SlideShare une entreprise Scribd logo
1  sur  40
Télécharger pour lire hors ligne
Performance improvements in
PostgreSQL 9.5 and 9.6
5432meet.us 2016, June 29, Milan
Tomas Vondra
tomas.vondra@2ndquadrant.com
http://www.slideshare.net/fuzzycz/postgresql-
performance-improvements-in-95-and-96
PostgreSQL 9.5, 9.6, ...
● many improvements
– many of them related to performance
– many quite large
● release notes are good overview, but ...
– many changes not mentioned explicitly
– often difficult to get an idea of the impact
● many talks about new features in general
– this talk is about changes affecting performance
What we'll look at?
● PostgreSQL 9.5 & 9.6
● only “main” improvements
– complete “features” (multiple commits)
– try to showcase the impact
– no particular order
● dozens of additional optimizations
– see release notes for the full list
PostgreSQL 9.5
Sorting
● allow sorting by in-lined, non-SQL-callable functions
– reduces per-call overhead
● use abbreviated keys for faster sorting (strxfrm)
– VARCHAR, TEXT, NUMERIC
– does not apply to CHAR values!
● places using “Sort Support” benefits from this
– CREATE INDEX, REINDEX, CLUSTER
– ORDER BY (when not evaluated using an index)
Sorting
-- randomly sorted table
CREATE TABLE test_text_random AS
SELECT md5(i::text) AS val
FROM generate_series(1, 50.000.000) s(i);
-- correctly sorted table
CREATE TABLE test_text_asc AS
SELECT * from test_text_random ORDER BY 1;
-- test query
SELECT COUNT(1) FROM (
SELECT * FROM test_text_random ORDER BY 1
) foo;
asc desc almost asc almost desc random
0
50
100
150
200
250
300
350
400
450
500
Sorting improvements in PostgreSQL 9.5
sort duration on 50M rows (TEXT)
PostgreSQL 9.4 PostgreSQL 9.5
dataset type
duration[seconds]
asc desc almost asc almost desc random
0
50
100
150
200
250
300
350
Sorting improvements in PostgreSQL 9.5
sort duration on 50M rows (NUMERIC)
PostgreSQL 9.4 PostgreSQL 9.5
dataset type
duration[seconds]
Hash Joins
● reduce palloc overhead
– dense packing of tuples (trivial local allocator, same life-span)
– significant reduction of overhead (both space and time)
● reduce NTUP_PER_BUCKET to 1 (from 10)
– goal is less that 1 tuple per bucket (on average)
– significant speedup of lookups
● dynamically resize the hash table
– handle under-estimates gracefully
– otherwise easily 100s of tuples per bucket (linked list)
Hash Joins
0 1 2 3 4 5 6 7 8 9 10 1110 11
Hash Joins
0 1 2 3 4 5 6 7 8 9 10 1110 11
Hash Joins
-- dimension table (small one, will be hashed)
CREATE TABLE test_dim AS
SELECT (i-1) AS id, md5(i::text) AS val
FROM generate_series(1, 100.000) s(i);
-- fact table (large one)
CREATE TABLE test_fact AS
SELECT mod(i, 100.000) AS dim_id, md5(i::text) AS val
FROM generate_series(1, 50.000.000) s(i);
-- example query (join of the two tables)
SELECT count(*) FROM test_fact
JOIN test_dim ON (dim_id = id);
0
200000
400000
600000
800000
1000000
1200000
1400000
1600000
1800000
2000000
0
10000
20000
30000
40000
50000
PostgreSQL 9.5 Hash Join Improvements
join duration - 50M rows (outer), different NTUP_PER_BUCKET
NTUP_PER_BUCKET=10 NTUP_PER_BUCKET=1
hash size (number of tuples in dimension)
duration[miliseconds]
BRIN Indexes
min=33, max=75
min=1223, max=2392
min=3456, max=7800
min=95, max=985
min=11, max=212
min=1, max=45
min=139, max=450
WHERE c = 1999
WHERE c BETWEEN 100 AND 200
BRIN Indexes
­­ table with 100M rows
CREATE TABLE test_bitmap AS
  SELECT mod(i, 100.000) AS val
    FROM generate_series(1, 100.000.000) s(i);
CREATE INDEX test_btree_idx ON test_bitmap(val);
CREATE INDEX test_brin_idx ON test_bitmap USING brin(val);
­­ benchmark (enforce bitmap index scan)
SET enable_seqscan = off;
SET enable_indexscan = off;
SELECT COUNT(*) FROM test_bitmap WHERE val <= $1;
0.00% 20.00% 40.00% 60.00% 80.00% 100.00%
0
5000
10000
15000
20000
BRIN vs. BTREE
Bitmap Index Scan on 100M rows (sorted)
BTREE BRIN (128) BRIN (4)
fraction of table matching the condition
duration[miliseconds]
btree BRIN (1) BRIN (4) BRIN (128)
0
500
1000
1500
2000
2500
2142
11 2.8 0.13
BRIN vs. BTREE
index size on 100M rows
size(MB)
Other Index Improvements
● CREATE INDEX
– avoid copying index tuples when building an index (palloc
overhead)
● Index-only scans with GiST
– support to range type, inet GiST opclass and btree_gist
● Bitmap Index Scan
– in some cases up to 50% spent in tbm_add_tuples
– cache the last accessed page in tbm_add_tuples
 
