SlideShare une entreprise Scribd logo
1  sur  235
Télécharger pour lire hors ligne
MODULO




                             ÁLGEBRA LINEAL




                             CAMILO ZÍÑIGA




A mi padre, JUAN ARTURO ZÚÑIGA R., quien fue el primero en enseñarme el hermoso mundo
      de la matemáticas, y quien me ha apoyado incondicionalmente en todas mis empresas.




UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD –
ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA
             UNIDAD DE CIENCIAS BÁSICAS
                  Bogotá D. C., 2008




                                     -1-
COMITÉ DIRECTIVO


Jaime Alberto Leal Afanador
Rector


Gloria Herrera
Vicerrectora Académica


Roberto Salazar Ramos
Vicerrector de Medios y Mediaciones Pedagógicas


Maribel Córdoba Guerrero
Secretaria General




MÓDULO
CURSO ÁLGEBRA LINEAL
PRIMERA EDICIÓN

© Copyright
Universidad Nacional Abierta y a Distancia


ISBN




2008
Bogotá, Colombia




                                             -2-
-3-
AL ESTUDIANTE



El propósito del curso es que el estudiante apropie de manera significativa los elementos
teóricos fundamentales de Algebra Lineal y desarrolle las competencias pertinentes para
contextualizarlos en su campo de formación disciplinar.

El Algebra Lineal es un área de las matemáticas que en las últimas décadas ha tenido un
significativo desarrollo con el aporte de las ciencias computacionales. Su aplicabilidad en
diversos campos del saber ha generado la necesidad de articularla al proceso formativo
del profesional de hoy en día como herramienta de apoyo para resolver problemas en las
más diversas disciplinas. En este sentido y por su carácter mismo, el curso hace aportes
significativos al desarrollo de las competencias y aptitud matemática en el estudiante, en
tanto potencia habilidades de pensamiento de orden superior, como la abstracción, el
análisis, la síntesis, la inducción, la deducción, etc.

El curso académico se estructura básicamente en dos unidades didácticas. La primera
contempla los Vectores, Matrices y Determinantes, la segunda Sistemas de Ecuaciones
Lineales, Rectas, Planos e Introducción a los Espacios Vectoriales.

A través del curso académico de Algebra Lineal se dinamizan procesos de resignificación
cognitiva y fortalecimiento del desarrollo de operaciones meta cognitivas mediante la
articulación de los fundamentos teóricos a la identificación de núcleos problémicos en los
diferentes campos de formación disciplinar.


Es importante que desde ahora el estudiante se compenetre con la dinámica del uso de
los recursos informáticos y telemáticos como herramientas de apoyo a los procesos de
aprendizaje. En este sentido, el curso académico de Algebra Lineal articulará a su
desarrollo actividades mediadas por estas tecnologías, como búsquedas de información
en la Web, interactividades sincrónicas o asincrónicas para orientar acciones de
acompañamiento individual o de pequeño grupo colaborativo y acceso a información
disponible en la plataforma virtual de la universidad.

La consulta permanente a diferentes fuentes documentales aportadas por el curso se
tomará como estrategia pedagógica que apunte al fortalecimiento del espíritu
investigativo. En este sentido, se espera que el estudiante amplíe la gama de opciones
documentales que aportan a la resignificación cognitiva. Estas fuentes documentales son
obviamente de diferentes orígenes, a las cuales se tendrá acceso a través de: material
impreso, bibliotecas virtuales, hemerotecas, sitios Web, etc.




                                        -4-
TABLA DE CONTENIDO

UNIDAD I

  1. VECTORES EN R 2 …………………………………………………………………….9
     1.1     NOCION DE
             DISTANCIA………………………………………………………………………….11
     1.2     SEGMENTOS DIRIGIDOS………………………………………………………14
     1.3     DEFINICION ALGEBRAICA DE VECTOR………………………………….20
     1.4     ALGUNAS OPERACIONES CON VECTORES……………………………..23
         1.4.1 Multiplicación de un vector por un escalar…………………….23
         1.4.2 Suma de Vectores………………………………………………………35
         1.4.3 Diferencia de vectores………………………………………………..39
         1.4.4 Producto escalar…………………………………………………………43
     1.5     PROYECCIONES…………………………………………………………………..52
  2. VECTORES EN R 3 …………………………………………………………………..58
     2.1     DISTANCIA ENTRE DOS PUNTOS……………………………………………62
     2.2     VECTORES BASE…………………………………………………………………..66
     2.3     PRODUCTO VECTORIAL………………………………………………………..72
     PROBLEMAS…………………………………………………………………………………. 77
     AUTOEVALUACION……………………………………………………………………….. 79
  3. MATRICES……………………………………………………………………………..81
     3.1     OPERACIONES CON MATRICES………………………………………………83
         3.1.1 Suma de matrices……………………………………………………84
         3.1.2 Multiplicación por escalar…………………………………………87
         3.1.3 Multiplicación de matrices………………………………………..88
     3.2     OPERACIONES SOBRE MATRICES…………………………………………...92
         3.2.1 Forma escalonada y forma escalonada reducida……95
         3.2.2 Inversa de una matriz………………………………………..99
         3.2.3 Matrices Elementales…………………………………………105
         3.2.4 La Factorización LU…………………………………………..119
  4. DETERMINANTES…………………………………………………………………131
     4.1     ALGUNAS PROPIEDADES DE LOS DETERMINANTES…………………138
     4.2     INVERSAS…………………………………………………………………………….140
     INTERPRETACION GEOMETRICA DEL PRODUCTO CRUZ….…………………147
     PROBLEMAS……………………………………………………………………………………155
     AUTOEVALUACION………………………………………………………………………….159


