SlideShare une entreprise Scribd logo
1  sur  235
Télécharger pour lire hors ligne
MODULO




                             ÁLGEBRA LINEAL




                             CAMILO ZÍÑIGA




A mi padre, JUAN ARTURO ZÚÑIGA R., quien fue el primero en enseñarme el hermoso mundo
      de la matemáticas, y quien me ha apoyado incondicionalmente en todas mis empresas.




UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD –
ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA
             UNIDAD DE CIENCIAS BÁSICAS
                  Bogotá D. C., 2008




                                     -1-
COMITÉ DIRECTIVO


Jaime Alberto Leal Afanador
Rector


Gloria Herrera
Vicerrectora Académica


Roberto Salazar Ramos
Vicerrector de Medios y Mediaciones Pedagógicas


Maribel Córdoba Guerrero
Secretaria General




MÓDULO
CURSO ÁLGEBRA LINEAL
PRIMERA EDICIÓN

© Copyright
Universidad Nacional Abierta y a Distancia


ISBN




2008
Bogotá, Colombia




                                             -2-
-3-
AL ESTUDIANTE



El propósito del curso es que el estudiante apropie de manera significativa los elementos
teóricos fundamentales de Algebra Lineal y desarrolle las competencias pertinentes para
contextualizarlos en su campo de formación disciplinar.

El Algebra Lineal es un área de las matemáticas que en las últimas décadas ha tenido un
significativo desarrollo con el aporte de las ciencias computacionales. Su aplicabilidad en
diversos campos del saber ha generado la necesidad de articularla al proceso formativo
del profesional de hoy en día como herramienta de apoyo para resolver problemas en las
más diversas disciplinas. En este sentido y por su carácter mismo, el curso hace aportes
significativos al desarrollo de las competencias y aptitud matemática en el estudiante, en
tanto potencia habilidades de pensamiento de orden superior, como la abstracción, el
análisis, la síntesis, la inducción, la deducción, etc.

El curso académico se estructura básicamente en dos unidades didácticas. La primera
contempla los Vectores, Matrices y Determinantes, la segunda Sistemas de Ecuaciones
Lineales, Rectas, Planos e Introducción a los Espacios Vectoriales.

A través del curso académico de Algebra Lineal se dinamizan procesos de resignificación
cognitiva y fortalecimiento del desarrollo de operaciones meta cognitivas mediante la
articulación de los fundamentos teóricos a la identificación de núcleos problémicos en los
diferentes campos de formación disciplinar.


Es importante que desde ahora el estudiante se compenetre con la dinámica del uso de
los recursos informáticos y telemáticos como herramientas de apoyo a los procesos de
aprendizaje. En este sentido, el curso académico de Algebra Lineal articulará a su
desarrollo actividades mediadas por estas tecnologías, como búsquedas de información
en la Web, interactividades sincrónicas o asincrónicas para orientar acciones de
acompañamiento individual o de pequeño grupo colaborativo y acceso a información
disponible en la plataforma virtual de la universidad.

La consulta permanente a diferentes fuentes documentales aportadas por el curso se
tomará como estrategia pedagógica que apunte al fortalecimiento del espíritu
investigativo. En este sentido, se espera que el estudiante amplíe la gama de opciones
documentales que aportan a la resignificación cognitiva. Estas fuentes documentales son
obviamente de diferentes orígenes, a las cuales se tendrá acceso a través de: material
impreso, bibliotecas virtuales, hemerotecas, sitios Web, etc.




                                        -4-
TABLA DE CONTENIDO

UNIDAD I

  1. VECTORES EN R 2 …………………………………………………………………….9
     1.1     NOCION DE
             DISTANCIA………………………………………………………………………….11
     1.2     SEGMENTOS DIRIGIDOS………………………………………………………14
     1.3     DEFINICION ALGEBRAICA DE VECTOR………………………………….20
     1.4     ALGUNAS OPERACIONES CON VECTORES……………………………..23
         1.4.1 Multiplicación de un vector por un escalar…………………….23
         1.4.2 Suma de Vectores………………………………………………………35
         1.4.3 Diferencia de vectores………………………………………………..39
         1.4.4 Producto escalar…………………………………………………………43
     1.5     PROYECCIONES…………………………………………………………………..52
  2. VECTORES EN R 3 …………………………………………………………………..58
     2.1     DISTANCIA ENTRE DOS PUNTOS……………………………………………62
     2.2     VECTORES BASE…………………………………………………………………..66
     2.3     PRODUCTO VECTORIAL………………………………………………………..72
     PROBLEMAS…………………………………………………………………………………. 77
     AUTOEVALUACION……………………………………………………………………….. 79
  3. MATRICES……………………………………………………………………………..81
     3.1     OPERACIONES CON MATRICES………………………………………………83
         3.1.1 Suma de matrices……………………………………………………84
         3.1.2 Multiplicación por escalar…………………………………………87
         3.1.3 Multiplicación de matrices………………………………………..88
     3.2     OPERACIONES SOBRE MATRICES…………………………………………...92
         3.2.1 Forma escalonada y forma escalonada reducida……95
         3.2.2 Inversa de una matriz………………………………………..99
         3.2.3 Matrices Elementales…………………………………………105
         3.2.4 La Factorización LU…………………………………………..119
  4. DETERMINANTES…………………………………………………………………131
     4.1     ALGUNAS PROPIEDADES DE LOS DETERMINANTES…………………138
     4.2     INVERSAS…………………………………………………………………………….140
     INTERPRETACION GEOMETRICA DEL PRODUCTO CRUZ….…………………147
     PROBLEMAS……………………………………………………………………………………155
     AUTOEVALUACION………………………………………………………………………….159