Other Improvements
● locking and shared_buffers scalability
– reduce overhead, make it more concurrent
– large (multi-socket) systems
– reduce lock strength for some DDL commands
● CRC optimizations (--data-checksums)
– use SSE when available, various optimizations
– significantly improved throughput (GB/s)
● planner optimizations
– make the planning / execution smarter
● PL/pgSQL improvements
0 10 20 30 40 50 60 70
0
100000
200000
300000
400000
500000
600000
read-only scalability improvements in 9.5
pgbench -S -M prepared -j $N -c $N
PostgreSQL 9.4 PostgreSQL 9.5
number of clients
transactionspersecond
PostgreSQL 9.6
Parallel Query
● until now, each query limited to 1 core
● 9.6 parallelizes some operations
– sequential scan, aggregation, joins (NL + hash)
– limited to read-only queries
– setup overhead, efficient on large tables
● in the future
– utility commands (CREATE INDEX, VACUUM, …)
– additional operations (Sort, …)
– improving supported ones (sharing hashtable in hashjoins)
Parallel Query
­­ table with 1 billion rows (~80GB on disk)
CREATE TABLE f AS
       SELECT MOD(i,100000) AS id, MD5(i::text) AS h, random() AS amount
         FROM generate_series(1,1000000000) s(i);
EXPLAIN SELECT SUM(amount) FROM f JOIN d USING (id);
                              QUERY PLAN
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
 Aggregate  (cost=35598980.00..35598980.01 rows=1 width=8)
   ­>  Hash Join  (cost=3185.00..33098980.00 rows=1000000000 width=8)
         Hash Cond: (f.id = d.id)
         ­>  Seq Scan on f  (cost=0.00..19345795.00 rows=1000000000 ...)
         ­>  Hash  (cost=1935.00..1935.00 rows=100000 width=4)
               ­>  Seq Scan on d  (cost=0.00..1935.00 rows=100000 ...)
(6 rows)
Parallel Query
SET max_parallel_workers_per_gather = 32;
EXPLAIN SELECT SUM(amount) FROM f JOIN d USING (id);
                                    QUERY PLAN
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
 Finalize Aggregate  (cost=14488869.82..14488869.83 rows=1 width=8)
   ­>  Gather  (cost=14488868.89..14488869.80 rows=9 width=8)
         Workers Planned: 9
         ­>  Partial Aggregate  (cost=14487868.89..14487868.90 rows=1 width=8)
               ­>  Hash Join  (cost=3185.00..11987868.89 rows=1000000000 width=8)
                     Hash Cond: (f.id = d.id)
                     ­>  Parallel Seq Scan on f  (cost=0.00..10456906.11 ...)
                     ­>  Hash  (cost=1935.00..1935.00 rows=100000 width=4)
                           ­>  Seq Scan on d  (cost=0.00..1935.00 rows=100000 ...)
(9 rows)
top
  PID   VIRT  RES  SHR S %CPU %MEM  COMMAND                                          
19018  32.8g 441m 427m R  100  0.2  postgres: sekondquad test [local] SELECT         
20134  32.8g  80m  74m R  100  0.0  postgres: bgworker: parallel worker for PID 19018
20135  32.8g  80m  74m R  100  0.0  postgres: bgworker: parallel worker for PID 19018
20136  32.8g  80m  74m R  100  0.0  postgres: bgworker: parallel worker for PID 19018
20140  32.8g  80m  74m R  100  0.0  postgres: bgworker: parallel worker for PID 19018
20141  32.8g  80m  74m R  100  0.0  postgres: bgworker: parallel worker for PID 19018
20142  32.8g  80m  74m R  100  0.0  postgres: bgworker: parallel worker for PID 19018
20137  32.8g  80m  74m R   99  0.0  postgres: bgworker: parallel worker for PID 19018