UNIDAD II


  5. SISTEMAS DE ECUACIONES LINEALES………………………………………163
     5.1  PRIMER METODO PARA RESOLVER ECUACIONES LINEALES
          ELIMINACION GAUSSIANA………..……………………………………………186
     5.2  SEGUNDO METODO PARA RESOLVER ECUACIONES LINEALES
          METODO DE GAUSS – JORDAN……………………………………………….189


                              -5-
5.3   TERCER METODO PARA RESOLVER ECUACIONES LINEALES
       REGLA DE CRAMER………………………………………………………………..195
   5.4  CUARTO METODO PARA RESOLVER ECUACIONES LINEALES
       EMPLEANDO LA FACTORIZACION LU……………………………………….198
   5.5  QUINTO METODO PARA RESOLVER ECUACIONES LINEALES
       EMPLEANDO LA MATRIZ INVERSA…………………………………………..203
       SISTEMAS LINEALES HOMOGENEOS…….………………………………….206
6. RECTAS EN R 3 ………………………………………………………..……………208
7. PLANOS………………………………………………………..……………………220
8. ESPACIOS VECTORIALES………………………………..……………………..228
PROBLEMAS………………………………………………………………………………………..235
AUTOEVALUACION…………………………………………………………………….…………239




                       -6-
UNIDAD 1


VECTORES, MATRICES Y DETERMINANTES




              -7-
OBJETIVO GENERAL


Que el estudiante comprenda el conjunto de conocimientos relacionados con los
fundamentos básicos que constituyen el campo teórico y aplicativo de los vectores,
matrices y determinantes a través del estudio y análisis de fuentes documentales y
situaciones particulares en diferentes campos del saber.




                           OBJETIVOS ESPECIFICOS

      Evidenciar en el estudiante una apropiación conceptual que refleje el
       entendimiento de nociones como la de vector, complementado con un manejo
       pertinente de las operaciones con los mismos.

      Lograr que el estudiante conozca de cerca el concepto de matriz, lo lleve a
       espacios mas generales y reconozca su importancia en aplicaciones mas
       especificas. Además, debe entender y manejar con propiedad las distintas
       operaciones que con ellas puede realizar y que le permitirán utilizar herramientas
       como el determinante y el proceso de obtener la inversa de matrices para resolver
       a futuro sistemas lineales.




                                       -8-
-9-
1.1    NOCION DE DISTANCIA

Ahora abordemos el problema de dos puntos del plano. Nuestro interés es encontrar la distancia entre
ellos.
Para esto podemos recurrir a un teorema de la geometría elemental, llamado Teorema de Pitágoras, que
nos establece que:




                                           - 10 -
a 2  6 2  82
a 2  100
a   100


Dado que a es una distancia, entonces consideramos únicamente los valores positivos, es decir,
a  10 unidades.




                                             - 11 -
- 12 -
- 13 -
- 14 -
- 15 -
- 16 -
- 17 -
- 18 -
- 19 -
- 20 -
- 21 -
- 22 -
- 23 -
- 24 -
- 25 -
- 26 -
- 27 -
- 28 -
- 29 -
- 30 -
- 31 -
- 32 -
- 33 -
- 34 -
- 35 -
- 36 -
- 37 -
- 38 -
- 39 -
- 40 -
- 41 -
- 42 -
- 43 -
- 44 -
- 45 -
- 46 -
- 47 -
- 48 -
- 49 -
- 50 -
- 51 -
- 52 -
- 53 -
- 54 -
- 55 -
- 56 -
- 57 -
- 58 -
- 59 -
- 60 -
- 61 -
- 62 -
- 63 -
- 64 -
- 65 -
Imagen obtenida de: ALGEBRA LINEAL
Autor: Stanley Grossman. Quinta Edición.
Pag. 251




                                           - 66 -
Imagen obtenida de: ALGEBRA LINEAL
Autor: Stanley Grossman. Quinta Edición.
Pag. 263




                                           - 67 -
- 68 -
- 69 -
- 70 -
- 71 -
- 72 -
- 73 -
- 74 -
- 75 -
- 76 -
- 77 -
- 78 -
- 79 -
- 80 -
- 81 -
- 82 -
- 83 -
- 84 -
- 85 -
- 86 -
- 87 -
- 88 -
- 89 -
- 90 -
- 91 -
- 92 -
- 93 -
- 94 -
- 95 -
- 96 -
- 97 -
- 98 -
- 99 -
- 100 -
- 101 -
- 102 -
- 103 -
- 104 -
- 105 -
- 106 -
- 107 -
1 0 0                       1                  0       0
     1 1 0 , por lo tanto E 1   1
E1                                                   1       0
                             1

     0 0 1                       0                  0       1
                                                              
                                                             

     1       0       0
                       
                                               1 0 0 
              1                            1
E2   0              0  , por lo tanto E 2  0 6 0
                       
              6
                                               0 0 1 
                                                   
     0       0       1
                                                     
     
                       
                        

     1           2      0                        1 2 0 
E3   0          1          , por lo tanto E 1  0 1 0
                          0                  3

     0           0       1                        0 0 1 
                                                         
                                                        

     1           0       0                       1 0 0
E4   0          1         , por lo tanto E 1  0 1 0
                          0                 4

     0           6      1                       0 6 1 
                                                        
                                                       

     1       0       0
                       
                                              1 0 0 
                                          1
E5   0      1       0  , por lo tanto E5  0 1 0
                       

                                              0 0 3 
                                                    
                      1
                       
     0       0
                                                    
     
                     3

                      5                                         5
     1       0                                   1       0
                                                
                      3                                         3 
E6   0      1       0  , por lo tanto E 61   0       1     0 
                                                                
