Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Prochain SlideShare
Bab 6
Bab 6
Chargement dans…3
×

Consultez-les par la suite

1 sur 33 Publicité

Plus De Contenu Connexe

Les utilisateurs ont également aimé (20)

Publicité
Publicité

Plus récents (20)

Bab 6

  1. 1. Bab 6 Fungsi Komposisi dan Fungsi Invers November 26, 2014
  2. 2. Operasi Fungsi Komposisi Fungsi Invers Fungsi Penjumlahan Pengurangan Perkalian Pembagian Sifat-Sifat Fungsi Komposisi Sifat-Sifat Invers Fungsi Komposisi Fungsi Invers Fungsi Komposisi dan Fungsi Invers mempelajari membahas membahas membahas November 26, 2014
  3. 3. 1. Apa yang dimaksud dengan fungsi? Berikan contohnya. 2. Apa yang dimaksud dengan domain, kodomain, dan range? 3. Misalkan diberikan fungsi f(x) = 2 + 3x. Tentukan a. domain dan range fungsi itu; b. f(0), f(–3), f(t), dan f(1 – t2). November 26, 2014
  4. 4. 1. Pengertian Fungsi Fungsi atau pemetaan adalah suatu relasi dari himpunan A ke himpunan B dalam hal ini setiap x Î A dipasangkan dengan tepat satu y Î B. Misalkan diketahui himpunan A = {a, b, c, d}, B = {1, 2, 3, 4}, dan f menyatakan fungsi dari A ke B, dengan aturan seperti diagram berikut. November 26, 2014 Daerah asal (domain) dari f adalah A = {a, b, c, d}. Daerah kawan (kodomain) dari f adalah B = {1, 2, 3, 4}. Daerah hasil (range) dari f adalah {2, 3}.
  5. 5. 2. Sifat-Sifat Fungsi a. Fungsi Surjektif Fungsi f : A → B disebut fungsi surjektif jika dan hanya jika Rf = B. Gambar di bawah ini merupakan fungsi surjektif karena setiap kodomain mempunyai pasangan atau Rf = B. November 26, 2014
  6. 6. b. Fungsi Injektif Fungsi f : A → B disebut fungsi injektif jika a1, a2 Î A dan a1 ≠ a2 maka berlaku f(a1) ≠ f(a2). Gambar di bawah ini menunjukkan fungsi injektif karena setiap anggota domain fungsi berbeda mempunyai peta yang berbeda pula. November 26, 2014
  7. 7. c. Fungsi Bijektif Fungsi f : A → B disebut fungsi bijektif jika dan hanya jika fungsi f sekaligus merupakan fungsi surjektif dan injektif. Gambar di atas merupakan fungsi surjektif karena range fungsi f sama dengan kodomain fungsi f atau Rf = B. November 26, 2014
  8. 8. Contoh: Tentukan jenis fungsi f : R → R (R adalah himpunan bilangan real) yang didefinisikandengan f(x) = 2x. Jawab:  Untuk setiap bilangan real a, maka pasti akan mendapat satu pasangan bilangan real, yaitu 2a.  Demikian pula untuk setiap anggota kodomain mendapat pasangan bilangan real dari domain.  Artinya, setiap bilangan real 2a, pasti akan ditemukan bilangan real a (dalam domain).  Jadi, fungsi tersebut bersifat injektif dan surjektif (atau bijektif). November 26, 2014
  9. 9. Misalkan diberikan suatu fungsi f(x) dan g(x). Jika Df domain fungsi f dan Dg domain fungsi g, Df ∩ Dg ≠ f maka dapat dituliskan operasi aljabar untuk fungsi-fungsi tersebut sebagai berikut. 1. (f + g)(x) = f(x) + g(x) 2. (f – g)(x) = f(x) – g(x) 3. (f × g)(x) = f(x) × g(x) 4. ( ) ( ) æ ö x f x g x ( ) ( ) 0 , ¹ = ÷ ÷ø ç çè g x f g November 26, 2014
  10. 10. Contoh: Diketahui f(x) = x2 + 3x – 1 dan (f + g)(x) = x2 + 5. Tentukan g(x). Jawab: (f + g)(x) = f(x) + g(x) Û x2 + 5 = (x2 + 3x – 1) + g(x) Û g(x) = (x2 + 5) – (x2 + 3x – 1) Û g(x) = x2 + 5 – x2 – 3x + 1 Û g(x) = –3x + 6 November 26, 2014