UNIDAD II


  5. SISTEMAS DE ECUACIONES LINEALES………………………………………163
     5.1  PRIMER METODO PARA RESOLVER ECUACIONES LINEALES
          ELIMINACION GAUSSIANA………..……………………………………………186
     5.2  SEGUNDO METODO PARA RESOLVER ECUACIONES LINEALES
          METODO DE GAUSS – JORDAN……………………………………………….189


                              -5-
5.3   TERCER METODO PARA RESOLVER ECUACIONES LINEALES
       REGLA DE CRAMER………………………………………………………………..195
   5.4  CUARTO METODO PARA RESOLVER ECUACIONES LINEALES
       EMPLEANDO LA FACTORIZACION LU……………………………………….198
   5.5  QUINTO METODO PARA RESOLVER ECUACIONES LINEALES
       EMPLEANDO LA MATRIZ INVERSA…………………………………………..203
       SISTEMAS LINEALES HOMOGENEOS…….………………………………….206
6. RECTAS EN R 3 ………………………………………………………..……………208
7. PLANOS………………………………………………………..……………………220
8. ESPACIOS VECTORIALES………………………………..……………………..228
PROBLEMAS………………………………………………………………………………………..235
AUTOEVALUACION…………………………………………………………………….…………239




                       -6-
UNIDAD 1


VECTORES, MATRICES Y DETERMINANTES




              -7-
OBJETIVO GENERAL


Que el estudiante comprenda el conjunto de conocimientos relacionados con los
fundamentos básicos que constituyen el campo teórico y aplicativo de los vectores,
matrices y determinantes a través del estudio y análisis de fuentes documentales y
situaciones particulares en diferentes campos del saber.




                           OBJETIVOS ESPECIFICOS

      Evidenciar en el estudiante una apropiación conceptual que refleje el
       entendimiento de nociones como la de vector, complementado con un manejo
       pertinente de las operaciones con los mismos.

      Lograr que el estudiante conozca de cerca el concepto de matriz, lo lleve a
       espacios mas generales y reconozca su importancia en aplicaciones mas
       especificas. Además, debe entender y manejar con propiedad las distintas
       operaciones que con ellas puede realizar y que le permitirán utilizar herramientas
       como el determinante y el proceso de obtener la inversa de matrices para resolver
       a futuro sistemas lineales.




                                       -8-
-9-
1.1    NOCION DE DISTANCIA

Ahora abordemos el problema de dos puntos del plano. Nuestro interés es encontrar la distancia entre
ellos.
Para esto podemos recurrir a un teorema de la geometría elemental, llamado Teorema de Pitágoras, que
nos establece que:




                                           - 10 -
a 2  6 2  82
a 2  100
a   100


Dado que a es una distancia, entonces consideramos únicamente los valores positivos, es decir,
a  10 unidades.




                                             - 11 -
- 12 -
- 13 -
- 14 -
- 15 -
- 16 -
- 17 -
- 18 -
- 19 -
- 20 -
- 21 -
- 22 -
- 23 -
- 24 -
- 25 -
- 26 -
- 27 -
- 28 -
- 29 -
- 30 -
- 31 -
- 32 -
- 33 -
- 34 -
- 35 -
- 36 -
- 37 -
- 38 -
- 39 -
- 40 -
- 41 -
- 42 -
- 43 -
- 44 -
- 45 -
- 46 -
- 47 -
- 48 -
- 49 -
- 50 -
- 51 -
- 52 -
- 53 -
- 54 -
- 55 -
- 56 -
- 57 -
- 58 -
- 59 -
- 60 -
- 61 -
- 62 -
- 63 -
- 64 -
- 65 -
Imagen obtenida de: ALGEBRA LINEAL
Autor: Stanley Grossman. Quinta Edición.
Pag. 251