                                                                
     0       0       1                         0       0     1 
     
                                               
                                                                  
                                                                   

     1       0       0                        1         0    0
                                                                

                      1                                         1
E7   0      1         , por lo tanto E 7 1   0        1
                                               
                                          

                      6                                        6
                                                                   
                                               
     0       0       1
                                               0         0    1 
     
                                              
                                                                  
                                                                   
Ahora realicemos el siguiente producto
E11  E 2 1  E 61  E 7 1
                        




                                                   - 108 -
1     0   0  1 0 0 1 2 0  1 0 0 1 0 0
 1   1   0    0 6 0    0 1 0   0 1 0   0 1 0  
0     0   1   0 0 1   0 0 1  0 6 1  0 0 3 
                                                  
                                                  
             5 
 1    0           1       0    0
                                  
             3  
                                 1
 0    1     0  0       1
               
                                6
                                   
               
 0    0     1  0        0    1 

               
                                 
                                   
Realicemos los productos de izquierda a derecha, tenemos:
                                                                    5 
                                                    1        0            1    0   0
                                                                                     
1     0   0  1 2 0 1 0 0 1 0 0                             3  
 1                                                                                1
       6   0   0 1 0   0 1 0   0 1 0    0        1      0  0    1
                                                                      
                                                                                   6
                                                                                      
0     0   1  0 0 1  0 6 1  0 0 3  
                                                              
                                                   0        0      1  0     0   1 
                                       
                                                                      
                                                                                    
                                                                                      
Seguimos
                                                        5 
                                          1      0            1    0     0
                                                                          
1     2   0  1 0 0 1 0 0                         3  
 1                                                                     1
       4   0    0 1 0   0 1 0    0      1      0  0    1
                                                          
                                                                         6
                                                                           
0     0   1   0 6 1  0 0 3  
                                                    
                                         0      0      1  0     0    1 
                               
                                                          
                                                                         
                                                                           
Seguimos
                                            5 
                              1        0          1     0   0
                                                              
1     2   0  1 0 0                     3  
 1                                                         1
       4   0    0 1 0   0        1    0  0     1
                                              
                                                            6
                                                               
0     6   1  0 0 3 
                                          
                             0        0    1  0      0   1
                     
                                              
                                                             
                                                               
Seguimos
                                5 
                 1     0              1     0   0
                                                  
1     2   0                  3  
 1                                             1
       4   0  0     1        0  0     1
                                  
                                                6
                                                   
0     6   3 
                                
                0     0        1  0      0   1 
            
                                  
                                                 
                                                   




                                            - 109 -
Seguimos
              5 
 1    2            1   0   0
                              
              3  
              5            1
 1   4         0   1

              3           6
                               

 0    6      3  0    0   1 

                
                             
                               
Finalmente
1     2      2
1    4      1 
0     6      2
               
               


En conclusión, hemos visto que dada una matriz A, si esta es invertible, tanto A como su
inversa pueden ser escritas como el producto de matrices elementales (ya que, las
inversas de las matrices elementales son a su vez matrices elementales.




                                      - 110 -
- 111 -
- 112 -
- 113 -
- 114 -
- 115 -
- 116 -
- 117 -
- 118 -
- 119 -
- 120 -
- 121 -
- 122 -
- 123 -
- 124 -
- 125 -
- 126 -
- 127 -
- 128 -
- 129 -
- 130 -
- 131 -
- 132 -
- 133 -
- 134 -
- 135 -
- 136 -
- 137 -
- 138 -
- 139 -
- 140 -
- 141 -
- 142 -
- 143 -
- 144 -
- 145 -
- 146 -
- 147 -
- 148 -
- 149 -
- 150 -
- 151 -
- 152 -
- 153 -
UNIDAD 2


SISTEMAS DE ECUACIONES LINEALES, RECTAS, PLANOS Y
              ESPACIOS VECTORIALES




                    - 154 -
OBJETIVO GENERAL


Que el estudiante comprenda los fundamentos teóricos que soportan la concepción de
los sistemas lineales, rectas, planos y los principios de espacio vectorial, a través del
complejo ejercicio mental de abstracción, estudio, análisis e interpretación de fuentes
bibliográficas referenciadas y casos específicos de aplicación en diferentes áreas del
conocimiento.




                           OBJETIVOS ESPECIFICOS


      Evidenciar en el estudiante una apropiación conceptual que refleje el
       entendimiento de nociones como la de un plano o de una recta en el espacio.
       Complementado con un manejo pertinente de las diversas formas en que son
       obtenidas y empleadas las ecuaciones que las representan.

      Lograr que el estudiante conozca de cerca el concepto de lo que es un sistema de
       ecuaciones lineales, lo lleve a espacios más generales y reconozca su importancia
       en aplicaciones mas especificas. Además, debe entender y manejar con propiedad
       los distintos procedimientos que le permiten obtener una solución del mismo (en
       el caso en que sea posible)




                                      - 155 -
- 156 -
- 157 -
- 158 -
- 159 -
- 160 -
- 161 -
- 162 -
- 163 -
- 164 -
- 165 -
- 166 -
- 167 -
- 168 -
- 169 -
- 170 -
- 171 -
- 172 -
- 173 -
- 174 -
- 175 -
- 176 -
- 177 -
- 178 -
- 179 -
- 180 -
- 181 -
- 182 -
- 183 -
- 184 -
- 185 -
- 186 -
- 187 -
- 188 -
- 189 -
- 190 -
- 191 -
- 192 -
- 193 -
5.5         QUINTO METODO PARA RESOLVER SISTEMAS LINEALES
EMPLEANDO LA MATRIZ INVERSA

El objetivo es resolver un sistema de la forma AX  b (con A de n  n ), donde A es
invertible.
Partiendo del sistema AX  b , podemos multiplicar a izquierda por A 1 (Que existe,
dado que A es invertible), con lo que nos queda:
 A 1 AX  A 1b     Agrupando obtenemos
      1          1
 A AX  A b Simplificando
  I  X  A 1 b    Finalmente
          1
 X A b
La ultima afirmación, nos indica que se A es de n  n e invertible, entonces la solución
del sistema lineal AX  b , la encontramos de la forma X  A 1b .