  11. 11. 1. Pengertian Fungsi Komposisi Misalkan diberikan fungsi f: R → R dan g: R → R. Fungsi f dirumuskan dengan f(x) = x + 1 dan g dirumuskan dengan g(x) = x2. Untuk x = 1 → f(1) = 1 + 1 x = 2 → f(2) = 2 + 1 x = t → f(t) = t + 1 Jika x diganti g(x), diperoleh f(g(x)) = g(x) + 1 = x2 + 1. November 26, 2014
  12. 12. Fungsi f(g(x)) di tulis (f o g)(x). Fungsi f o g dibaca “f bundaran g”. Misalkan fungsi f : A → B, dengan f(a) = b dan fungsi g : B → C dengan g(b) = c. Komposisi fungsi f dan g, ditulis g o f (dibaca: g bundaran f) adalah suatu fungsi yang ditentukan dengan aturan berikut. November 26, 2014 (g o f)(a) = g(f(a))
  13. 13. Contoh: Diketahui f = {(6, –2), (8, –1), (10, 0), (12, 1)}; g = {(–2, 8), (–1, 10), (0, 12), (1, 6)}. Tunjukkan hubungan f o g dan g o f dalam diagram. Tentukan f o g dan nilai (g o f )(10). Jawab: f o g = {(–2, –1), (–1, 0), (0, 1), (1, –2)} Dengan memperhatikan diagram, diperoleh (g o f)(10) = 12. November 26, 2014
  14. 14. 2. Syarat agar Dua Fungsi Dapat Dikomposisikan Misalkan diketahui fungsi f dan g dinyatakan dengan pasangan berurutan berikut. f = {(0, p), (1, q), (2, 5), (3, 5)} g = {(p, 1), (s, 2), (t, 7), (u, 0)} Mari kita selidiki komposisi fungsi f o g dan g o f. (a) (b) November 26, 2014
  15. 15. · Komposisi fungsi f o g berarti pemetaan pertama fungsi g dilanjutkan pemetaan kedua fungsi f. Berdasarkan diagram (a) di atas, dapat kita peroleh pasangan berurutan (f o g ) = {(p, q), (s, r), (u, p)}. · Komposisi fungsi (g o f) berarti pemetaan pertama fungsi f dilanjutkan pemetaan kedua fungsi g. Berdasarkan diagram (b) di atas, dapat kita peroleh pasangan berurutan g o f = {(0, 1), (3, 2)}. · Syarat agar fungsi f dan g dapat dikomposisikan menjadi komposisi fungsi (f o g) adalah apabila range fungsi g merupakan himpunan dari domain f atau RÍ D. g f November 26, 2014
  16. 16. 3. Sifat-Sifat Fungsi Komposisi Misalkan diketahui fungsi-fungsi sebagai berikut. f(x) = 5x – 4 g(x) = 2x + 8 h(x) = x2 Fungsi komposisi f o g dan g o f adalah sebagai berikut. a. (f o g)(x) = f(g(x)) = f(2x + 8) = 5(2x + 8) – 4 = 10x + 36 b. (g o f)(x) = g(f(x)) = g(5x – 4) = 2(5x – 4) + 8 = 10x November 26, 2014
  17. 17.  Dari hasil di atas tampak bahwa f o g ≠ g o f sehingga fungsi komposisi tidak bersifat komutatif, tetapi fungsi komposisi berlaku sifat asosiatif.  Misalkan f dan I adalah fungsi pada himpunan bilangan real dengan f(x) = 2x2 + 1 dan I(x) = x. Perhatikan: (f o I)(x) = f(I(x)) = f(x) = 2x2 + 1; (I o f)(x) = I(f(x)) = I(2x2 + 1) = 2x2 + 1 = f(x).  Terlihat bahwa (f o I)(x) = (I o f)(x) = f(x). Jadi, I(x) = x merupakan fungsi identitas dalam fungsi komposisi. November 26, 2014
  18. 18. Sifat-Sifat Komposisi Fungsi: a. Komposisi fungsi tidak bersifat komutatif, yaitu (f o g)(x) ≠ (g o f)(x). b. Komposisi fungsi bersifat asosiatif, yaitu ((f o g) o h)(x) = (f o (g o h))(x). c. Terdapat fungsi identitas I(x) = x sehingga (f o I)(x) = (I o f)(x) = f(x). November 26, 2014
  19. 19. 4. Menentukan Fungsi yang Diketahui Fungsi Komposisinya Contoh: Diketahui fungsi (f o g)(x) = –15x + 5 dan fungsi f(x) = 3x + 2. Tentukan fungsi g. Jawab: Karena (f o g)(x) = f(g(x)), berarti f(g(x)) = –15x + 5 3(g(x)) + 2 = –15x + 5 g(x) = -15x + 5 g(x) = –5x + 1 Jadi, g(x) = –5x + 1. 3 November 26, 2014
