Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Microsoft Azure Technical Overview

7 144 vues

Publié le

Technical introduction of Microsoft Azure, from IaaS to PaaS, Serverless, Container Services, DBaaS and Machine Learning.

Publié dans : Logiciels
  • Hello! Get Your Professional Job-Winning Resume Here - Check our website! https://vk.cc/818RFv
    Voulez-vous vraiment ?  Oui  Non
    Votre message apparaîtra ici

Microsoft Azure Technical Overview

  1. 1. Azure is Global
  2. 2. 34Azure regions 2X the number of AWS regions NEWLY ANNOUNCED: France: France Central and France South DoD East and Central
  3. 3. Azure as Innovation Enabler
  4. 4. Architectural Evolution
  5. 5. Learn and Engage
  6. 6. People Automated Systems Apps Web Mobile Bots Intelligence Capabilities Dashboards & Visualizations Cortana Bot Framework Cognitive Services Power BI Data Sources Apps Sensors and devices Machine Learning and Analytics HDInsight (Hadoop and Spark) Stream Analytics Data Lake Analytics Machine Learning ActionData Intelligence Information Management Event Hubs Data Catalog Data Factory Big Data Stores SQL Data Warehouse Data Lake Store Data Driven Innovation
  7. 7. Platform Services Infrastructure Services Web Apps Infrastructure Mobile Backends API Management API App Infrastructure Business Process Automation Push Notifications Content Delivery Network (CDN) Live & OD Media Streaming B2B Integration Hybrid Connections Pub/Sub Queuing Simple Queuing Hybrid Operations Server Data Backup Hybrid/Intelligent Data Backup Disaster Recovery Bulk Data Import And Export Relational SQL Database Document Database Service Distributed In-Memory Cache Search Simple Key/Value Store Data Warehouse Directory Health Monitoring Privileged Identity Management Operational Analytics Stateless Compute Scheduled Compute Jobs Virtual App Streaming Distributed Compute Development Tools Application Instrumentation Software Development Kits Software Lifecycle Management Domain Join & Policy Management Big Data Analytics Predictive Analytics Data Stream Analytics Data Pipelines Device Data Collection Mobile Analytics Big Data Storage IoT Device Management Data Source Management Security & Management User/Group Directory Store Multi-Factor Authentication Scheduled Service Management Service Creation & Configuration Encryption Key Store Software/Solution Marketplace Pre-Build VM Images Identity Sign-Up and sign-in Task Scheduler http://aka.ms/azposterapp
  8. 8. Azure is Open
  9. 9. Microsoft Azure: an Open Ecosystem
  10. 10. Azure is Control
  11. 11. NetworkStorageCompute
  13. 13. BackEnd FrontEnd VNet01 VM01 VM02
  14. 14. BackEnd FrontEnd BackEnd FrontEnd VNet02VNet01
  15. 15. Point-to-SiteSite-to-SiteExpressRoute
  16. 16. ExpressRoute Exchange Provider or WAN Provider Main Corporate Site Site 2 .. N Customer’s connection Traffic to public IP addresses in Azure Traffic to Virtual Networks Microsoft Edge Partner Edge Private WAN Corporate Network Load Balancing Auto Scaling SQL Azure Analytics & Reporting Azure Public Services Web Site Remote Site Public Internet VPN GATEWAY … and many more Point-to-Site VPN Load Balancing Auto Scaling Network Security Groups Azure Private Services VMs Database
  17. 17. Internet GatewaySubnet default DemoVNET Microsoft Azure On-Prem Microsoft Azure demolinux DemoGateway VPN Client ( Point-to-Site Tunnel (SSTP) PRIORITY NAME SOURCE DESTINATION SERVICE ACTION 100 gateway Internet Any Custom (Any/Any) Allow 110 nointranet Custom (Any/Any) Deny INBOUND SECURITY RULES
  18. 18. GatewaySubnet DemoGateway azuregateway-XYZ.cloudapp.net defaultsubnet1 DMZVNET demovm1 Network Security Group VNET1 defaultsubnet2 demovm2 VNET2 VNET PeeringVNET Peering PRIORITY NAME SOURCE DESTINATION SERVICE ACTION 100 gateway Internet Any Custom (Any/Any) Allow 110 nointranet Custom (Any/Any) Deny INBOUND SECURITY RULES Point-to-Site Tunnel (SSTP) VPN Client 2 ( VPN Client 1 ( PROXY Server allow azuregateway-XYZ.cloudapp.net max 128 clients
  19. 19. DBaaSiPaaSaPaaS
  20. 20. The Continuum from IaaS to PaaS Cloud Foundry Docker Swarm Mesos Kubernetes
  21. 21. Event Hub Partition 1 Partition 2 Partition NRevocation List Publisher Policy Throughput Units Event Publisher Event Consumer App 1 Event Consumer App 2
  22. 22. Fully featured RDBMS Transactional processing RichQuery Managed as a service Elastic scale Internet-accessible http/rest Schema-free data model Arbitrary data formats
  23. 23. With Azure, you have many managed data store options and you can use the right store for the job Storage Comparison When you need…. Because… But not for… Use … Relational store Transactions, joins, structured data, familiar SQL query Quickly changing data schemas SQL Database NoSQL key-value pair store Low-cost, fast, massive scale Rich query Tables NoSQL JSON document store Flexible schema, familiar SQL query, low latency Complex joins DocumentDB NoSQL wide- column store Open-source, integration with Hadoop analytics Operational simplicity HBase on HDInsight Cache Increasing speed of an app Primary data store Redis Cache Search service Integrating search into an app Primary data store Azure Search
  24. 24. Goldilocks and the Three Bears by Jan Brett