Ejemplo

Dado el sistema lineal

2 x1  3 x 2  10 x3  21
4 x1  x 2  x3  11
 7 x1  5 x 2  4 x3  17
Determine si el sistema tiene solución única o no. De tener solución única, encuentre su
inversa y úsela para resolver el sistema.


Solución

Para determinar si el sistema tiene solución única o no, debemos calcular su
determinante. Si este nos da diferente de cero (0), entonces el sistema tendrá única
solución y además la inversa de la matriz de coeficientes existirá (y esta será única)

Encontremos el determinante:




                                       - 194 -
2  3 10
DetA  4 1      1  225
       7 5     4
Recordemos que tenemos dos procedimientos para hallar la inversa:
    1. Empleando el método de reducción de Gauss- Jordán
                                             1
    2. Empleando determinantes ( A 1           * AdjA )
                                           det A
Voy a emplear el método de reducción de Gauss- Jordán. Se deja al estudiante la
invitación a realizarlo también por el otro método.



                             1
                               f1                                    f 2  4 f1
                             2




                               f 3  7 f1                                1
                                                                           f2
                                                                         7




                                             3
                                      f1      f2
                                             2




       11                                       14
f3       f2                                        f3
        2                                      225




                                       - 195 -
13
f1       f3                                                      19
       14                                                  f2       f3
                                                                   7




 Por lo tanto, dado que la matriz A pudo ser reducida (por medio de operaciones
 elementales) a la matriz identidad, se tiene que la matriz del lado derecho es la inversa
 de A.
 Es decir,
          1 38    13 
         25 225 225 
        1    62  38 
 A 1  
         25 225 225 
                       
        3    11  14 
         25 225 225 
                      

 Finalmente, para obtener la solución del sistema, consideramos la ecuación X  A 1b .
 Donde,
       21
   b  11
       17 
        
        

 Por tanto,

     1       38     13 
      25      225   225  21
     1        62     38   
                           11
      25      225   225   
  X 
     3        11     14  17 
                             
      25
              225   225 


     2
 X  1 
     2
      
      
 Es decir, la solución es       x1  2; x 2  1; x3  2




                                                 - 196 -
- 197 -
- 198 -
- 199 -
- 200 -
- 201 -
- 202 -
- 203 -
- 204 -
- 205 -
- 206 -
- 207 -
- 208 -
- 209 -
- 210 -
- 211 -
- 212 -
- 213 -
- 214 -
- 215 -
- 216 -
- 217 -
- 218 -
- 219 -
- 220 -
- 221 -
- 222 -
- 223 -
- 224 -
- 225 -
- 226 -
- 227 -
- 228 -
- 229 -
- 230 -
- 231 -
- 232 -
- 233 -
- 234 -
- 235 -

Contenu connexe

Tendances

Vectores r 2 y r3 y sus caracterisiticas
Vectores  r 2  y r3  y sus caracterisiticasVectores  r 2  y r3  y sus caracterisiticas
Vectores r 2 y r3 y sus caracterisiticasJOSUE APARCEDO
 
Aplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectorialesAplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectorialesWilson Quinatoa
 
Integrales de superficie
Integrales de superficieIntegrales de superficie
Integrales de superficieNobu Dragon
 
Axiomas de espacios vectoriales
Axiomas de espacios vectorialesAxiomas de espacios vectoriales
Axiomas de espacios vectorialesnktclau
 
Calculo avanzado-formula de taylor
Calculo avanzado-formula de taylorCalculo avanzado-formula de taylor
Calculo avanzado-formula de taylorFernando Maguna
 
Vectores en plano y el espacio
Vectores en plano y el espacioVectores en plano y el espacio
Vectores en plano y el espaciojamc95
 
1. Sistemas de coordenadas y vectores
1. Sistemas de coordenadas y vectores1. Sistemas de coordenadas y vectores
1. Sistemas de coordenadas y vectoreskaroline cruz luis
 
Espacios vectoriales con producto interno
Espacios vectoriales con producto internoEspacios vectoriales con producto interno
Espacios vectoriales con producto internoAdamari Cortes
 
Apuntes de fisica 1
Apuntes de fisica 1Apuntes de fisica 1
Apuntes de fisica 1Fisica2_2012
 
Espacios Con Producto Interno Resumen
Espacios Con  Producto  Interno  ResumenEspacios Con  Producto  Interno  Resumen
Espacios Con Producto Interno ResumenCarlos Tinoco
 
Vectores perpendiculares u ortogonales.
Vectores perpendiculares u ortogonales.Vectores perpendiculares u ortogonales.
Vectores perpendiculares u ortogonales.NajidAugusto
 

Tendances (20)

Producto interno
Producto internoProducto interno
Producto interno
 
Vectores r 2 y r3 y sus caracterisiticas
Vectores  r 2  y r3  y sus caracterisiticasVectores  r 2  y r3  y sus caracterisiticas
Vectores r 2 y r3 y sus caracterisiticas
 
Ejer resueltos de fisika ultima hoja
Ejer resueltos de fisika ultima hojaEjer resueltos de fisika ultima hoja
Ejer resueltos de fisika ultima hoja
 