                                           - 66 -
Imagen obtenida de: ALGEBRA LINEAL
Autor: Stanley Grossman. Quinta Edición.
Pag. 263




                                           - 67 -
- 68 -
- 69 -
- 70 -
- 71 -
- 72 -
- 73 -
- 74 -
- 75 -
- 76 -
- 77 -
- 78 -
- 79 -
- 80 -
- 81 -
- 82 -
- 83 -
- 84 -
- 85 -
- 86 -
- 87 -
- 88 -
- 89 -
- 90 -
- 91 -
- 92 -
- 93 -
- 94 -
- 95 -
- 96 -
- 97 -
- 98 -
- 99 -
- 100 -
- 101 -
- 102 -
- 103 -
- 104 -
- 105 -
- 106 -
- 107 -
1 0 0                       1                  0       0
     1 1 0 , por lo tanto E 1   1
E1                                                   1       0
                             1

     0 0 1                       0                  0       1
                                                              
                                                             

     1       0       0
                       
                                               1 0 0 
              1                            1
E2   0              0  , por lo tanto E 2  0 6 0
                       
              6
                                               0 0 1 
                                                   
     0       0       1
                                                     
     
                       
                        

     1           2      0                        1 2 0 
E3   0          1          , por lo tanto E 1  0 1 0
                          0                  3

     0           0       1                        0 0 1 
                                                         
                                                        

     1           0       0                       1 0 0
E4   0          1         , por lo tanto E 1  0 1 0
                          0                 4

     0           6      1                       0 6 1 
                                                        
                                                       

     1       0       0
                       
                                              1 0 0 
                                          1
E5   0      1       0  , por lo tanto E5  0 1 0
                       

                                              0 0 3 
                                                    
                      1
                       
     0       0
                                                    
     
                     3

                      5                                         5
     1       0                                   1       0
                                                
                      3                                         3 
E6   0      1       0  , por lo tanto E 61   0       1     0 
                                                                
                                                                
     0       0       1                         0       0     1 
     
                                               
                                                                  
                                                                   

     1       0       0                        1         0    0
                                                                

                      1                                         1
E7   0      1         , por lo tanto E 7 1   0        1
                                               
                                          

                      6                                        6
                                                                   
                                               
     0       0       1
                                               0         0    1 
     
                                              
                                                                  
                                                                   
Ahora realicemos el siguiente producto
E11  E 2 1  E 61  E 7 1
                        




                                                   - 108 -
1     0   0  1 0 0 1 2 0  1 0 0 1 0 0
 1   1   0    0 6 0    0 1 0   0 1 0   0 1 0  
0     0   1   0 0 1   0 0 1  0 6 1  0 0 3 
                                                  
                                                  
             5 
 1    0           1       0    0
                                  
             3  
                                 1
 0    1     0  0       1
               
                                6
                                   
               
 0    0     1  0        0    1 

               
                                 
                                   
Realicemos los productos de izquierda a derecha, tenemos:
                                                                    5 
                                                    1        0            1    0   0
                                                                                     
1     0   0  1 2 0 1 0 0 1 0 0                             3  
 1                                                                                1
       6   0   0 1 0   0 1 0   0 1 0    0        1      0  0    1
                                                                      
                                                                                   6
                                                                                      
0     0   1  0 0 1  0 6 1  0 0 3  
                                                              
                                                   0        0      1  0     0   1 
                                       
                                                                      
                                                                                    
                                                                                      
Seguimos
                                                        5 
                                          1      0            1    0     0
                                                                          
1     2   0  1 0 0 1 0 0                         3  
 1                                                                     1
       4   0    0 1 0   0 1 0    0      1      0  0    1
                                                          
                                                                         6
                                                                           
0     0   1   0 6 1  0 0 3  
                                                    
                                         0      0      1  0     0    1 
                               
                                                          
                                                                         
                                                                           
Seguimos
                                            5 
                              1        0          1     0   0
                                                              
1     2   0  1 0 0                     3  
 1                                                         1
       4   0    0 1 0   0        1    0  0     1
                                              
                                                            6
                                                               
0     6   1  0 0 3 
                                          
                             0        0    1  0      0   1
                     
                                              
                                                             
                                                               
Seguimos
                                5 
                 1     0              1     0   0
                                                  
1     2   0                  3  
 1                                             1
       4   0  0     1        0  0     1
                                  
                                                6
                                                   
0     6   3 
                                
                0     0        1  0      0   1 
            
                                  
                                                 
                                                   




                                            - 109 -
Seguimos
              5 
 1    2            1   0   0
                              
              3  
              5            1
 1   4         0   1

              3           6
                               

 0    6      3  0    0   1 

                
                             
                               
Finalmente
1     2      2
1    4      1 
0     6      2
               
               


En conclusión, hemos visto que dada una matriz A, si esta es invertible, tanto A como su
inversa pueden ser escritas como el producto de matrices elementales (ya que, las
inversas de las matrices elementales son a su vez matrices elementales.




