SlideShare une entreprise Scribd logo
1  sur  15
Télécharger pour lire hors ligne
1. Stress Analysis 
Moment of Inertias 
1. Atalet moment of inertia; 2. Polar moment of inertia; 
2 
x I   y dA 
2 
y I   x dA 
2 2 
( ) z J   x  y dA 
Shape Ix Iy J 
Rectangle bh3/12 hb3/12  2 2 
12 
bh 
b h 
Triangle bh3/36 hb3/36 2 2 
18 
h b 
bh 
   
  
  
  
Circle πd4/64 πd4/64 πd4/32 
Stresses 
Normal Stresses Shear Stresses 
Axial 
Tensile 
F 
A 
  
Torsional 
Tr 
J 
  
 
3 
Compression   16T / d for solid circular beam 
F 
A 
  
Bending 
b 
Mc 
I 
  
 
3 
32 
b 
M 
d 
 
 
 for solid circular beam 
Transverse 
(Flexural) 
VQ 
Ib 
  , Q A y 
 
 
 max   4V / 3A for solid circular beam 
 max   2V / A for hollow circular section 
 max   3V / 2A for rectangular beam 
Principle stresses 
2 
2 
1,2 
2 2 
x y x y 
xy 
    
  
   
   
  
  
  
2 
tan 2 
xy 
x y 
 
 
  
 
 
Max. and min shear stresses 
2 
2 
1,2 
2 
x y 
xy 
  
  
  
   
  
  
  
Von-Mises stresses 
2 2 
1 1 2 2  '      or 2 2 
' 3 x xy      (for biaxial) 
Stress States 
Triaxial stress state 
1 2 3 
1 
E E 
   
  
 
  
2 1 3 
2 
E E 
   
  
 
  
3 1 2 
2 
E E 
   
  
 
  
Stress in Cylinders 
Thick-Walled (t/r>1/20) Wessels (internally and externally pressurized cyclinders): 
2 2 2 2 2 
2 2 
( ) / i o o i 
t 
p a p b a b p p r 
b a 
 
   
 
 
2 2 2 2 2 
2 2 
( ) / i o o i 
r 
p a p b a b p p r 
b a 
 
   
 
 
2 
2 2 
i 
l 
p a 
b a 
  

 If the external pressure is zero (po=0); 
2 2 
2 2 2 
1 i 
t 
a p b 
b a r 
   
 
  
  
  
2 2 
2 2 2 
1 i 
r 
a p b 
b a r 
   
 
  
  
  
r=a  r   pi 
2 2 
t i 2 2 
b a 
p 
b a 
 
 
 
 
r=b 0 r   
2 
2 2 
2 
t i 
a 
p 
b a 
  
 
 If the internal pressure is zero (pi=0); 
2 2 
2 2 2 
1 t o 
b a 
p 
b a r 
    
 
  
  
  
2 2 
2 2 2 
1 r o 
b a 
p 
b a r 
    
 
  
  
  
r=a  0 r   
2 
2 2 
2 
t o 
b 
p 
b a 
   
 
r=b r o    p 
2 2 
t o 2 2 
b a 
p 
b a 
 
 
  
 
a=inside radius of the cylinder b=outside radius of the cylinder pi=internal pressure po=external pressure 
Thin-Walled Wessels(t/r<1/20): 
2 
i 
t 
pd 
t 
  
4 
i 
l 
pd 
t 
  
Curved Members In Flexure: 
 
A 
r 
dA 
 
 
 
 
( ) 
My 
Ae r y 
  
 
 o 
o 
o 
Mc 
Aer 
  , i 
i 
i 
Mc 
Aer 
  
Press and Shrink Fit: 
 
2 2 
it 2 2 
b a 
p 
b a 
 
 
  
 
 
2 2 
ot 2 2 
c b 
p 
c b 
 
 
  
 
 
2 2 
o 2 2 o 
o 
bp c b 
E c b 
  
 
  
 
  
  
  
 
2 2 
i 2 2 i 
i 
bp b a 
E b a 
  
 
   
 
  
  
  
 
2 2 2 2 
o i 2 2 o 2 2 i 
o i 
bp c b bp b a 
E c b E b a 
       
  
    
  
    
    
    
 
   
  
2 2 2 2 
2 2 2 
; interface pressure 
2 
o i 
E c b b a 
if E E E = p = 
b b c a 
   
  
 
  
  
 
2. Deflection Analysis 
F 
k 
y 
 , k=spring constant 
T GJ 
k 
 l 
  ,k=Torsional spring rate for tension or compression loading 
AE 
k 
l 
 
Castigliano’s Theorem: 
Strain Energy 
Axial Load 
2 
2 
F L 
U 
AE 
 Direct Shear Force 
2 
2 
F L 
U 
AG 
 
Torsional Load 
2 
2 
T L 
U 
GJ 
 Bending Moment 
2 
2 
M 
U dx 
EI 
  
Flexural Shear 
2 
2 
CF 
U dx 
GA 
  , C is constant 
Buckling Consideration: 
Slenderness ratio= 
l 
k 
  
  
  
, 
I 
k 
A 
 
1/2 
1 
l 2 EC 
k Sy 
 
 
    
          
 
  
  
2 
2 
1 
Critical Unit Load = Euler Column 
/ 
cr l l P C E 
k k A l k 
 
   
    
    
    
; 
2 
2 
P 
cr 
C EI 
l 
 
 
   
2 2 
1 
1 
Critital Unit Load Johnson's Column 
2 
cr y 
y = 
l l P S l 
= S 
k k A  CE k 
   
         
         