Fisica 2º bgu bloque 1
Fisica 2º bgu bloque 1Fisica 2º bgu bloque 1
Fisica 2º bgu bloque 1
 
Aplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectorialesAplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectoriales
 
Proyecto fisica 2016
Proyecto fisica 2016Proyecto fisica 2016
Proyecto fisica 2016
 
2011 electromagnetismo algebra_vectorial
2011 electromagnetismo algebra_vectorial2011 electromagnetismo algebra_vectorial
2011 electromagnetismo algebra_vectorial
 
PROBLEMAS RESUELTOS DE VECTORES
PROBLEMAS RESUELTOS DE VECTORESPROBLEMAS RESUELTOS DE VECTORES
PROBLEMAS RESUELTOS DE VECTORES
 
Integrales de superficie
Integrales de superficieIntegrales de superficie
Integrales de superficie
 
Axiomas de espacios vectoriales
Axiomas de espacios vectorialesAxiomas de espacios vectoriales
Axiomas de espacios vectoriales
 
VECTORES EN R3
VECTORES EN R3VECTORES EN R3
VECTORES EN R3
 
Calculo avanzado-formula de taylor
Calculo avanzado-formula de taylorCalculo avanzado-formula de taylor
Calculo avanzado-formula de taylor
 
Vectores en plano y el espacio
Vectores en plano y el espacioVectores en plano y el espacio
Vectores en plano y el espacio
 
1. Sistemas de coordenadas y vectores
1. Sistemas de coordenadas y vectores1. Sistemas de coordenadas y vectores
1. Sistemas de coordenadas y vectores
 
Espacios vectoriales con producto interno
Espacios vectoriales con producto internoEspacios vectoriales con producto interno
Espacios vectoriales con producto interno
 
Espacios vectoriales
Espacios vectorialesEspacios vectoriales
Espacios vectoriales
 
Apuntes de fisica 1
Apuntes de fisica 1Apuntes de fisica 1
Apuntes de fisica 1
 
Espacios Con Producto Interno Resumen
Espacios Con  Producto  Interno  ResumenEspacios Con  Producto  Interno  Resumen
Espacios Con Producto Interno Resumen
 
Trabajo de Vectores
Trabajo de VectoresTrabajo de Vectores
Trabajo de Vectores
 
Vectores perpendiculares u ortogonales.
Vectores perpendiculares u ortogonales.Vectores perpendiculares u ortogonales.
Vectores perpendiculares u ortogonales.
 

En vedette (7)

Fundamentos de algebra matricial ccesa007
Fundamentos de algebra matricial ccesa007Fundamentos de algebra matricial ccesa007
Fundamentos de algebra matricial ccesa007
 
Taller 1 algebra_lineal (vectores)
Taller 1 algebra_lineal (vectores)Taller 1 algebra_lineal (vectores)
Taller 1 algebra_lineal (vectores)
 
Matriz Inversa y Matrices Semejantes
Matriz Inversa y Matrices SemejantesMatriz Inversa y Matrices Semejantes
Matriz Inversa y Matrices Semejantes
 
VECTORES EN R2
VECTORES EN R2VECTORES EN R2
VECTORES EN R2
 
Vectores en el espacio
Vectores en el espacioVectores en el espacio
Vectores en el espacio
 
Funciones
FuncionesFunciones
Funciones
 
Planeacion estrategica
Planeacion estrategicaPlaneacion estrategica
Planeacion estrategica
 

Similaire à Algebra lineal (vectores r2 y r3)

57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantesJean Romero
 
Libro geometria vectorial
Libro geometria vectorialLibro geometria vectorial
Libro geometria vectorialgaviriajim
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferencialesVictor Rubio
 
Variable compleja notas William La Cruz
Variable compleja notas William La CruzVariable compleja notas William La Cruz
Variable compleja notas William La CruzJose Valentine
 
Algebra lineal juanrada
Algebra lineal juanradaAlgebra lineal juanrada
Algebra lineal juanradaalonzo ember
 
Introduccion a Matlab (Laboratorio de Control )
Introduccion a Matlab (Laboratorio de Control )Introduccion a Matlab (Laboratorio de Control )
Introduccion a Matlab (Laboratorio de Control )Marc Wily Narciso Vera
 
1469722664 933 _material_cursovariassoraya
1469722664 933 _material_cursovariassoraya1469722664 933 _material_cursovariassoraya
1469722664 933 _material_cursovariassorayaHernán Bravo Muentes
 
Uacmx problemario de algebra lineal aaron aparicio-hernandez
Uacmx problemario de algebra lineal aaron aparicio-hernandezUacmx problemario de algebra lineal aaron aparicio-hernandez
Uacmx problemario de algebra lineal aaron aparicio-hernandezManuel Buendia
 
Problemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezProblemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezOrlando Paco
 
Problemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezProblemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezAlvaro Villabona
 
Metodología y enseñanza del cálculo vectorial
Metodología y enseñanza del cálculo vectorialMetodología y enseñanza del cálculo vectorial
Metodología y enseñanza del cálculo vectorialGabriel Alejandro
 
Texto Matematicas prepa2010 FCyT - UMSS
Texto Matematicas prepa2010 FCyT - UMSSTexto Matematicas prepa2010 FCyT - UMSS
Texto Matematicas prepa2010 FCyT - UMSSOliver Malele
 

Similaire à Algebra lineal (vectores r2 y r3) (20)

cálculo vectorial
 cálculo vectorial cálculo vectorial
cálculo vectorial
 
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
 
Libro geometria vectorial
Libro geometria vectorialLibro geometria vectorial
Libro geometria vectorial
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Taller grupal parcial 2
Taller grupal parcial 2Taller grupal parcial 2
Taller grupal parcial 2
 