20138  32.8g  80m  74m R   99  0.0  postgres: bgworker: parallel worker for PID 19018
20139  32.8g  80m  74m R   99  0.0  postgres: bgworker: parallel worker for PID 19018
   16      0    0    0 S    0  0.0  [watchdog/2]                                     
  281      0    0    0 S    0  0.0  [khugepaged]  
....
0 workers 9 workers
0
50
100
150
200
250
300
350
400
360
40
speedup with parallel query
example query without and with parallelism
duration[seconds]
https://www.youtube.com/watch?v=ysHZ1PDnH-s
Parallel Query Has Arrived!
Aggregate functions
● some aggregates use the same state
– AVG, SUM, …
– we’re keeping it separate and updating it twice
– but only the final function is actually different
● so …
Share transition state between different
aggregates when possible.
Aggregate functions
­­ table with 50M rows
CREATE TABLE test_aggregates AS 
SELECT i AS a
  FROM generate_series(1, 50.000.000) s(i);
­­ compute both SUM and AVG on a column
SELECT SUM(a), AVG(a) FROM test_aggregates;
BIGINT NUMERIC
0
2000
4000
6000
8000
10000
12000
14000
5438
12858
4056
8103
Aggregate functions
sharing aggregate state
before after
duration[miliseconds]
Checkpoints
● we need to write dirty buffers to disk regularly
– data written to page cache (no O_DIRECT)
– kernel responsible for actual write out
● until now, we simply walked shared buffers
– random order of buffers, causing random I/O
– 9.6 sorts the buffers first, to get sequential order
● until now, we only only did fsync at the end
– a lot of dirty data in page cache, latency spikes
– 9.6 allows continuous flushing (disabled by default)
Improving Postgres' Buffer Manager
Andres Freund
PostgreSQL Developer & Committer
Citus Data – citusdata.com - @citusdata
http://anarazel.de/talks/fosdem-2016-01-31/io.pdf
0
200
400
600
800
1000
1200
1400
1600
1800
2000
0
200
400
600
800
1000
1200
1400
1600
1800
2000
pgbench -M prepared -c 32 -j 32
shared_buffers = 16GB, max_wal_size = 100GB
TPS
Latency
seconds
TPS
Latency(ms)
0
200
400
600
800
1000
1200
1400
1600
1800
2000
0
200
400
600
800
1000
1200
pgbench -M prepared -c 32 -j 32
shared_buffers = 16GB, max_wal_size = 100GB, target = 0.9; OS tuning (no dirty)
TPS
Latency
seconds
TPS
Latency(ms)
Sort (again)
● abbreviated keys extended to
– additional data types: uuid, bytea, char(n)
– ordered set aggregates
● use quicksort (instead of replacement selection)
for “external sort” case
● … and many other optimizations
8MB 32MB 128MB 512MB 1GB
0
1000
2000
3000
4000
5000
6000
Sort performance in 9.5 / 9.6
PostgreSQL 9.5 PostgreSQL 9.6
work_mem
duration(seconds)
Freezing
● XIDs are 64-bit, but we only store the low 32 bits
– need to do “freeze” every ~2 billion transactions
– that means reading all the data (even unmodified parts)
– problem on large databases (time consuming)
– users often postpone until it’s too late (outage)
● PostgreSQL 9.6 introduces “freeze map”
– similar to “visibility map” (and stored in the same file)
– “all rows on page are frozen” - we can skip this 8kB page
Future
● extending parallel query (additional operations)
● declarative partitioning (smart joins, …)
● columnar features
– vectorized execution, compression, …
– do more with the same amount of resources
● improving planner
– correlation statistics, optimizations (unijoins)
Questions?