         
1. Both ends are rounded-simply supported C=1 
2. Both ends are fixed C=4 
3. One end fixed, one end rounded and guided C=2 
4. One end fixed, one end free C=1/4 
U Total energy 
F Force on the deflection point 
 Angular deflection 
U 
y 
F 
 
 
 
Tl 
GJ 
 
3.Design For Static Strength 
Ductile Materials 
1. Max. Normal Stress Theory (MNST): 
 If, 1 2 3    
 
1 
y S 
n 
 
 
3. Distortion Energy Theory 
 If, 1 2 3    
 
2 2 2 
1 2 2 3 3 1 ( ) ( ) ( ) 
' 
2 
      
 
     
 
 For baxial stress state; 
2 2 
' 3 x xy      
 1 
y S 
n 
 
 
2. Max. Shear Stress Theory (MSST): 
 Yield strength in shear (Ssy)=Sy/2 
 
  1 3 
max 
2 
  
 
 
 , for biaxial stress state; 
max 
1 2 2 
4 
2 
x xy      
 
max 
sy S 
n 
 
 
Brittle Materials 
1. Max. Normal Stress Theory (MNST): 3. The Modified Mohr Theory (MMT) 
 If, 1 2 3     
1 
ut S 
n 
 
 or 
3 
uc S 
n 
 
 
 If, 1 2 3    
 3 
1 
3 
1 
uc 
uc ut 
ut 
S 
S 
S S 
S 
 
 
 
 
 
 3 
3 
S 
n 
 
 
2. The Column Mohr Theory (CMT) or Internal 
Friction Theory (IFT): 
 3 
1 
3 
1 
uc 
uc 
ut 
S 
S 
S 
S 
 
 
 
 
 3 
3 
S 
n 
 

5. Design for Fatigue Strength 
Endurance limit for test specimen (Se’); 
 For ductile materials: 
Se’=0.5 Sut if Sut<1400 MPa 
Se’=700 MPa if Sut  1400 MPa 
 For irons: 
Se’=0.4 Sut if Sut<400 MPa 
Se’=160 MPa if Sut  400 MPa 
 For Aliminiums: 
Se’=0.4 Sut if Sut<330 MPa 
Se’=130 MPa if Sut  330 MPa 
 For copper alloys: 
Se’  0.4 Sut if Sut<280 MPa 
Se’  100 MPa if Sut  280 MPa 
Se = ka kb kc kd ke Se’ 
Sf=10c Nb 
u 
e 
1 0.8S 
b log 
3 S 
  
    
  
 2 
u 
e 
0.8S 
c log 
S 
  
   
  
 ka= surface factor, ka=aSut 
b 
Surface Finish Factor a Factor b 
Ground 1.58 -0.065 
Machined or Cold Drawn 4.51 -0.265 
Hot Rolled 57.7 -0.718 
As Forged 272 -0.995 
 kb= size factor; 
kb=1 if d  8 mm and kb= 1.189d-0.097 if 8 mm<d  250 mm for bending & torsional loading. 
For non-rotating element, 0.097 
b eq k 1.189d   deq=0.37d 
For pure axial loading, kb=1 and Se’=0.45Sut 
For combined loading,  =1.11 if Sut  1520 MPa and  =1 if Sut  1520 MPa for ductile materials. 
 kc=reliability factor 
 kd=temperature effects, kd=1 if T 3500 and kd=0.5 if 3500<T 5000 
 ke=stress concentration factor, ke=1/Kf Kf=1+q(Kt-1) 
Kt=geometric stress concentration factor, q=notch sensitivity. 
Modified Goodman Soderberg 
Infinite Life Finite Life Infinite Life Finite Life 
a m 
e u 
1 
n = 
σ σ 
+ 
S S 
a m 
f u 
1 
n = 
σ σ 
+ 
S S 
a m 
e y 
1 
n = 
σ σ 
+ 
S S 
a m 
f y 
1 
n = 
σ σ 
+ 
S S 
 Fa=(Fmax-Fmin)/2  Fm=(Fmax+Fmin)/2
6. Tolerances and Fits 
TF=Cmax-Cmin dL=DU-c Cmax=DU-dL Cmin=DL-dU 
TF=Imax+Cmax dU=dL+TS Imax=dU-DL Imin=dL-Du 
TF=Imax-Imin dU=DL+Imax 
TS=dU-dL TH=DU-DL TF=TH+TS 
7. Design of Power Screws 
m m 
R 
m 
Fd L d 
T 
2 d L 
     
   
    
m m 
L 
m 
Fd d L 
T 
2 d L 
     
   
    
Or considering   tan ; 
  m 
R 
Fd 
T tan 
2 
      m 
R 
Fd 
T tan 
2 
    
If the friction between the stationary member and the collar of the screw is taken into consideration; 
  m c c 
R 
Fd d F 
T tan 
2 2 
 
       m c c 
R 
Fd d F 
T tan 
2 2 
 
     
o 
R R 
T FL 
T 2 T 
   
 
when collar friction is negligible, we obtain  as, 
  
tan 
tan 
 
  
   
If   tan or 
m 
L 
d 
then screw is self locking. 
 Bearing Stresses 
  b 2 2 
r 
4pF 
h d d 
  
  
b 
m 
Fp 
d th 
  
 
p 
t 
2 
 
 Shear Stresses 
For Screw Thread For Nut Thread 
s 
r 
2F 
d h 
  
 
n 
2F 
dh 
  
 
 Bending Stresses 
The maximum bending stress, 
m 
6F 
d Np 
  
 
N=h/p
 Tensile or Compressive stresses 
x 
t 
F 
A 
  
2 
t 
t 
d 
A 
4 
 
 r m 
t 
d d 
d 
2 
 
 
 Combined Stresses 
R 
xy 3 
t 
16T 
d 
  
 
Based on distortion energy theory; 
R 
xy 3 
t 
16T 
d 
  
 
2 2 
'  x 3xy y S 
n 
' 
 