                                      - 110 -
- 111 -
- 112 -
- 113 -
- 114 -
- 115 -
- 116 -
- 117 -
- 118 -
- 119 -
- 120 -
- 121 -
- 122 -
- 123 -
- 124 -
- 125 -
- 126 -
- 127 -
- 128 -
- 129 -
- 130 -
- 131 -
- 132 -
- 133 -
- 134 -
- 135 -
- 136 -
- 137 -
- 138 -
- 139 -
- 140 -
- 141 -
- 142 -
- 143 -
- 144 -
- 145 -
- 146 -
- 147 -
- 148 -
- 149 -
- 150 -
- 151 -
- 152 -
- 153 -
UNIDAD 2


SISTEMAS DE ECUACIONES LINEALES, RECTAS, PLANOS Y
              ESPACIOS VECTORIALES




                    - 154 -
OBJETIVO GENERAL


Que el estudiante comprenda los fundamentos teóricos que soportan la concepción de
los sistemas lineales, rectas, planos y los principios de espacio vectorial, a través del
complejo ejercicio mental de abstracción, estudio, análisis e interpretación de fuentes
bibliográficas referenciadas y casos específicos de aplicación en diferentes áreas del
conocimiento.




                           OBJETIVOS ESPECIFICOS


      Evidenciar en el estudiante una apropiación conceptual que refleje el
       entendimiento de nociones como la de un plano o de una recta en el espacio.
       Complementado con un manejo pertinente de las diversas formas en que son
       obtenidas y empleadas las ecuaciones que las representan.

      Lograr que el estudiante conozca de cerca el concepto de lo que es un sistema de
       ecuaciones lineales, lo lleve a espacios más generales y reconozca su importancia
       en aplicaciones mas especificas. Además, debe entender y manejar con propiedad
       los distintos procedimientos que le permiten obtener una solución del mismo (en
       el caso en que sea posible)




                                      - 155 -
- 156 -
- 157 -
- 158 -
- 159 -
- 160 -
- 161 -
- 162 -
- 163 -
- 164 -
- 165 -
- 166 -
- 167 -
- 168 -
- 169 -
- 170 -
- 171 -
- 172 -
- 173 -
- 174 -
- 175 -
- 176 -
- 177 -
- 178 -
- 179 -
- 180 -
- 181 -
- 182 -
- 183 -
- 184 -
- 185 -
- 186 -
- 187 -
- 188 -
- 189 -
- 190 -
- 191 -
- 192 -
- 193 -
5.5         QUINTO METODO PARA RESOLVER SISTEMAS LINEALES
EMPLEANDO LA MATRIZ INVERSA

El objetivo es resolver un sistema de la forma AX  b (con A de n  n ), donde A es
invertible.
Partiendo del sistema AX  b , podemos multiplicar a izquierda por A 1 (Que existe,
dado que A es invertible), con lo que nos queda:
 A 1 AX  A 1b     Agrupando obtenemos
      1          1
 A AX  A b Simplificando
  I  X  A 1 b    Finalmente
          1
 X A b
La ultima afirmación, nos indica que se A es de n  n e invertible, entonces la solución
del sistema lineal AX  b , la encontramos de la forma X  A 1b .


Ejemplo

Dado el sistema lineal

2 x1  3 x 2  10 x3  21
4 x1  x 2  x3  11
 7 x1  5 x 2  4 x3  17
Determine si el sistema tiene solución única o no. De tener solución única, encuentre su
inversa y úsela para resolver el sistema.


Solución

Para determinar si el sistema tiene solución única o no, debemos calcular su
determinante. Si este nos da diferente de cero (0), entonces el sistema tendrá única
solución y además la inversa de la matriz de coeficientes existirá (y esta será única)

Encontremos el determinante:




                                       - 194 -
2  3 10
DetA  4 1      1  225
       7 5     4
Recordemos que tenemos dos procedimientos para hallar la inversa:
    1. Empleando el método de reducción de Gauss- Jordán
                                             1
    2. Empleando determinantes ( A 1           * AdjA )
                                           det A
Voy a emplear el método de reducción de Gauss- Jordán. Se deja al estudiante la
invitación a realizarlo también por el otro método.