Contenu connexe

Tendances

How mysql handles ORDER BY, GROUP BY, and DISTINCT
How mysql handles ORDER BY, GROUP BY, and DISTINCTHow mysql handles ORDER BY, GROUP BY, and DISTINCT
How mysql handles ORDER BY, GROUP BY, and DISTINCT
Sergey Petrunya
 
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
PostgreSQL-Consulting
 
Fosdem2012 mariadb-5.3-query-optimizer-r2
Fosdem2012 mariadb-5.3-query-optimizer-r2Fosdem2012 mariadb-5.3-query-optimizer-r2
Fosdem2012 mariadb-5.3-query-optimizer-r2
Sergey Petrunya
 
Column store indexes and batch processing mode (nx power lite)
Column store indexes and batch processing mode (nx power lite)Column store indexes and batch processing mode (nx power lite)
Column store indexes and batch processing mode (nx power lite)
Chris Adkin
 

Tendances (20)

10 Reasons to Start Your Analytics Project with PostgreSQL
10 Reasons to Start Your Analytics Project with PostgreSQL10 Reasons to Start Your Analytics Project with PostgreSQL
10 Reasons to Start Your Analytics Project with PostgreSQL
 
Как PostgreSQL работает с диском
Как PostgreSQL работает с дискомКак PostgreSQL работает с диском
Как PostgreSQL работает с диском
 
Optimizer Hints
Optimizer HintsOptimizer Hints
Optimizer Hints
 
How mysql handles ORDER BY, GROUP BY, and DISTINCT
How mysql handles ORDER BY, GROUP BY, and DISTINCTHow mysql handles ORDER BY, GROUP BY, and DISTINCT
How mysql handles ORDER BY, GROUP BY, and DISTINCT
 
Advanced backup methods (Postgres@CERN)
Advanced backup methods (Postgres@CERN)Advanced backup methods (Postgres@CERN)
Advanced backup methods (Postgres@CERN)
 
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
How does PostgreSQL work with disks: a DBA's checklist in detail. PGConf.US 2015
 
Let's scale-out PostgreSQL using Citus (English)
Let's scale-out PostgreSQL using Citus (English)Let's scale-out PostgreSQL using Citus (English)
Let's scale-out PostgreSQL using Citus (English)
 
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
[Pgday.Seoul 2019] Citus를 이용한 분산 데이터베이스
 
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
[Pgday.Seoul 2017] 3. PostgreSQL WAL Buffers, Clog Buffers Deep Dive - 이근오
 
PostgreSQL and RAM usage
PostgreSQL and RAM usagePostgreSQL and RAM usage
PostgreSQL and RAM usage
 
PostgreSQL 9.4, 9.5 and Beyond @ COSCUP 2015 Taipei
PostgreSQL 9.4, 9.5 and Beyond @ COSCUP 2015 TaipeiPostgreSQL 9.4, 9.5 and Beyond @ COSCUP 2015 Taipei
PostgreSQL 9.4, 9.5 and Beyond @ COSCUP 2015 Taipei
 
Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...
Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...
Новые возможности полнотекстового поиска в PostgreSQL / Олег Бартунов (Postgr...
 