 
Based on maximum shear stres theory; 
2 2 
max x xy 
1 
4 
2 
     sy 
max 
S 
n  
 
8. Design of Bolted Joints 
Fe=Feb+Fep Feb=CFe Fep=(1-C)Fe b 
b m 
k 
C = 
k  k 
Fb=Fi+CFe Fm=Fi-(1-C)Fe 
b b 
b 
A E 
k 
L 
 
m 1 2 n 
1 1 1 1 
.......... 
k k k k 
    
i 
b 
b 
F 
k 
  i 
m 
m 
F 
k 
  
 Shigley and Mishke approach; 
For cone angle of 0   30 , 
i 
i 
i 
i 
1.813E d 
k 
1.15L 0.5d 
ln 5 
1.15L 2.5d 
 
   
  
   
m 1 2 n 
1 1 1 1 
.......... 
k k k k 
    
If L1=L2=L/2 and materials are same, m 
1.813Ed 
k 
2.885L 2.5d 
2ln 
0.577L 2.5d 
 
   
  
  
For cone angle of 0   45 , 
  
  
i 
i 
i 
i 
E d 
k 
5 2L 0.5d 
ln 
2L 2.5d 
 
 
   
     
If L1=L2=L/2 and materials are same, m 
Ed 
k 
L 0.5d 
2ln 5 
L 2.5d 
 
 
   
  
   
 Wileman approach; 
(Bid/L) 
m i k  EdA e 
Where Ai and Bi are constants related to the material. For Steel Ai=0.78715 and Bi=0.62873, for 
Aliminium Ai=0.79670 and Bi=0.63816, for Gray cast iron Ai=0.77871 and Bi=0.61616. 
 Filiz approach; 
1 
d 
B 
5 L 
m eq 
2 
1 
k E d e 
2 1 B 
    
    
    
 
 
1 2 
eq 
1 2 
E E 
E 
E E 
 
 
2 
1 
0.1d 
B 
L 
  
  
  
8 
1 
1 
2 
L 
B 1 
L 
  
    
  
Static loading; 
b y t F  S A or b p t F  S A   p y S  0.85S mF  0 
  e i p t e 1C nF  F  S A CnF n=load factor of safety 
Critical load= i 
ce 
F 
F 
1 C 
 
 
Dynamic Loading: 
e 
a 
t 
CnF 
2A 
  i 
m a 
t 
F 
A 
    s 
a m 
e u 
1 
n 
S S 
 
  
 
t u e u 
i 
s e 
A S CnF S 
F 1 
n 2 S 
  
     
  
Fi=the maximum value of preload for there is no fatigue failure. 
Limitations: 
 p i p 0.6F  F  0.9F where p t p F  A S 
 e ut 
imax t ut 
e 
cF n S 
F A S 1 
2N S 
  
     
  
 e e 
i t p 
F cF 
(1 c) F A S 
N N 
    b 3.5d  c 10d b 
180 
c 
N 
 

9. Design of Riveted Joints 
 Shearing of Rivets: 
F 
A 
  , F=Force on each rivet 
2 d 
A 
4 
 
 
 Secondary Shear Force 
i 
i N 
2 
i 
1 
Mr 
F '' 
r 
 
 
 
 Bearing (compression) Failure: 
F 
A 
   , A=td, t=thickness of the plate 
 Plate Tension Failure: 
F 
A 
  , A  w Nd t 
w=width of plate 
N=number of rivets on the 
selected cross section 
 
 Primary Shear Force 
N 
i 
1 
F 
F' 
A 
 
 
 