                             1
                               f1                                    f 2  4 f1
                             2




                               f 3  7 f1                                1
                                                                           f2
                                                                         7




                                             3
                                      f1      f2
                                             2




       11                                       14
f3       f2                                        f3
        2                                      225




                                       - 195 -
13
f1       f3                                                      19
       14                                                  f2       f3
                                                                   7




 Por lo tanto, dado que la matriz A pudo ser reducida (por medio de operaciones
 elementales) a la matriz identidad, se tiene que la matriz del lado derecho es la inversa
 de A.
 Es decir,
          1 38    13 
         25 225 225 
        1    62  38 
 A 1  
         25 225 225 
                       
        3    11  14 
         25 225 225 
                      

 Finalmente, para obtener la solución del sistema, consideramos la ecuación X  A 1b .
 Donde,
       21
   b  11
       17 
        
        

 Por tanto,

     1       38     13 
      25      225   225  21
     1        62     38   
                           11
      25      225   225   
  X 
     3        11     14  17 
                             
      25
              225   225 


     2
 X  1 
     2
      
      
 Es decir, la solución es       x1  2; x 2  1; x3  2




                                                 - 196 -
- 197 -
- 198 -
- 199 -
- 200 -
- 201 -
- 202 -
- 203 -
- 204 -
- 205 -
- 206 -
- 207 -
- 208 -
- 209 -
- 210 -
- 211 -
- 212 -
- 213 -
- 214 -
- 215 -
- 216 -
- 217 -
- 218 -
- 219 -
- 220 -
- 221 -
- 222 -
- 223 -
- 224 -
- 225 -
- 226 -
- 227 -
- 228 -
- 229 -
- 230 -
- 231 -
- 232 -
- 233 -
- 234 -
- 235 -

Contenu connexe

Tendances

Perimetro con expresiones algebraicas
Perimetro con expresiones algebraicasPerimetro con expresiones algebraicas
Perimetro con expresiones algebraicasOMAR FREDY RODRIGUEZ
 
Plan de clase
Plan de clasePlan de clase
Plan de claseAbnrito14
 
Operaciones con fracciones 2018
Operaciones con fracciones 2018Operaciones con fracciones 2018
Operaciones con fracciones 2018Jaime Mayhuay
 
EXAMEN DE RAZONES Y PROPORCIONES
EXAMEN DE RAZONES  Y  PROPORCIONESEXAMEN DE RAZONES  Y  PROPORCIONES
EXAMEN DE RAZONES Y PROPORCIONESXKARIN
 
Ejercicios de multiplicacion de expresiones algebraicas
Ejercicios de multiplicacion de expresiones algebraicasEjercicios de multiplicacion de expresiones algebraicas
Ejercicios de multiplicacion de expresiones algebraicasAngy Paola Lopez Diago
 
7mo Pre Prueba Séptimo Grado 2022 Pre Álgebra.pdf
7mo Pre Prueba Séptimo Grado 2022 Pre Álgebra.pdf7mo Pre Prueba Séptimo Grado 2022 Pre Álgebra.pdf
7mo Pre Prueba Séptimo Grado 2022 Pre Álgebra.pdfRosa E Padilla
 
28 ejercicios polígonos y cuadrilateros
28 ejercicios polígonos y cuadrilateros28 ejercicios polígonos y cuadrilateros
28 ejercicios polígonos y cuadrilaterosMarcelo Calderón
 
Pautas Evaluaciones Diagnósticas Matemáticas
Pautas Evaluaciones Diagnósticas MatemáticasPautas Evaluaciones Diagnósticas Matemáticas
Pautas Evaluaciones Diagnósticas MatemáticasPedro Roberto Casanova
 
Presentación- Sistemas de ecuaciones lineales
Presentación- Sistemas de ecuaciones linealesPresentación- Sistemas de ecuaciones lineales
Presentación- Sistemas de ecuaciones linealesProspero Ruiz Cepeda
 
Ejercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matricesEjercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matricesalgebra
 

Tendances (20)

EXAMEN DE MATEMATICA - TERCERO BACHILLERATO
EXAMEN DE MATEMATICA - TERCERO BACHILLERATOEXAMEN DE MATEMATICA - TERCERO BACHILLERATO
EXAMEN DE MATEMATICA - TERCERO BACHILLERATO
 
Perimetro con expresiones algebraicas
Perimetro con expresiones algebraicasPerimetro con expresiones algebraicas
Perimetro con expresiones algebraicas
 