Fosdem2012 mariadb-5.3-query-optimizer-r2
Fosdem2012 mariadb-5.3-query-optimizer-r2Fosdem2012 mariadb-5.3-query-optimizer-r2
Fosdem2012 mariadb-5.3-query-optimizer-r2
 
Full Text Search in PostgreSQL
Full Text Search in PostgreSQLFull Text Search in PostgreSQL
Full Text Search in PostgreSQL
 
PostgreSQL query planner's internals
PostgreSQL query planner's internalsPostgreSQL query planner's internals
PostgreSQL query planner's internals
 
PgconfSV compression
PgconfSV compressionPgconfSV compression
PgconfSV compression
 
Scaling sql server 2014 parallel insert
Scaling sql server 2014 parallel insertScaling sql server 2014 parallel insert
Scaling sql server 2014 parallel insert
 
PostgreSQL Administration for System Administrators
PostgreSQL Administration for System AdministratorsPostgreSQL Administration for System Administrators
PostgreSQL Administration for System Administrators
 
Column store indexes and batch processing mode (nx power lite)
Column store indexes and batch processing mode (nx power lite)Column store indexes and batch processing mode (nx power lite)
Column store indexes and batch processing mode (nx power lite)
 
Mastering PostgreSQL Administration
Mastering PostgreSQL AdministrationMastering PostgreSQL Administration
Mastering PostgreSQL Administration
 

En vedette

Developing PostgreSQL Performance, Simon Riggs
Developing PostgreSQL Performance, Simon RiggsDeveloping PostgreSQL Performance, Simon Riggs
Developing PostgreSQL Performance, Simon Riggs
Fuenteovejuna
 

En vedette (20)

PostgreSQL 9.6 Performance-Scalability Improvements
PostgreSQL 9.6 Performance-Scalability ImprovementsPostgreSQL 9.6 Performance-Scalability Improvements
PostgreSQL 9.6 Performance-Scalability Improvements
 
PostgreSQL on EXT4, XFS, BTRFS and ZFS
PostgreSQL on EXT4, XFS, BTRFS and ZFSPostgreSQL on EXT4, XFS, BTRFS and ZFS
PostgreSQL on EXT4, XFS, BTRFS and ZFS
 
5 Steps to PostgreSQL Performance
5 Steps to PostgreSQL Performance5 Steps to PostgreSQL Performance
5 Steps to PostgreSQL Performance
 
Linux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performanceLinux tuning to improve PostgreSQL performance
Linux tuning to improve PostgreSQL performance
 
What's New in PostgreSQL 9.6
What's New in PostgreSQL 9.6What's New in PostgreSQL 9.6
What's New in PostgreSQL 9.6
 
PostgreSQL and Benchmarks
PostgreSQL and BenchmarksPostgreSQL and Benchmarks
PostgreSQL and Benchmarks
 
Postgres in Production - Best Practices 2014
Postgres in Production - Best Practices 2014Postgres in Production - Best Practices 2014
Postgres in Production - Best Practices 2014
 
Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.Deep dive into PostgreSQL statistics.
Deep dive into PostgreSQL statistics.
 
Novinky v PostgreSQL 9.4 a JSONB
Novinky v PostgreSQL 9.4 a JSONBNovinky v PostgreSQL 9.4 a JSONB
Novinky v PostgreSQL 9.4 a JSONB
 
The Magic of Tuning in PostgreSQL
The Magic of Tuning in PostgreSQLThe Magic of Tuning in PostgreSQL
The Magic of Tuning in PostgreSQL
 
Best Practices for Becoming an Exceptional Postgres DBA
Best Practices for Becoming an Exceptional Postgres DBA Best Practices for Becoming an Exceptional Postgres DBA
Best Practices for Becoming an Exceptional Postgres DBA
 
Expanding with EDB Postgres Advanced Server 9.5
Expanding with EDB Postgres Advanced Server 9.5Expanding with EDB Postgres Advanced Server 9.5
Expanding with EDB Postgres Advanced Server 9.5
 