10. Design of Welded Joints 
 Primary Shear Stress 
F 
' 
A 
  
 u J  0.707hJ  
 Secondary Shear Stress 
Mr 
'' 
J 
  
 u I  0.707hI  
 Bending Stress 
Mc 
I 
  

Table 9-3 Minimum weld-metal properties 
AWS electrode 
Number 
n 
Tensile Strength 
MPa 
Yield Strength 
MPa 
Percent 
Elongation E60xx 420 340 17-25 E70xx 480 390 22 E80xx 530 460 19 E90xx 620 530 14-17 E100xx 690 600 13-16 E120xx 830 740 14 
Table 9-5 Fatigue-strength reduction factors 
Type of Weld 
Kf Reinforced butt weld 1.2 Toe of transverse fillet weld 1.5 End of parallel fillet weld 2.7 T-butt joint with sharp corners 2.0
Table 9-1 Torsional Properties of Fillet Welds* 
Weld 
Throat Area 
Location of G 
Unit Polar Moment of Inertia 
*G is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of the same size.
Table 9-2 Bending Properties of Fillet Welds* 
Weld 
Throat Area 
Location of G 
Unit Moment of Inertia 
*Iu, unit moment of inertia, is taken about a horizontal axis through G, the centroid of the weld group; h is weld size; the plane of the bending couple is normal to the paper; all welds are of the same size
Table A3-8 Stress concentration factors for round shaft with 
shoulder fillet in tension 
d 
r 
D 
. 
o= F/A, where A= d2/4 
D/d =1,02 D/d =1,05 D/d =1,1 D/d=1,5 
r/d Kt Kt Kt Kt 
0,025 1,800 - - - 
0,028 1,728 - 2,200 - 
0,031 1,678 2,000 2,125 - 
0,037 1,610 1,868 2,020 - 
0,044 1,550 1,778 1,938 2,522 
0,050 1,508 1,714 1,866 2,400 
0,062 1,452 1,626 1,766 2,235 
0,075 1,408 1,550 1,684 2,086 
0,088 1,370 1,502 1,624 1,970 
0,100 1,336 1,457 1,568 1,893 
0,125 1,286 1,400 1,496 1,760 
0,150 1,254 1,364 1,452 1,662 
0,175 1,230 1,340 1,400 1,600 
0,200 1,220 1,314 1,372 1,546 
0,250 1,216 1,292 1,342 1,508 
0,275 1,200 1,270 1,325 1,480 
0,300 1,200 1,250 1,296 1,452 
* Adopted from Ref. [12]
Table A3-9 Stress concentration factors for round shaft with shoulder fillet 
in torsion 
d 
r 
D 
T T 
. 
o= Tc/J, where c=d/2 and J=d4/32 
D/d =1,09 D/d =1,20 D/d =1,33 D/d =2,0 
r/d Kt Kt Kt Kt 
0,009 - - - - 
0,012 1,800 2,300 - 2,600 
0,030 1,566 2,040 2,144 2,288 
0,025 1,472 1,894 2,020 2,122 
0,033 1,384 1,761 1,878 1,966 
0,042 1,322 1,644 1,755 1,828 
0,050 1,283 1,576 1,677 1,750 
0,062 1,244 1,500 1,600 1,644 
0,075 1,206 1,434 1,516 1,572 
0,087 1,184 1,378 1,458 1,510 
0,100 1,166 1,342 1,412 1,466 
0,125 1,144 1,275 1,344 1,400 
0,150 1,122 1,220 1,294 1,344 
0,200 1,110 1,160 1,220 1,266 
0,250 1,100 1,130 1,178 1,222 
0,300 1,100 1,120 1,160 1,200 
* Adopted from Ref. [12]
Table A3-10 Stress Concentration factors for round shaft with shoulder 
fillet in bending 
d 
r 
M D M 
. 
o= Mc/I, where c=d/2 and I=d4/64 
D/d =1,02 D/d =1,05 D/d =1,1 D/d =1,5 D/d =3 
r/d Kt Kt Kt Kt Kt 
0,012 2,290 2,553 2,700 - - 
0,017 2,120 2,378 2,500 3,000 - 
0,021 2,000 2,240 2,366 2,774 3,000 
0,025 1,926 2,134 2,260 2,600 2,862 
0,036 1,760 1,936 2,046 2,310 2,600 
0,050 1,644 1,782 1,865 2,060 2,310 
0,062 1,574 1,700 1,750 1,925 2,140 
0,075 1,518 1,628 1,688 1,800 1,986 
0,087 1,472 1,563 1,630 1,728 1,880 
0,100 1,440 1,534 1,580 1,660 1,804 
0,125 1,380 1,468 1,500 1,584 1,684 
0,150 1,330 1,412 1,450 1,510 1,584 
0,175 1,297 1,358 1,400 1,450 1,510 
0,200 1,264 1,336 1,360 1,400 1,457 
0,225 1,242 1,308 - - 1,410 
0,250 1,225 1,286 - - 1,374 
0,275 1,210 1,264 - - 1,340 
0,300 1,200 1,242 - - 1,320 
* Adopted from Ref. [12]

Contenu connexe

Tendances

Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)Mahdi Damghani
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysisTarun Gehlot
 
Springs - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IISprings - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IIDr. L K Bhagi
 
6 Machine design theories of failure
6 Machine design theories of failure6 Machine design theories of failure
6 Machine design theories of failureDr.R. SELVAM
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problemsTarun Gehlot
 
Strength of materials by A.Vinoth Jebaraj
Strength of materials by A.Vinoth JebarajStrength of materials by A.Vinoth Jebaraj
Strength of materials by A.Vinoth JebarajVinoth Jebaraj A
 
2 chain drives
2 chain drives2 chain drives
2 chain drivesA-S111
 
CAD Topology and Geometry Basics
CAD Topology and Geometry BasicsCAD Topology and Geometry Basics
CAD Topology and Geometry BasicsAndrey Dankevich
 
Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11Darawan Wahid
 
Introduction to Finite Element Analysis
Introduction to Finite Element Analysis Introduction to Finite Element Analysis
Introduction to Finite Element Analysis Madhan N R
 
Numerical problems on spur gear (type i)
Numerical problems on spur gear (type i)Numerical problems on spur gear (type i)
Numerical problems on spur gear (type i)taruian
 
12 fatigue of metals
12 fatigue of metals12 fatigue of metals
12 fatigue of metalsRajeev Ranjan
 
Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3propaul
 

Tendances (20)

Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)Fatigue Analysis of Structures (Aerospace Application)
Fatigue Analysis of Structures (Aerospace Application)
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Machine design
Machine designMachine design
Machine design
 
Springs - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IISprings - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-II
 
6 Machine design theories of failure
6 Machine design theories of failure6 Machine design theories of failure
6 Machine design theories of failure
 
part programming (cnc)
part programming (cnc)part programming (cnc)
part programming (cnc)
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Design of Helical Spring
Design of Helical SpringDesign of Helical Spring
Design of Helical Spring
 
Strength of materials by A.Vinoth Jebaraj
Strength of materials by A.Vinoth JebarajStrength of materials by A.Vinoth Jebaraj
Strength of materials by A.Vinoth Jebaraj
 
Power screw
Power screwPower screw
Power screw
 
Riveted joints
Riveted jointsRiveted joints
Riveted joints
 
2 chain drives
2 chain drives2 chain drives
2 chain drives
 
CAD Topology and Geometry Basics
CAD Topology and Geometry BasicsCAD Topology and Geometry Basics
CAD Topology and Geometry Basics
 
Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11Theory of machines by rs. khurmi_ solution manual _ chapter 11
Theory of machines by rs. khurmi_ solution manual _ chapter 11
 
Introduction to Finite Element Analysis
Introduction to Finite Element Analysis Introduction to Finite Element Analysis
Introduction to Finite Element Analysis
 
Numerical problems on spur gear (type i)
Numerical problems on spur gear (type i)Numerical problems on spur gear (type i)
Numerical problems on spur gear (type i)
 
12 fatigue of metals
12 fatigue of metals12 fatigue of metals
12 fatigue of metals
 
Wire rope design
Wire rope design Wire rope design
Wire rope design
 
Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3Finite Element Analysis - UNIT-3
Finite Element Analysis - UNIT-3
 
DYNAMIC FORCE ANALYSIS BEST PPT
DYNAMIC FORCE ANALYSIS BEST PPT DYNAMIC FORCE ANALYSIS BEST PPT
DYNAMIC FORCE ANALYSIS BEST PPT
 

Similaire à Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer University of Gaziantep

Ch04 section15 pressure_vessel_design
Ch04 section15 pressure_vessel_designCh04 section15 pressure_vessel_design
Ch04 section15 pressure_vessel_designParalafakyou Mens
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structuresHaHoangJR
 
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3dean129
 
Stress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsStress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsHugo Méndez
 
19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdfrabeamatouk
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionBaaselMedhat
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxPawanKumar391848
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equationsDr.Jagadish Tawade
 
thickcylinders-160605084017.pdf
thickcylinders-160605084017.pdfthickcylinders-160605084017.pdf
thickcylinders-160605084017.pdfSukantaMandal17
 
Tính tần số riêng của dầm
Tính tần số riêng của dầm Tính tần số riêng của dầm
Tính tần số riêng của dầm Chieu Hua
 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shafttejasp
 

Similaire à Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer University of Gaziantep (20)

Ch04 section15 pressure_vessel_design
Ch04 section15 pressure_vessel_designCh04 section15 pressure_vessel_design
Ch04 section15 pressure_vessel_design
 
dynamical analysis of soil and structures
dynamical analysis of soil and structuresdynamical analysis of soil and structures
dynamical analysis of soil and structures
 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19
 
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3 solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
solution-manual-3rd-ed-metal-forming-mechanics-and-metallurgy-chapter-1-3
 
Stress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsStress Analysis & Pressure Vessels
Stress Analysis & Pressure Vessels
 
Solution manual 1 3
Solution manual 1 3Solution manual 1 3
Solution manual 1 3
 
The Thick-Walled cylinder
The Thick-Walled cylinder The Thick-Walled cylinder
The Thick-Walled cylinder
 
19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Waveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptxWaveguiding Structures Part 2 (Attenuation).pptx
Waveguiding Structures Part 2 (Attenuation).pptx
 
Thin cylinder ppt
Thin cylinder pptThin cylinder ppt
Thin cylinder ppt
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
 
Ch5 epfm
Ch5 epfmCh5 epfm
Ch5 epfm
 
thickcylinders-160605084017.pdf
thickcylinders-160605084017.pdfthickcylinders-160605084017.pdf
thickcylinders-160605084017.pdf
 
Sasoli1
Sasoli1Sasoli1
Sasoli1
 
7903549.ppt
7903549.ppt7903549.ppt
7903549.ppt
 
Tính tần số riêng của dầm
Tính tần số riêng của dầm Tính tần số riêng của dầm
Tính tần số riêng của dầm
 
Sa-1_strain energy
Sa-1_strain energySa-1_strain energy
Sa-1_strain energy
 
Torsion Hollow Shaft
Torsion Hollow ShaftTorsion Hollow Shaft
Torsion Hollow Shaft
 

Plus de Erdi Karaçal

Ch40 design selection
Ch40 design selectionCh40 design selection
Ch40 design selectionErdi Karaçal
 
Ch39 computer aided manufacturing
Ch39 computer aided manufacturingCh39 computer aided manufacturing
Ch39 computer aided manufacturingErdi Karaçal
 
Ch33 surface roughness
Ch33 surface roughnessCh33 surface roughness
Ch33 surface roughnessErdi Karaçal
 
Ch32 brazing soldering
Ch32 brazing solderingCh32 brazing soldering
Ch32 brazing solderingErdi Karaçal
 
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...Erdi Karaçal
 
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of GaziantepCh30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...Erdi Karaçal
 
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...Erdi Karaçal
 
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of GaziantepCh27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...Erdi Karaçal
 
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of GaziantepCh25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 
Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch24 milling Erdi Karaçal Mechanical Engineer University of GaziantepCh24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch24 milling Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 

Plus de Erdi Karaçal (20)

afm of Ti6Al4V
afm of Ti6Al4V afm of Ti6Al4V
afm of Ti6Al4V
 
Met ch1
Met ch1Met ch1
Met ch1
 
Met ch0
Met ch0Met ch0
Met ch0
 
Ch40 design selection
Ch40 design selectionCh40 design selection
Ch40 design selection
 
Ch39 computer aided manufacturing
Ch39 computer aided manufacturingCh39 computer aided manufacturing
Ch39 computer aided manufacturing
 
Ch38 computer aided
Ch38 computer aidedCh38 computer aided
Ch38 computer aided
 
Ch37 automation
Ch37 automationCh37 automation
Ch37 automation
 
Ch36 quality
Ch36 qualityCh36 quality
Ch36 quality
 
Ch35 measurement
Ch35 measurementCh35 measurement
Ch35 measurement
 
Ch34 coating
Ch34 coatingCh34 coating
Ch34 coating
 
Ch33 surface roughness
Ch33 surface roughnessCh33 surface roughness
Ch33 surface roughness
 
Ch32 brazing soldering
Ch32 brazing solderingCh32 brazing soldering
Ch32 brazing soldering
 
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
Ch31 solid state welding Erdi Karaçal Mechanical Engineer University of Gazia...
 