Pud octavo matemática
Pud  octavo matemática  Pud  octavo matemática
Pud octavo matemática
 
Plan por destrezas 1 bgu mate 1 q
Plan por destrezas 1 bgu mate 1 qPlan por destrezas 1 bgu mate 1 q
Plan por destrezas 1 bgu mate 1 q
 
Plan de clase
Plan de clasePlan de clase
Plan de clase
 
Fundamentos de Electronica
Fundamentos de ElectronicaFundamentos de Electronica
Fundamentos de Electronica
 
Ejercicios numeros complejos
Ejercicios  numeros complejosEjercicios  numeros complejos
Ejercicios numeros complejos
 
Operaciones con fracciones 2018
Operaciones con fracciones 2018Operaciones con fracciones 2018
Operaciones con fracciones 2018
 
Operaciones con-monomios (1)
Operaciones con-monomios (1)Operaciones con-monomios (1)
Operaciones con-monomios (1)
 
EXAMEN DE RAZONES Y PROPORCIONES
EXAMEN DE RAZONES  Y  PROPORCIONESEXAMEN DE RAZONES  Y  PROPORCIONES
EXAMEN DE RAZONES Y PROPORCIONES
 
Prueba tablas y frecuencias
Prueba tablas y frecuenciasPrueba tablas y frecuencias
Prueba tablas y frecuencias
 
Ejercicios de multiplicacion de expresiones algebraicas
Ejercicios de multiplicacion de expresiones algebraicasEjercicios de multiplicacion de expresiones algebraicas
Ejercicios de multiplicacion de expresiones algebraicas
 
7mo Pre Prueba Séptimo Grado 2022 Pre Álgebra.pdf
7mo Pre Prueba Séptimo Grado 2022 Pre Álgebra.pdf7mo Pre Prueba Séptimo Grado 2022 Pre Álgebra.pdf
7mo Pre Prueba Séptimo Grado 2022 Pre Álgebra.pdf
 
Geometria
GeometriaGeometria
Geometria
 
Inecuaciones
InecuacionesInecuaciones
Inecuaciones
 
28 ejercicios polígonos y cuadrilateros
28 ejercicios polígonos y cuadrilateros28 ejercicios polígonos y cuadrilateros
28 ejercicios polígonos y cuadrilateros
 
Prueba icfes 8 ctavo segundo 2010
Prueba icfes 8 ctavo segundo  2010Prueba icfes 8 ctavo segundo  2010
Prueba icfes 8 ctavo segundo 2010
 
Pautas Evaluaciones Diagnósticas Matemáticas
Pautas Evaluaciones Diagnósticas MatemáticasPautas Evaluaciones Diagnósticas Matemáticas
Pautas Evaluaciones Diagnósticas Matemáticas
 
Presentación- Sistemas de ecuaciones lineales
Presentación- Sistemas de ecuaciones linealesPresentación- Sistemas de ecuaciones lineales
Presentación- Sistemas de ecuaciones lineales
 
Ejercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matricesEjercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matrices
 

Similaire à Algebra lineal (vectores r2 y r3)

57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantesJean Romero
 
Libro geometria vectorial
Libro geometria vectorialLibro geometria vectorial
Libro geometria vectorialgaviriajim
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferencialesVictor Rubio
 
Variable compleja notas William La Cruz
Variable compleja notas William La CruzVariable compleja notas William La Cruz
Variable compleja notas William La CruzJose Valentine
 
Algebra lineal juanrada
Algebra lineal juanradaAlgebra lineal juanrada
Algebra lineal juanradaalonzo ember
 
Introduccion a Matlab (Laboratorio de Control )
Introduccion a Matlab (Laboratorio de Control )Introduccion a Matlab (Laboratorio de Control )
Introduccion a Matlab (Laboratorio de Control )Marc Wily Narciso Vera
 
1469722664 933 _material_cursovariassoraya
1469722664 933 _material_cursovariassoraya1469722664 933 _material_cursovariassoraya
1469722664 933 _material_cursovariassorayaHernán Bravo Muentes
 
Uacmx problemario de algebra lineal aaron aparicio-hernandez
Uacmx problemario de algebra lineal aaron aparicio-hernandezUacmx problemario de algebra lineal aaron aparicio-hernandez
Uacmx problemario de algebra lineal aaron aparicio-hernandezManuel Buendia
 
Problemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezProblemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezOrlando Paco
 
Problemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezProblemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezAlvaro Villabona
 
Metodología y enseñanza del cálculo vectorial
Metodología y enseñanza del cálculo vectorialMetodología y enseñanza del cálculo vectorial
Metodología y enseñanza del cálculo vectorialGabriel Alejandro
 