  25. 25. Microsoft Service Fabric Kubernetes (Open Shift) Mesosphere DC/OS Cloud Foundry (Pivotal & OSS) Docker Swarm Azure Container Services
  26. 26. Microservices Azure Windows Server Linux Hosted Clouds Windows Server Linux Service Fabric Private Clouds Windows Server Linux High Availability Hyper-Scale Hybrid Operations High Density Rolling Upgrades Stateful services Low Latency Fast startup & shutdown Container Orchestration & lifecycle management Replication & Failover Simple programming models Load balancing Self-healingData Partitioning Automated Rollback Health Monitoring Placement Constraints
  27. 27. The agile methodologies are accelerating the construction process ProductionDevelopment Collaboration Backlog Requirements Availability and performance issues are hard to troubleshoot in this fast-changing world with distributed applications Usage should determine the next set of priorities and learnings An automated release pipeline is needed to deliver at the pace of development with full traceability
  28. 28. ProductionDevelopment Collaboration Backlog Requirements do the RIGHT THING do the THING RIGHT
  29. 29. Develop Developer Workstation Team Collaboration Build&Test Build/CI Test Deploy Configuration Monitor&Learn Monitor This graphic shows OSS and partner products that are integrated with the Microsoft DevOps solution Mixed Ecosystem Release TFS Workstations - On-Premises| Hybrid | Cloud ALMServices - On-Premises| Hybrid | Cloud DEV TEST QA Environments - On-Premises| Hybrid | Cloud Monitoring- On-Premises | Hybrid | Cloud
  30. 30. TFS Develop Developer Workstation Team Collaboration Build&Test Build/CI Test Deploy Release Monitor&Learn Monitor Microsoft Ecosystem Workstations - On-Premises| Hybrid | Cloud Monitoring- On-Premises | Hybrid | CloudALMServices - On-Premises| Hybrid | Cloud DEV TEST QA Environments - On-Premises| Hybrid | Cloud
  31. 31. Visual Studio Web Editor Azure Resource Manager Templates
  32. 32. Configuration Applied To: Node Configurations (.MOF config document) WebService Compiled Nodes 1…N of these 1…N of these per configuration (+ checksum files for each) 1…N of these per node configuration Via Push or Pull Desired State Configuration (PowerShell DSC)
  33. 33. SimpleDev SimpleCert SimpleProd Source Code Editor (Visual Studio Code) Delivery Pipeline GIT (on VSTS) Docker Hub Build Automation Visual Studio Team Services Demo Overview
  34. 34. Internet BackEnd FrontEnd VNet01 SimpleDev VM01 VM02 Internet BackEnd FrontEnd VNet01 SimpleCert VM01 VM02 http://simpledemovsts-dev.westeurope.cloudapp.azure.com http://simpledemovsts-cert.westeurope.cloudapp.azure.com 27017 27017 80, 22 80, 22 Demo Resource Groups
  35. 35. Delivery Pipeline with Spinnaker https://github.com/Azure/azure-quickstart-templates/tree/master/spinnaker-vm-simple VM Scale Set Kubernetes
  36. 36. Telemetry is collected at each tier: mobile applications, server applications and browser Telemetry arrives in the Application Insights service in the cloud where it is processed & stored Get a 360° view of the application including availability, performance and usage patterns What is Application Insights?
  37. 37. Identify & Triage issues. Availablity
  38. 38. ° view o Export data to manually correlate with external data sources
  39. 39. Data Lake, Machine Learning and Analytics
  40. 40. ON PREMISES CLOUD Relational DB On Prem HDFS Active Incoming Data Azure DW CONSUMPTIO N Web Portals Power BI Cleansing Analysis Azure Data Factory Azure Data Factory DMG ADL Store ADL Analytics ADL Analytics
  41. 41. CLOUD Event data ADL Store CONSUMPTIO N HDI Storm HDI R Jupyter Data Science Notebooks Enriching Event data Event data Kafka
  42. 42. ON PREMISES CLOUD Data Lake Store Data Lake Analytics CONSUMPTION Power BIEventHubs Stream Analytics Data Factory Alerts SQL DB Web Portals Event data Event data Event data
  43. 43. Azure Data Lake YARN U-SQL Analytics HDInsight Hive R Server WebHDFS Store Store and analyze data of any kind and size Develop faster, debug and optimize smarter Interactively explore patterns in your data No learning curve Managed and supported Dynamically scales to match your business priorities Enterprise-grade security Built on YARN, designed for the cloud
  44. 44. Debug and Optimize your Big Data programs with ease • Deep integration with Visual Studio, Visual Studio Code, Eclipse, & IntelliJ • Easy for novices to write simple queries • Integrated with U-SQL, Hive, Storm, and Spark • Actively offers recommendations to improve performance and reduce cost • Playback visually displays job run
  45. 45. CONTROL EASE OF USE Azure Data Lake Analytics Azure Data Lake Store Azure Storage Any Hadoop technology Workload optimized, managed clusters Specific apps in a multi- tenant form factor Azure Marketplace HDP | CDH | MapR Azure Data Lake Analytics IaaS Hadoop Managed Hadoop Big Data as-a-service Azure HDInsight BIGDATA STORAGE BIGDATA ANALYTICS Bringing Big Data to everybody UserAdoption
  46. 46. Machine Learning Process Model
  47. 47. Azure Machine Learning Studio APIML STUDIO
  48. 48. Supervised Unsupervised Reinforcement Learning Anomaly Detection Regression Classification Clustering Agent Based Learning https://azure.microsoft.com/en-us/documentation/articles/machine-learning-algorithm-choice
  49. 49. Machine Learning Algorithm Cheat Sheet