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of GaziantepCh30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch30 fusion welding Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
Ch29 microeletrical fabrication Erdi Karaçal Mechanical Engineer University o...
 
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
Ch28 microelectronic devices Erdi Karaçal Mechanical Engineer University of G...
 
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of GaziantepCh27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch27 advanced machining Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
Ch26 abrassive machining Erdi Karaçal Mechanical Engineer University of Gazia...
 
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of GaziantepCh25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch25 machining centers Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch24 milling Erdi Karaçal Mechanical Engineer University of GaziantepCh24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
Ch24 milling Erdi Karaçal Mechanical Engineer University of Gaziantep
 

Dernier

Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...tanu pandey
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfRagavanV2
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . pptDineshKumar4165
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 

Dernier (20)

Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...Bhosari ( Call Girls ) Pune  6297143586  Hot Model With Sexy Bhabi Ready For ...
Bhosari ( Call Girls ) Pune 6297143586 Hot Model With Sexy Bhabi Ready For ...
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 

Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer University of Gaziantep

  • 1. 1. Stress Analysis Moment of Inertias 1. Atalet moment of inertia; 2. Polar moment of inertia; 2 x I   y dA 2 y I   x dA 2 2 ( ) z J   x  y dA Shape Ix Iy J Rectangle bh3/12 hb3/12  2 2 12 bh b h Triangle bh3/36 hb3/36 2 2 18 h b bh          Circle πd4/64 πd4/64 πd4/32 Stresses Normal Stresses Shear Stresses Axial Tensile F A   Torsional Tr J    3 Compression   16T / d for solid circular beam F A   Bending b Mc I    3 32 b M d    for solid circular beam Transverse (Flexural) VQ Ib   , Q A y    max   4V / 3A for solid circular beam  max   2V / A for hollow circular section  max   3V / 2A for rectangular beam Principle stresses 2 2 1,2 2 2 x y x y xy                   2 tan 2 xy x y       Max. and min shear stresses 2 2 1,2 2 x y xy                Von-Mises stresses 2 2 1 1 2 2  '      or 2 2 ' 3 x xy      (for biaxial) Stress States Triaxial stress state 1 2 3 1 E E         2 1 3 2 E E         3 1 2 2 E E         Stress in Cylinders Thick-Walled (t/r>1/20) Wessels (internally and externally pressurized cyclinders): 2 2 2 2 2 2 2 ( ) / i o o i t p a p b a b p p r b a       2 2 2 2 2 2 2 ( ) / i o o i r p a p b a b p p r b a       2 2 2 i l p a b a   
  • 2.  If the external pressure is zero (po=0); 2 2 2 2 2 1 i t a p b b a r           2 2 2 2 2 1 i r a p b b a r           r=a  r   pi 2 2 t i 2 2 b a p b a     r=b 0 r   2 2 2 2 t i a p b a     If the internal pressure is zero (pi=0); 2 2 2 2 2 1 t o b a p b a r            2 2 2 2 2 1 r o b a p b a r            r=a  0 r   2 2 2 2 t o b p b a     r=b r o    p 2 2 t o 2 2 b a p b a      a=inside radius of the cylinder b=outside radius of the cylinder pi=internal pressure po=external pressure Thin-Walled Wessels(t/r<1/20): 2 i t pd t   4 i l pd t   Curved Members In Flexure:  A r dA     ( ) My Ae r y     o o o Mc Aer   , i i i Mc Aer   Press and Shrink Fit:  2 2 it 2 2 b a p b a       2 2 ot 2 2 c b p c b       2 2 o 2 2 o o bp c b E c b              2 2 i 2 2 i i bp b a E b a               2 2 2 2 o i 2 2 o 2 2 i o i bp c b bp b a E c b E b a                                  2 2 2 2 2 2 2 ; interface pressure 2 o i E c b b a if E E E = p = b b c a            
  • 3. 2. Deflection Analysis F k y  , k=spring constant T GJ k  l   ,k=Torsional spring rate for tension or compression loading AE k l  Castigliano’s Theorem: Strain Energy Axial Load 2 2 F L U AE  Direct Shear Force 2 2 F L U AG  Torsional Load 2 2 T L U GJ  Bending Moment 2 2 M U dx EI   Flexural Shear 2 2 CF U dx GA   , C is constant Buckling Consideration: Slenderness ratio= l k       , I k A  1/2 1 l 2 EC k Sy                      2 2 1 Critical Unit Load = Euler Column / cr l l P C E k k A l k                 ; 2 2 P cr C EI l      2 2 1 1 Critital Unit Load Johnson's Column 2 cr y y = l l P S l = S k k A  CE k                               1. Both ends are rounded-simply supported C=1 2. Both ends are fixed C=4 3. One end fixed, one end rounded and guided C=2 4. One end fixed, one end free C=1/4 U Total energy F Force on the deflection point  Angular deflection U y F    Tl GJ  