  20. 20. 1. Pengertian Invers Suatu Fungsi Definisi untuk invers suatu fungsi f adalah sebagai berikut. Jika fungsi f : A → B dinyatakan dengan f = {(x, y) | x Є A, y Є B} maka invers dari fungsi f adalah f-1 : B → A, dengan f-1 = {(y, x) | y Є B, x Є A} Suatu fungsi f : A → B mempunyai fungsi invers f-1 : B → A jika dan hanya jika f bijektif atau A dan B korespondensi satu-satu. November 26, 2014
  21. 21. Contoh: Diketahui fungsi f : A → B dengan A = {1, 3, 5}, dan B = {2, 4, 6, 8}, dan f dinyatakan dengan pasangan berurutan f = {(1, 2), (3, 6), (5, 8)}. Tentukan invers fungsi f dan selidikilah apakah invers fungsi f merupakan sebuah fungsi. Jawab: f-1 : B → A , yaitu f-1 = {(2, 1), (6, 3), (8, 5)}. Invers fungsi f adalah relasi biasa (bukan fungsi) karena ada sebuah anggota B yang tidak dipetakan ke A, yaitu 4. November 26, 2014
  22. 22. 2. Menentukan Invers Suatu Fungsi Misal f-1 adalah invers f maka x = f-1(y). Rumus x = f-1(y) dapat diperoleh dengan langkah berikut. a. Ubahlah bentuk y = f(x) menjadi x = g(y). Karena x = f-1(y) maka diperoleh bentuk f-1(y) = g(y). b. Setelah memperoleh bentuk f-1(y) = g(y), gantilah variabel y dengan variabel x sehingga akan diperoleh f-1(x) yang sudah dalam variabel x. November 26, 2014
  23. 23. Contoh: Tentukan rumus invers fungsi dari fungsi f(x) = 5x + 2. Jawab: y = f(x) y = 5x + 2 5x = y – 2 x = y - 2 f -1(y) 5 = y - 2 5 November 26, 2014
  24. 24. 3. Komposisi Suatu Fungsi dengan Inversnya Untuk mengetahui tentang hubungan invers dengan komposisi fungsi perhatikan uraian berikut. Misal f(x) = x + 5. Dapat kita tentukan invers dari fungsi f, yaitu y = f(x) Û y = x + 5 Û x = y – 5 Û f-1(y) = y – 5 Jadi, f-1(x) = x – 5. November 26, 2014
  25. 25. Sekarang perhatikan komposisi fungsi f dan f-1 berikut. 1) (f o f-1)(x) = f(f-1(x)) = f(x – 5) = (x – 5) + 5 = x 2) (f-1 o f)(x) = f-1(f(x)) = f(x + 5) = (x + 5) – 5 = x Dengan demikian, diperoleh (f o f-1)(x) = (f-1 o f)(x) = x. Dari uraian di atas, dapat dilihat bahwa komposisi fungsi dengan inversnya (atau sebaliknya) akan menghasilkan fungsi identitas sehingga dapat dituliskan sebagai berikut. (f o f-1)(x) = (f-1 o f)(x) = x = I(x) November 26, 2014
  26. 26. Contoh: Diketahui fungsi f(x) = 2x + 6. a. Carilah f-1(x). b. Tentukan domain dan kodomain fungsi f agar f(x) mempunyai fungsi invers. Jawab: a. f(x) = 2x + 6 Misalkan y = f(x). Dengan demikian, y = 2x + 6 2x = y – 6 x = y −3 f -1(y) = y − 3 2 1 2 1 November 26, 2014
  27. 27. b. Domain untuk f adalah semua himpunan bilangan real atau ditulis Df = {x | x Î R}. Domain dari f-1(x) merupakan kodomain fungsi f maka kodomain f agar mempunyai fungsi invers adalah semua bilangan anggota himpunan bilangan real. Jika digambarkan dalam bidang Cartesius, tampak seperti gambar berikut. November 26, 2014
  28. 28. Grafik f-1(x) diperoleh dari hasil pencerminan grafik f(x) terhadap sumbu y = x. November 26, 2014
  29. 29. Invers dari fungsi komposisi f o g adalah (f o g) -1(x) = (g -1 o f -1)(x) Demikian sebaliknya, invers fungsi komposisi g o f adalah (g o f )-1 (x) = (f -1 o g-1)(x) November 26, 2014
  30. 30. Contoh:

×