Logical Replication in PostgreSQL - FLOSSUK 2016
Logical Replication in PostgreSQL - FLOSSUK 2016Logical Replication in PostgreSQL - FLOSSUK 2016
Logical Replication in PostgreSQL - FLOSSUK 2016
 
5 Postgres DBA Tips
5 Postgres DBA Tips5 Postgres DBA Tips
5 Postgres DBA Tips
 
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 Vienna
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 ViennaAutovacuum, explained for engineers, new improved version PGConf.eu 2015 Vienna
Autovacuum, explained for engineers, new improved version PGConf.eu 2015 Vienna
 
Postgresql database administration volume 1
Postgresql database administration volume 1Postgresql database administration volume 1
Postgresql database administration volume 1
 
Logical replication with pglogical
Logical replication with pglogicalLogical replication with pglogical
Logical replication with pglogical
 
PostgreSql vaccum
PostgreSql vaccumPostgreSql vaccum
PostgreSql vaccum
 
Developing PostgreSQL Performance, Simon Riggs
Developing PostgreSQL Performance, Simon RiggsDeveloping PostgreSQL Performance, Simon Riggs
Developing PostgreSQL Performance, Simon Riggs
 
Best Practices of running PostgreSQL in Virtual Environments
Best Practices of running PostgreSQL in Virtual EnvironmentsBest Practices of running PostgreSQL in Virtual Environments
Best Practices of running PostgreSQL in Virtual Environments
 

Similaire à PostgreSQL performance improvements in 9.5 and 9.6

mySQL and Relational Databases
mySQL and Relational DatabasesmySQL and Relational Databases
mySQL and Relational Databases
webhostingguy
 
PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12
Andrew Dunstan
 
Myth busters - performance tuning 101 2007
Myth busters - performance tuning 101 2007Myth busters - performance tuning 101 2007
Myth busters - performance tuning 101 2007
paulguerin
 
MySQL Database System Hiep Dinh
MySQL Database System Hiep DinhMySQL Database System Hiep Dinh
MySQL Database System Hiep Dinh
webhostingguy
 

Similaire à PostgreSQL performance improvements in 9.5 and 9.6 (20)

Ten Reasons Why You Should Prefer PostgreSQL to MySQL
Ten Reasons Why You Should Prefer PostgreSQL to MySQLTen Reasons Why You Should Prefer PostgreSQL to MySQL
Ten Reasons Why You Should Prefer PostgreSQL to MySQL
 
Changing your huge table's data types in production
Changing your huge table's data types in productionChanging your huge table's data types in production
Changing your huge table's data types in production
 
mySQL and Relational Databases
mySQL and Relational DatabasesmySQL and Relational Databases
mySQL and Relational Databases
 
Sql analytic queries tips
Sql analytic queries tipsSql analytic queries tips
Sql analytic queries tips
 
Scaling PostgreSQL With GridSQL
Scaling PostgreSQL With GridSQLScaling PostgreSQL With GridSQL
Scaling PostgreSQL With GridSQL
 
PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12
 
Типы данных JSONb, соответствующие индексы и модуль jsquery – Олег Бартунов, ...
Типы данных JSONb, соответствующие индексы и модуль jsquery – Олег Бартунов, ...Типы данных JSONb, соответствующие индексы и модуль jsquery – Олег Бартунов, ...
Типы данных JSONb, соответствующие индексы и модуль jsquery – Олег Бартунов, ...
 
PostgreSQL Moscow Meetup - September 2014 - Oleg Bartunov and Alexander Korotkov
PostgreSQL Moscow Meetup - September 2014 - Oleg Bartunov and Alexander KorotkovPostgreSQL Moscow Meetup - September 2014 - Oleg Bartunov and Alexander Korotkov
PostgreSQL Moscow Meetup - September 2014 - Oleg Bartunov and Alexander Korotkov
 
Lazy beats Smart and Fast
Lazy beats Smart and FastLazy beats Smart and Fast
Lazy beats Smart and Fast
 
Aileen heal postgis osmm cou
Aileen heal postgis osmm couAileen heal postgis osmm cou
Aileen heal postgis osmm cou
 
