructura cristalina 2010
Estructura cristalina   2010Estructura cristalina   2010
Estructura cristalina 2010
 
Programa fisicoquimica 2011
Programa fisicoquimica 2011Programa fisicoquimica 2011
Programa fisicoquimica 2011
 
Trabajo práctico nº 2 diseño industrial
Trabajo práctico nº 2   diseño industrialTrabajo práctico nº 2   diseño industrial
Trabajo práctico nº 2 diseño industrial
 
Nota de clase - Madera
Nota de clase - MaderaNota de clase - Madera
Nota de clase - Madera
 

Propiedades mecánicas 2011 di

  • 1. Tensión y deformación Cuando se somete una pieza de metal a una fuerza de tracción se produce la deformación del mismo.
  • 2. Tensión y deformación Si el metal recupera sus dimensiones cuando se elimina la fuerza, se dice que ha sufrido una deformación elástica.
  • 3. Tensión y deformación No puede soportarse mucha deformación elástica porque los átomos se desplazan de sus posiciones originales, pero sin alcanzar posiciones nuevas
  • 4. Cuando el metal se deforma tanto que no puede recuperar totalmente sus dimensiones originales, se considera que ha sufrido una deformación plástica, en la cual los átomos se desplazan continuamente
  • 5. La propiedad de algunos metales de ser extensamente deformados sin llegar a la fractura es una de las más útiles en la fabricación de objetos. Por ejemplo, la gran deformación plástica a que puede ser sometido el acero de paragolpes, capós y puertas de automóvil sin llegar a la fractura
  • 6. Por ejemplo, la gran deformación plástica a que puede ser sometido el acero de paragolpes, capós y puertas de automóvil sin llegar a la fractura
  • 7. Tensión y Deformación convencional Consideremos una barra cilíndrica de longitud l 0 y área de la sección transversal A 0 sujeta a la acción de una fuerza axial F. La tensión  sobre la barra es, por definición, igual a la fuerza media de tracción F dividida por el área de la sección transversal, o sea  = F/A 0 las unidades son [N]/[m 2 ]= Pa (pascal)
  • 8. Cuando una fuerza de tracción se aplica sobre una barra, se produce un alargamiento de la misma en la dirección de la fuerza. Dicho desplazamiento recibe el nombre de deformación . Se define como la relación entre el cambio en la longitud de la muestra y su longitud original.  = (l- l 0 )/ l 0 =  l/l 0 Se suele usarlo en forma de porcentaje de deformación o porcentaje de alargamiento multiplicándolo por el 100%
  • 9.  
  • 10. El ensayo de tracción y el diagrama tensión-deformación En el ensayo de tracción, una muestra de metal se estira a velocidad constante hasta la fractura, que se produce en un tiempo relativamente corto.
  • 11.  
  • 12.  
  • 13.
  • 14. 2) Límite elástico: es el nivel de tensión al que un metal o aleación muestra una deformación plástica significativa. Es arbitrario y normalmente se determina cuando se produce una deformación del 0,2%
  • 15. 3) Resistencia a la tracción: es la máxima tensión que se alcanza en la curva tensión-deformación. Si el material tiene porosidad o inclusiones, estos defectos pueden producir un descenso de la resistencia máxima respecto al valor normal.
  • 16. 4) Porcentaje de alargamiento: este valor proporciona un valor de la ductilidad del metal. Tiene importancia no sólo como medida de la ductilidad, sino también como índice de la calidad del metal. Si existe porosidad o inclusiones, o deterioro debido a sobrecalentamiento, el porcentaje decrecerá por debajo del valor normal. 5) Porcentaje de estricción: también puede expresar la ductilidad, así como un índice de su calidad.
  • 17.  
  • 18.  
  • 19.  
  • 20.  
  • 21.  
  • 22.  
  • 23. Fractura de los metales Uno de los aspectos a tener en cuenta en la selección de materiales es la posibilidad de que el componente falle durante su funcionamiento habitual. La falla es la incapacidad del material de 1) realizar la función prevista, 2) cumplir los criterios de desempeño o 3) tener un desempeño seguro y confiable incluso después de deteriorarse
  • 24. La fractura es la separación de un sólido en dos o más piezas. Se distingues dos tipos: La fractura dúctil tiene lugar después de una deformación plástica intensa Son menos frecuentes que las frágiles, su principal causa es el exceso de carga
  • 25. La fractura frágil se produce en forma rápida, con una propagación veloz de la fisura Las fracturas frágiles ocurren normalmente por la existencia de defectos en el metal
  • 26.  
  • 27.