Variable compleja notas William La Cruz
Variable compleja notas William La CruzVariable compleja notas William La Cruz
Variable compleja notas William La Cruz
 
Algebra lineal modulo 3 creditos - e-learning
Algebra lineal   modulo 3 creditos - e-learningAlgebra lineal   modulo 3 creditos - e-learning
Algebra lineal modulo 3 creditos - e-learning
 
96
9696
96
 
Funciones multivariables
Funciones multivariablesFunciones multivariables
Funciones multivariables
 
Algebra lineal juanrada
Algebra lineal juanradaAlgebra lineal juanrada
Algebra lineal juanrada
 
Introduccion a Matlab (Laboratorio de Control )
Introduccion a Matlab (Laboratorio de Control )Introduccion a Matlab (Laboratorio de Control )
Introduccion a Matlab (Laboratorio de Control )
 
1469722664 933 _material_cursovariassoraya
1469722664 933 _material_cursovariassoraya1469722664 933 _material_cursovariassoraya
1469722664 933 _material_cursovariassoraya
 
Uacmx problemario de algebra lineal aaron aparicio-hernandez
Uacmx problemario de algebra lineal aaron aparicio-hernandezUacmx problemario de algebra lineal aaron aparicio-hernandez
Uacmx problemario de algebra lineal aaron aparicio-hernandez
 
Problemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezProblemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandez
 
Problemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezProblemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandez
 
Metodología y enseñanza del cálculo vectorial
Metodología y enseñanza del cálculo vectorialMetodología y enseñanza del cálculo vectorial
Metodología y enseñanza del cálculo vectorial
 
Curso propedeutico 2016
Curso propedeutico 2016Curso propedeutico 2016
Curso propedeutico 2016
 
Texto Matematicas prepa2010 FCyT - UMSS
Texto Matematicas prepa2010 FCyT - UMSSTexto Matematicas prepa2010 FCyT - UMSS
Texto Matematicas prepa2010 FCyT - UMSS
 
matematicasprope2010
matematicasprope2010matematicasprope2010
matematicasprope2010
 
Metodosnumerics
MetodosnumericsMetodosnumerics
Metodosnumerics
 

Algebra lineal (vectores r2 y r3)