Texto Matematicas prepa2010 FCyT - UMSS
Texto Matematicas prepa2010 FCyT - UMSSTexto Matematicas prepa2010 FCyT - UMSS
Texto Matematicas prepa2010 FCyT - UMSSOliver Malele
 

Similaire à Algebra lineal (vectores r2 y r3) (20)

cálculo vectorial
 cálculo vectorial cálculo vectorial
cálculo vectorial
 
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
 
Libro geometria vectorial
Libro geometria vectorialLibro geometria vectorial
Libro geometria vectorial
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Taller grupal parcial 2
Taller grupal parcial 2Taller grupal parcial 2
Taller grupal parcial 2
 
Variable compleja notas William La Cruz
Variable compleja notas William La CruzVariable compleja notas William La Cruz
Variable compleja notas William La Cruz
 
Algebra lineal modulo 3 creditos - e-learning
Algebra lineal   modulo 3 creditos - e-learningAlgebra lineal   modulo 3 creditos - e-learning
Algebra lineal modulo 3 creditos - e-learning
 
96
9696
96
 
Funciones multivariables
Funciones multivariablesFunciones multivariables
Funciones multivariables
 
Algebra lineal juanrada
Algebra lineal juanradaAlgebra lineal juanrada
Algebra lineal juanrada
 
Introduccion a Matlab (Laboratorio de Control )
Introduccion a Matlab (Laboratorio de Control )Introduccion a Matlab (Laboratorio de Control )
Introduccion a Matlab (Laboratorio de Control )
 
1469722664 933 _material_cursovariassoraya
1469722664 933 _material_cursovariassoraya1469722664 933 _material_cursovariassoraya
1469722664 933 _material_cursovariassoraya
 
Uacmx problemario de algebra lineal aaron aparicio-hernandez
Uacmx problemario de algebra lineal aaron aparicio-hernandezUacmx problemario de algebra lineal aaron aparicio-hernandez
Uacmx problemario de algebra lineal aaron aparicio-hernandez
 
Problemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezProblemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandez
 
Problemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandezProblemario de-algebra-lineal-aaron-aparicio-hernandez
Problemario de-algebra-lineal-aaron-aparicio-hernandez
 
Metodología y enseñanza del cálculo vectorial
Metodología y enseñanza del cálculo vectorialMetodología y enseñanza del cálculo vectorial
Metodología y enseñanza del cálculo vectorial
 
Curso propedeutico 2016
Curso propedeutico 2016Curso propedeutico 2016
Curso propedeutico 2016
 
Texto Matematicas prepa2010 FCyT - UMSS
Texto Matematicas prepa2010 FCyT - UMSSTexto Matematicas prepa2010 FCyT - UMSS
Texto Matematicas prepa2010 FCyT - UMSS
 
matematicasprope2010
matematicasprope2010matematicasprope2010
matematicasprope2010
 
Metodosnumerics
MetodosnumericsMetodosnumerics
Metodosnumerics
 

Dernier

Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdfDemetrio Ccesa Rayme
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosCesarFernandez937857
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdfgimenanahuel
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxjosetrinidadchavez
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoFundación YOD YOD
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdfBaker Publishing Company
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxKarlaMassielMartinez
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscaeliseo91
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PCCesarFernandez937857
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 

Dernier (20)

Power Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptxPower Point: "Defendamos la verdad".pptx
Power Point: "Defendamos la verdad".pptx
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
Neurociencias para Educadores NE24 Ccesa007.pdf
Neurociencias para Educadores  NE24  Ccesa007.pdfNeurociencias para Educadores  NE24  Ccesa007.pdf
Neurociencias para Educadores NE24 Ccesa007.pdf
 
Informatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos BásicosInformatica Generalidades - Conceptos Básicos
Informatica Generalidades - Conceptos Básicos
 
Presentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza MultigradoPresentacion Metodología de Enseñanza Multigrado
Presentacion Metodología de Enseñanza Multigrado
 
30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf30-de-abril-plebiscito-1902_240420_104511.pdf
30-de-abril-plebiscito-1902_240420_104511.pdf
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptxOLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
OLIMPIADA DEL CONOCIMIENTO INFANTIL 2024.pptx
 
Heinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativoHeinsohn Privacidad y Ciberseguridad para el sector educativo
Heinsohn Privacidad y Ciberseguridad para el sector educativo
 
2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf2024 - Expo Visibles - Visibilidad Lesbica.pdf
2024 - Expo Visibles - Visibilidad Lesbica.pdf
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptxTECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
TECNOLOGÍA FARMACEUTICA OPERACIONES UNITARIAS.pptx
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
la unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fiscala unidad de s sesion edussssssssssssssscacio fisca
la unidad de s sesion edussssssssssssssscacio fisca
 