Queuing Sql Server: Utilise queues to increase performance in SQL Server
Queuing Sql Server: Utilise queues to increase performance in SQL ServerQueuing Sql Server: Utilise queues to increase performance in SQL Server
Queuing Sql Server: Utilise queues to increase performance in SQL Server
 
MySQL 5.7 - What's new and How to upgrade
MySQL 5.7 - What's new and How to upgradeMySQL 5.7 - What's new and How to upgrade
MySQL 5.7 - What's new and How to upgrade
 
MySQL 5.7 - What's new, How to upgrade and Document Store
MySQL 5.7 - What's new, How to upgrade and Document StoreMySQL 5.7 - What's new, How to upgrade and Document Store
MySQL 5.7 - What's new, How to upgrade and Document Store
 
Modern sql
Modern sqlModern sql
Modern sql
 
Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!
 
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, HerokuPostgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
 
MySql slides (ppt)
MySql slides (ppt)MySql slides (ppt)
MySql slides (ppt)
 
Myth busters - performance tuning 101 2007
Myth busters - performance tuning 101 2007Myth busters - performance tuning 101 2007
Myth busters - performance tuning 101 2007
 
MySQL Database System Hiep Dinh
MySQL Database System Hiep DinhMySQL Database System Hiep Dinh
MySQL Database System Hiep Dinh
 
mysqlHiep.ppt
mysqlHiep.pptmysqlHiep.ppt
mysqlHiep.ppt
 

Plus de Tomas Vondra

Plus de Tomas Vondra (13)

CREATE STATISTICS - What is it for? (PostgresLondon)
CREATE STATISTICS - What is it for? (PostgresLondon)CREATE STATISTICS - What is it for? (PostgresLondon)
CREATE STATISTICS - What is it for? (PostgresLondon)
 
Data corruption
Data corruptionData corruption
Data corruption
 
CREATE STATISTICS - what is it for?
CREATE STATISTICS - what is it for?CREATE STATISTICS - what is it for?
CREATE STATISTICS - what is it for?
 
DB vs. encryption
DB vs. encryptionDB vs. encryption
DB vs. encryption
 
PostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAlt
PostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAltPostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAlt
PostgreSQL na EXT4, XFS, BTRFS a ZFS / OpenAlt
 
Postgresql na EXT3/4, XFS, BTRFS a ZFS
Postgresql na EXT3/4, XFS, BTRFS a ZFSPostgresql na EXT3/4, XFS, BTRFS a ZFS
Postgresql na EXT3/4, XFS, BTRFS a ZFS
 
Výkonnostní archeologie
Výkonnostní archeologieVýkonnostní archeologie
Výkonnostní archeologie
 
Český fulltext a sdílené slovníky
Český fulltext a sdílené slovníkyČeský fulltext a sdílené slovníky
Český fulltext a sdílené slovníky
 
SSD vs HDD / WAL, indexes and fsync
SSD vs HDD / WAL, indexes and fsyncSSD vs HDD / WAL, indexes and fsync
SSD vs HDD / WAL, indexes and fsync
 
Checkpoint (CSPUG 22.11.2011)
Checkpoint (CSPUG 22.11.2011)Checkpoint (CSPUG 22.11.2011)
Checkpoint (CSPUG 22.11.2011)
 
Čtení explain planu (CSPUG 21.6.2011)
Čtení explain planu (CSPUG 21.6.2011)Čtení explain planu (CSPUG 21.6.2011)
Čtení explain planu (CSPUG 21.6.2011)
 
Replikace (CSPUG 19.4.2011)
Replikace (CSPUG 19.4.2011)Replikace (CSPUG 19.4.2011)
Replikace (CSPUG 19.4.2011)
 
PostgreSQL / Performance monitoring
PostgreSQL / Performance monitoringPostgreSQL / Performance monitoring
PostgreSQL / Performance monitoring
 

Dernier

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Dernier (20)

From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 

PostgreSQL performance improvements in 9.5 and 9.6