  • 1. MODULO ÁLGEBRA LINEAL CAMILO ZÍÑIGA A mi padre, JUAN ARTURO ZÚÑIGA R., quien fue el primero en enseñarme el hermoso mundo de la matemáticas, y quien me ha apoyado incondicionalmente en todas mis empresas. UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD – ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA UNIDAD DE CIENCIAS BÁSICAS Bogotá D. C., 2008 -1-
  • 2. COMITÉ DIRECTIVO Jaime Alberto Leal Afanador Rector Gloria Herrera Vicerrectora Académica Roberto Salazar Ramos Vicerrector de Medios y Mediaciones Pedagógicas Maribel Córdoba Guerrero Secretaria General MÓDULO CURSO ÁLGEBRA LINEAL PRIMERA EDICIÓN © Copyright Universidad Nacional Abierta y a Distancia ISBN 2008 Bogotá, Colombia -2-
  • 3. -3-
  • 4. AL ESTUDIANTE El propósito del curso es que el estudiante apropie de manera significativa los elementos teóricos fundamentales de Algebra Lineal y desarrolle las competencias pertinentes para contextualizarlos en su campo de formación disciplinar. El Algebra Lineal es un área de las matemáticas que en las últimas décadas ha tenido un significativo desarrollo con el aporte de las ciencias computacionales. Su aplicabilidad en diversos campos del saber ha generado la necesidad de articularla al proceso formativo del profesional de hoy en día como herramienta de apoyo para resolver problemas en las más diversas disciplinas. En este sentido y por su carácter mismo, el curso hace aportes significativos al desarrollo de las competencias y aptitud matemática en el estudiante, en tanto potencia habilidades de pensamiento de orden superior, como la abstracción, el análisis, la síntesis, la inducción, la deducción, etc. El curso académico se estructura básicamente en dos unidades didácticas. La primera contempla los Vectores, Matrices y Determinantes, la segunda Sistemas de Ecuaciones Lineales, Rectas, Planos e Introducción a los Espacios Vectoriales. A través del curso académico de Algebra Lineal se dinamizan procesos de resignificación cognitiva y fortalecimiento del desarrollo de operaciones meta cognitivas mediante la articulación de los fundamentos teóricos a la identificación de núcleos problémicos en los diferentes campos de formación disciplinar. Es importante que desde ahora el estudiante se compenetre con la dinámica del uso de los recursos informáticos y telemáticos como herramientas de apoyo a los procesos de aprendizaje. En este sentido, el curso académico de Algebra Lineal articulará a su desarrollo actividades mediadas por estas tecnologías, como búsquedas de información en la Web, interactividades sincrónicas o asincrónicas para orientar acciones de acompañamiento individual o de pequeño grupo colaborativo y acceso a información disponible en la plataforma virtual de la universidad. La consulta permanente a diferentes fuentes documentales aportadas por el curso se tomará como estrategia pedagógica que apunte al fortalecimiento del espíritu investigativo. En este sentido, se espera que el estudiante amplíe la gama de opciones documentales que aportan a la resignificación cognitiva. Estas fuentes documentales son obviamente de diferentes orígenes, a las cuales se tendrá acceso a través de: material impreso, bibliotecas virtuales, hemerotecas, sitios Web, etc. -4-
  • 5. TABLA DE CONTENIDO UNIDAD I 1. VECTORES EN R 2 …………………………………………………………………….9 1.1 NOCION DE DISTANCIA………………………………………………………………………….11 1.2 SEGMENTOS DIRIGIDOS………………………………………………………14 1.3 DEFINICION ALGEBRAICA DE VECTOR………………………………….20 1.4 ALGUNAS OPERACIONES CON VECTORES……………………………..23 1.4.1 Multiplicación de un vector por un escalar…………………….23 1.4.2 Suma de Vectores………………………………………………………35 1.4.3 Diferencia de vectores………………………………………………..39 1.4.4 Producto escalar…………………………………………………………43 1.5 PROYECCIONES…………………………………………………………………..52 2. VECTORES EN R 3 …………………………………………………………………..58 2.1 DISTANCIA ENTRE DOS PUNTOS……………………………………………62 2.2 VECTORES BASE…………………………………………………………………..66 2.3 PRODUCTO VECTORIAL………………………………………………………..72 PROBLEMAS…………………………………………………………………………………. 77 AUTOEVALUACION……………………………………………………………………….. 79 3. MATRICES……………………………………………………………………………..81 3.1 OPERACIONES CON MATRICES………………………………………………83 3.1.1 Suma de matrices……………………………………………………84 3.1.2 Multiplicación por escalar…………………………………………87 3.1.3 Multiplicación de matrices………………………………………..88 3.2 OPERACIONES SOBRE MATRICES…………………………………………...92 3.2.1 Forma escalonada y forma escalonada reducida……95 3.2.2 Inversa de una matriz………………………………………..99 3.2.3 Matrices Elementales…………………………………………105 3.2.4 La Factorización LU…………………………………………..119 4. DETERMINANTES…………………………………………………………………131 4.1 ALGUNAS PROPIEDADES DE LOS DETERMINANTES…………………138 4.2 INVERSAS…………………………………………………………………………….140 INTERPRETACION GEOMETRICA DEL PRODUCTO CRUZ….…………………147 PROBLEMAS……………………………………………………………………………………155 AUTOEVALUACION………………………………………………………………………….159 UNIDAD II 5. SISTEMAS DE ECUACIONES LINEALES………………………………………163 5.1 PRIMER METODO PARA RESOLVER ECUACIONES LINEALES ELIMINACION GAUSSIANA………..……………………………………………186 5.2 SEGUNDO METODO PARA RESOLVER ECUACIONES LINEALES METODO DE GAUSS – JORDAN……………………………………………….189 -5-
  • 6. 5.3 TERCER METODO PARA RESOLVER ECUACIONES LINEALES REGLA DE CRAMER………………………………………………………………..195 5.4 CUARTO METODO PARA RESOLVER ECUACIONES LINEALES EMPLEANDO LA FACTORIZACION LU……………………………………….198 5.5 QUINTO METODO PARA RESOLVER ECUACIONES LINEALES EMPLEANDO LA MATRIZ INVERSA…………………………………………..203 SISTEMAS LINEALES HOMOGENEOS…….………………………………….206 6. RECTAS EN R 3 ………………………………………………………..……………208 7. PLANOS………………………………………………………..……………………220 8. ESPACIOS VECTORIALES………………………………..……………………..228 PROBLEMAS………………………………………………………………………………………..235 AUTOEVALUACION…………………………………………………………………….…………239 -6-
  • 7. UNIDAD 1 VECTORES, MATRICES Y DETERMINANTES -7-