  • 4. 3.Design For Static Strength Ductile Materials 1. Max. Normal Stress Theory (MNST):  If, 1 2 3     1 y S n   3. Distortion Energy Theory  If, 1 2 3     2 2 2 1 2 2 3 3 1 ( ) ( ) ( ) ' 2               For baxial stress state; 2 2 ' 3 x xy       1 y S n   2. Max. Shear Stress Theory (MSST):  Yield strength in shear (Ssy)=Sy/2    1 3 max 2      , for biaxial stress state; max 1 2 2 4 2 x xy       max sy S n   Brittle Materials 1. Max. Normal Stress Theory (MNST): 3. The Modified Mohr Theory (MMT)  If, 1 2 3     1 ut S n   or 3 uc S n    If, 1 2 3     3 1 3 1 uc uc ut ut S S S S S       3 3 S n   2. The Column Mohr Theory (CMT) or Internal Friction Theory (IFT):  3 1 3 1 uc uc ut S S S S      3 3 S n  
  • 5. 5. Design for Fatigue Strength Endurance limit for test specimen (Se’);  For ductile materials: Se’=0.5 Sut if Sut<1400 MPa Se’=700 MPa if Sut  1400 MPa  For irons: Se’=0.4 Sut if Sut<400 MPa Se’=160 MPa if Sut  400 MPa  For Aliminiums: Se’=0.4 Sut if Sut<330 MPa Se’=130 MPa if Sut  330 MPa  For copper alloys: Se’  0.4 Sut if Sut<280 MPa Se’  100 MPa if Sut  280 MPa Se = ka kb kc kd ke Se’ Sf=10c Nb u e 1 0.8S b log 3 S          2 u e 0.8S c log S         ka= surface factor, ka=aSut b Surface Finish Factor a Factor b Ground 1.58 -0.065 Machined or Cold Drawn 4.51 -0.265 Hot Rolled 57.7 -0.718 As Forged 272 -0.995  kb= size factor; kb=1 if d  8 mm and kb= 1.189d-0.097 if 8 mm<d  250 mm for bending & torsional loading. For non-rotating element, 0.097 b eq k 1.189d   deq=0.37d For pure axial loading, kb=1 and Se’=0.45Sut For combined loading,  =1.11 if Sut  1520 MPa and  =1 if Sut  1520 MPa for ductile materials.  kc=reliability factor  kd=temperature effects, kd=1 if T 3500 and kd=0.5 if 3500<T 5000  ke=stress concentration factor, ke=1/Kf Kf=1+q(Kt-1) Kt=geometric stress concentration factor, q=notch sensitivity. Modified Goodman Soderberg Infinite Life Finite Life Infinite Life Finite Life a m e u 1 n = σ σ + S S a m f u 1 n = σ σ + S S a m e y 1 n = σ σ + S S a m f y 1 n = σ σ + S S  Fa=(Fmax-Fmin)/2  Fm=(Fmax+Fmin)/2
  • 6. 6. Tolerances and Fits TF=Cmax-Cmin dL=DU-c Cmax=DU-dL Cmin=DL-dU TF=Imax+Cmax dU=dL+TS Imax=dU-DL Imin=dL-Du TF=Imax-Imin dU=DL+Imax TS=dU-dL TH=DU-DL TF=TH+TS 7. Design of Power Screws m m R m Fd L d T 2 d L             m m L m Fd d L T 2 d L             Or considering   tan ;   m R Fd T tan 2       m R Fd T tan 2     If the friction between the stationary member and the collar of the screw is taken into consideration;   m c c R Fd d F T tan 2 2         m c c R Fd d F T tan 2 2       o R R T FL T 2 T     when collar friction is negligible, we obtain  as,   tan tan       If   tan or m L d then screw is self locking.  Bearing Stresses   b 2 2 r 4pF h d d     b m Fp d th    p t 2   Shear Stresses For Screw Thread For Nut Thread s r 2F d h    n 2F dh     Bending Stresses The maximum bending stress, m 6F d Np    N=h/p
  • 7.  Tensile or Compressive stresses x t F A   2 t t d A 4   r m t d d d 2    Combined Stresses R xy 3 t 16T d    Based on distortion energy theory; R xy 3 t 16T d    2 2 '  x 3xy y S n '   Based on maximum shear stres theory; 2 2 max x xy 1 4 2      sy max S n   8. Design of Bolted Joints Fe=Feb+Fep Feb=CFe Fep=(1-C)Fe b b m k C = k  k Fb=Fi+CFe Fm=Fi-(1-C)Fe b b b A E k L  m 1 2 n 1 1 1 1 .......... k k k k     i b b F k   i m m F k    Shigley and Mishke approach; For cone angle of 0   30 , i i i i 1.813E d k 1.15L 0.5d ln 5 1.15L 2.5d          m 1 2 n 1 1 1 1 .......... k k k k     If L1=L2=L/2 and materials are same, m 1.813Ed k 2.885L 2.5d 2ln 0.577L 2.5d         