  • 8. OBJETIVO GENERAL Que el estudiante comprenda el conjunto de conocimientos relacionados con los fundamentos básicos que constituyen el campo teórico y aplicativo de los vectores, matrices y determinantes a través del estudio y análisis de fuentes documentales y situaciones particulares en diferentes campos del saber. OBJETIVOS ESPECIFICOS  Evidenciar en el estudiante una apropiación conceptual que refleje el entendimiento de nociones como la de vector, complementado con un manejo pertinente de las operaciones con los mismos.  Lograr que el estudiante conozca de cerca el concepto de matriz, lo lleve a espacios mas generales y reconozca su importancia en aplicaciones mas especificas. Además, debe entender y manejar con propiedad las distintas operaciones que con ellas puede realizar y que le permitirán utilizar herramientas como el determinante y el proceso de obtener la inversa de matrices para resolver a futuro sistemas lineales. -8-
  • 9. -9-
  • 10. 1.1 NOCION DE DISTANCIA Ahora abordemos el problema de dos puntos del plano. Nuestro interés es encontrar la distancia entre ellos. Para esto podemos recurrir a un teorema de la geometría elemental, llamado Teorema de Pitágoras, que nos establece que: - 10 -
  • 11. a 2  6 2  82 a 2  100 a   100 Dado que a es una distancia, entonces consideramos únicamente los valores positivos, es decir, a  10 unidades. - 11 -
  • 66. Imagen obtenida de: ALGEBRA LINEAL Autor: Stanley Grossman. Quinta Edición. Pag. 251 - 66 -
  • 67. Imagen obtenida de: ALGEBRA LINEAL Autor: Stanley Grossman. Quinta Edición. Pag. 263 - 67 -
  • 108. 1 0 0 1 0 0 1 1 0 , por lo tanto E 1   1 E1   1 0 1 0 0 1  0 0 1        1 0 0   1 0 0  1 1 E2   0 0  , por lo tanto E 2  0 6 0   6 0 0 1      0 0 1       1 2 0  1 2 0  E3   0 1  , por lo tanto E 1  0 1 0 0  3 0 0 1  0 0 1         1 0 0 1 0 0 E4   0 1  , por lo tanto E 1  0 1 0 0 4 0 6 1 0 6 1         1 0 0   1 0 0  1 E5   0 1 0  , por lo tanto E5  0 1 0   0 0 3    1   0 0     3 5  5 1 0  1 0   3  3  E6   0 1 0  , por lo tanto E 61   0 1 0          0 0 1  0 0 1         1 0 0 1 0 0     1  1 E7   0 1  , por lo tanto E 7 1   0 1    6 6    0 0 1  0 0 1         Ahora realicemos el siguiente producto E11  E 2 1  E 61  E 7 1   - 108 -
  • 109. 1 0 0  1 0 0 1 2 0  1 0 0 1 0 0  1 1 0    0 6 0    0 1 0   0 1 0   0 1 0   0 0 1   0 0 1   0 0 1  0 6 1  0 0 3                       5   1 0 1 0 0   3    1  0 1 0  0 1    6      0 0 1  0 0 1          Realicemos los productos de izquierda a derecha, tenemos:  5  1 0 1 0 0   1 0 0  1 2 0 1 0 0 1 0 0  3    1  1 6 0   0 1 0   0 1 0   0 1 0    0 1 0  0 1    6  0 0 1  0 0 1  0 6 1  0 0 3               0 0 1  0 0 1                 Seguimos  5  1 0 1 0 0   1 2 0  1 0 0 1 0 0  3    1  1 4 0    0 1 0   0 1 0    0 1 0  0 1    6  0 0 1   0 6 1  0 0 3             0 0 1  0 0 1               Seguimos  5  1 0 1 0 0   1 2 0  1 0 0   3    1  1 4 0    0 1 0   0 1 0  0 1    6  0 6 1  0 0 3          0 0 1  0 0 1            Seguimos  5  1 0 1 0 0   1 2 0  3    1  1 4 0  0 1 0  0 1    6  0 6 3        0 0 1  0 0 1           - 109 -
  • 110. Seguimos  5   1 2 1 0 0   3   5    1  1 4  0 1  3   6    0 6 3  0 0 1          Finalmente 1 2  2 1 4 1  0 6 2     En conclusión, hemos visto que dada una matriz A, si esta es invertible, tanto A como su inversa pueden ser escritas como el producto de matrices elementales (ya que, las inversas de las matrices elementales son a su vez matrices elementales. - 110 -
  • 154. UNIDAD 2 SISTEMAS DE ECUACIONES LINEALES, RECTAS, PLANOS Y ESPACIOS VECTORIALES - 154 -
  • 155. OBJETIVO GENERAL Que el estudiante comprenda los fundamentos teóricos que soportan la concepción de los sistemas lineales, rectas, planos y los principios de espacio vectorial, a través del complejo ejercicio mental de abstracción, estudio, análisis e interpretación de fuentes bibliográficas referenciadas y casos específicos de aplicación en diferentes áreas del conocimiento. OBJETIVOS ESPECIFICOS  Evidenciar en el estudiante una apropiación conceptual que refleje el entendimiento de nociones como la de un plano o de una recta en el espacio. Complementado con un manejo pertinente de las diversas formas en que son obtenidas y empleadas las ecuaciones que las representan.  Lograr que el estudiante conozca de cerca el concepto de lo que es un sistema de ecuaciones lineales, lo lleve a espacios más generales y reconozca su importancia en aplicaciones mas especificas. Además, debe entender y manejar con propiedad los distintos procedimientos que le permiten obtener una solución del mismo (en el caso en que sea posible) - 155 -
  • 194. 5.5 QUINTO METODO PARA RESOLVER SISTEMAS LINEALES EMPLEANDO LA MATRIZ INVERSA El objetivo es resolver un sistema de la forma AX  b (con A de n  n ), donde A es invertible. Partiendo del sistema AX  b , podemos multiplicar a izquierda por A 1 (Que existe, dado que A es invertible), con lo que nos queda: A 1 AX  A 1b Agrupando obtenemos 1 1 A AX  A b Simplificando  I  X  A 1 b Finalmente 1 X A b La ultima afirmación, nos indica que se A es de n  n e invertible, entonces la solución del sistema lineal AX  b , la encontramos de la forma X  A 1b . Ejemplo Dado el sistema lineal 2 x1  3 x 2  10 x3  21 4 x1  x 2  x3  11 7 x1  5 x 2  4 x3  17 Determine si el sistema tiene solución única o no. De tener solución única, encuentre su inversa y úsela para resolver el sistema. Solución Para determinar si el sistema tiene solución única o no, debemos calcular su determinante. Si este nos da diferente de cero (0), entonces el sistema tendrá única solución y además la inversa de la matriz de coeficientes existirá (y esta será única) Encontremos el determinante: - 194 -
  • 195. 2  3 10 DetA  4 1 1  225 7 5 4 Recordemos que tenemos dos procedimientos para hallar la inversa: 1. Empleando el método de reducción de Gauss- Jordán 1 2. Empleando determinantes ( A 1  * AdjA ) det A Voy a emplear el método de reducción de Gauss- Jordán. Se deja al estudiante la invitación a realizarlo también por el otro método. 1 f1 f 2  4 f1 2 f 3  7 f1 1 f2 7 3 f1  f2 2 11  14 f3  f2 f3 2 225 - 195 -
  • 196. 13 f1  f3 19 14 f2  f3 7 Por lo tanto, dado que la matriz A pudo ser reducida (por medio de operaciones elementales) a la matriz identidad, se tiene que la matriz del lado derecho es la inversa de A. Es decir,   1 38 13   25 225 225  1 62  38  A 1    25 225 225   3 11  14   25 225 225    Finalmente, para obtener la solución del sistema, consideramos la ecuación X  A 1b . Donde, 21 b  11 17      Por tanto, 1 38 13   25 225 225  21 1 62  38     11  25 225 225    X  3 11  14  17     25  225 225  2 X  1  2     Es decir, la solución es x1  2; x 2  1; x3  2 - 196 -