  • 8. For cone angle of 0   45 ,     i i i i E d k 5 2L 0.5d ln 2L 2.5d           If L1=L2=L/2 and materials are same, m Ed k L 0.5d 2ln 5 L 2.5d            Wileman approach; (Bid/L) m i k  EdA e Where Ai and Bi are constants related to the material. For Steel Ai=0.78715 and Bi=0.62873, for Aliminium Ai=0.79670 and Bi=0.63816, for Gray cast iron Ai=0.77871 and Bi=0.61616.  Filiz approach; 1 d B 5 L m eq 2 1 k E d e 2 1 B               1 2 eq 1 2 E E E E E   2 1 0.1d B L       8 1 1 2 L B 1 L         Static loading; b y t F  S A or b p t F  S A   p y S  0.85S mF  0   e i p t e 1C nF  F  S A CnF n=load factor of safety Critical load= i ce F F 1 C   Dynamic Loading: e a t CnF 2A   i m a t F A     s a m e u 1 n S S     t u e u i s e A S CnF S F 1 n 2 S          Fi=the maximum value of preload for there is no fatigue failure. Limitations:  p i p 0.6F  F  0.9F where p t p F  A S  e ut imax t ut e cF n S F A S 1 2N S           e e i t p F cF (1 c) F A S N N     b 3.5d  c 10d b 180 c N  
  • 9. 9. Design of Riveted Joints  Shearing of Rivets: F A   , F=Force on each rivet 2 d A 4    Secondary Shear Force i i N 2 i 1 Mr F '' r     Bearing (compression) Failure: F A    , A=td, t=thickness of the plate  Plate Tension Failure: F A   , A  w Nd t w=width of plate N=number of rivets on the selected cross section   Primary Shear Force N i 1 F F' A    10. Design of Welded Joints  Primary Shear Stress F ' A    u J  0.707hJ   Secondary Shear Stress Mr '' J    u I  0.707hI   Bending Stress Mc I   
  • 10. Table 9-3 Minimum weld-metal properties AWS electrode Number n Tensile Strength MPa Yield Strength MPa Percent Elongation E60xx 420 340 17-25 E70xx 480 390 22 E80xx 530 460 19 E90xx 620 530 14-17 E100xx 690 600 13-16 E120xx 830 740 14 Table 9-5 Fatigue-strength reduction factors Type of Weld Kf Reinforced butt weld 1.2 Toe of transverse fillet weld 1.5 End of parallel fillet weld 2.7 T-butt joint with sharp corners 2.0
  • 11. Table 9-1 Torsional Properties of Fillet Welds* Weld Throat Area Location of G Unit Polar Moment of Inertia *G is centroid of weld group; h is weld size; plane of torque couple is in the plane of the paper; all welds are of the same size.
  • 12. Table 9-2 Bending Properties of Fillet Welds* Weld Throat Area Location of G Unit Moment of Inertia *Iu, unit moment of inertia, is taken about a horizontal axis through G, the centroid of the weld group; h is weld size; the plane of the bending couple is normal to the paper; all welds are of the same size
  • 13. Table A3-8 Stress concentration factors for round shaft with shoulder fillet in tension d r D . o= F/A, where A= d2/4 D/d =1,02 D/d =1,05 D/d =1,1 D/d=1,5 r/d Kt Kt Kt Kt 0,025 1,800 - - - 0,028 1,728 - 2,200 - 0,031 1,678 2,000 2,125 - 0,037 1,610 1,868 2,020 - 0,044 1,550 1,778 1,938 2,522 0,050 1,508 1,714 1,866 2,400 0,062 1,452 1,626 1,766 2,235 0,075 1,408 1,550 1,684 2,086 0,088 1,370 1,502 1,624 1,970 0,100 1,336 1,457 1,568 1,893 0,125 1,286 1,400 1,496 1,760 0,150 1,254 1,364 1,452 1,662 0,175 1,230 1,340 1,400 1,600 0,200 1,220 1,314 1,372 1,546 0,250 1,216 1,292 1,342 1,508 0,275 1,200 1,270 1,325 1,480 0,300 1,200 1,250 1,296 1,452 * Adopted from Ref. [12]
  • 14. Table A3-9 Stress concentration factors for round shaft with shoulder fillet in torsion d r D T T . o= Tc/J, where c=d/2 and J=d4/32 D/d =1,09 D/d =1,20 D/d =1,33 D/d =2,0 r/d Kt Kt Kt Kt 0,009 - - - - 0,012 1,800 2,300 - 2,600 0,030 1,566 2,040 2,144 2,288 0,025 1,472 1,894 2,020 2,122 0,033 1,384 1,761 1,878 1,966 0,042 1,322 1,644 1,755 1,828 0,050 1,283 1,576 1,677 1,750 0,062 1,244 1,500 1,600 1,644 0,075 1,206 1,434 1,516 1,572 0,087 1,184 1,378 1,458 1,510 0,100 1,166 1,342 1,412 1,466 0,125 1,144 1,275 1,344 1,400 0,150 1,122 1,220 1,294 1,344 0,200 1,110 1,160 1,220 1,266 0,250 1,100 1,130 1,178 1,222 0,300 1,100 1,120 1,160 1,200 * Adopted from Ref. [12]
  • 15. Table A3-10 Stress Concentration factors for round shaft with shoulder fillet in bending d r M D M . o= Mc/I, where c=d/2 and I=d4/64 D/d =1,02 D/d =1,05 D/d =1,1 D/d =1,5 D/d =3 r/d Kt Kt Kt Kt Kt 0,012 2,290 2,553 2,700 - - 0,017 2,120 2,378 2,500 3,000 - 0,021 2,000 2,240 2,366 2,774 3,000 0,025 1,926 2,134 2,260 2,600 2,862 0,036 1,760 1,936 2,046 2,310 2,600 0,050 1,644 1,782 1,865 2,060 2,310 0,062 1,574 1,700 1,750 1,925 2,140 0,075 1,518 1,628 1,688 1,800 1,986 0,087 1,472 1,563 1,630 1,728 1,880 0,100 1,440 1,534 1,580 1,660 1,804 0,125 1,380 1,468 1,500 1,584 1,684 0,150 1,330 1,412 1,450 1,510 1,584 0,175 1,297 1,358 1,400 1,450 1,510 0,200 1,264 1,336 1,360 1,400 1,457 0,225 1,242 1,308 - - 1,410 0,250 1,225 1,286 - - 1,374 0,275 1,210 1,264 - - 1,340 0,300 1,200 1,242 - - 1,320 * Adopted from Ref. [12]