Identificación de componentes Hardware del PC
Identificación de componentes Hardware del PCIdentificación de componentes Hardware del PC
Identificación de componentes Hardware del PC
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 

Algebra lineal (vectores r2 y r3)

  • 1. MODULO ÁLGEBRA LINEAL CAMILO ZÍÑIGA A mi padre, JUAN ARTURO ZÚÑIGA R., quien fue el primero en enseñarme el hermoso mundo de la matemáticas, y quien me ha apoyado incondicionalmente en todas mis empresas. UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD – ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA UNIDAD DE CIENCIAS BÁSICAS Bogotá D. C., 2008 -1-
  • 2. COMITÉ DIRECTIVO Jaime Alberto Leal Afanador Rector Gloria Herrera Vicerrectora Académica Roberto Salazar Ramos Vicerrector de Medios y Mediaciones Pedagógicas Maribel Córdoba Guerrero Secretaria General MÓDULO CURSO ÁLGEBRA LINEAL PRIMERA EDICIÓN © Copyright Universidad Nacional Abierta y a Distancia ISBN 2008 Bogotá, Colombia -2-
  • 3. -3-
  • 4. AL ESTUDIANTE El propósito del curso es que el estudiante apropie de manera significativa los elementos teóricos fundamentales de Algebra Lineal y desarrolle las competencias pertinentes para contextualizarlos en su campo de formación disciplinar. El Algebra Lineal es un área de las matemáticas que en las últimas décadas ha tenido un significativo desarrollo con el aporte de las ciencias computacionales. Su aplicabilidad en diversos campos del saber ha generado la necesidad de articularla al proceso formativo del profesional de hoy en día como herramienta de apoyo para resolver problemas en las más diversas disciplinas. En este sentido y por su carácter mismo, el curso hace aportes significativos al desarrollo de las competencias y aptitud matemática en el estudiante, en tanto potencia habilidades de pensamiento de orden superior, como la abstracción, el análisis, la síntesis, la inducción, la deducción, etc. El curso académico se estructura básicamente en dos unidades didácticas. La primera contempla los Vectores, Matrices y Determinantes, la segunda Sistemas de Ecuaciones Lineales, Rectas, Planos e Introducción a los Espacios Vectoriales. A través del curso académico de Algebra Lineal se dinamizan procesos de resignificación cognitiva y fortalecimiento del desarrollo de operaciones meta cognitivas mediante la articulación de los fundamentos teóricos a la identificación de núcleos problémicos en los diferentes campos de formación disciplinar. Es importante que desde ahora el estudiante se compenetre con la dinámica del uso de los recursos informáticos y telemáticos como herramientas de apoyo a los procesos de aprendizaje. En este sentido, el curso académico de Algebra Lineal articulará a su desarrollo actividades mediadas por estas tecnologías, como búsquedas de información en la Web, interactividades sincrónicas o asincrónicas para orientar acciones de acompañamiento individual o de pequeño grupo colaborativo y acceso a información disponible en la plataforma virtual de la universidad. La consulta permanente a diferentes fuentes documentales aportadas por el curso se tomará como estrategia pedagógica que apunte al fortalecimiento del espíritu investigativo. En este sentido, se espera que el estudiante amplíe la gama de opciones documentales que aportan a la resignificación cognitiva. Estas fuentes documentales son obviamente de diferentes orígenes, a las cuales se tendrá acceso a través de: material impreso, bibliotecas virtuales, hemerotecas, sitios Web, etc. -4-
  • 5. TABLA DE CONTENIDO UNIDAD I 1. VECTORES EN R 2 …………………………………………………………………….9 1.1 NOCION DE DISTANCIA………………………………………………………………………….11 1.2 SEGMENTOS DIRIGIDOS………………………………………………………14 1.3 DEFINICION ALGEBRAICA DE VECTOR………………………………….20 1.4 ALGUNAS OPERACIONES CON VECTORES……………………………..23 1.4.1 Multiplicación de un vector por un escalar…………………….23 1.4.2 Suma de Vectores………………………………………………………35 1.4.3 Diferencia de vectores………………………………………………..39 1.4.4 Producto escalar…………………………………………………………43 1.5 PROYECCIONES…………………………………………………………………..52 2. VECTORES EN R 3 …………………………………………………………………..58 2.1 DISTANCIA ENTRE DOS PUNTOS……………………………………………62 2.2 VECTORES BASE…………………………………………………………………..66 2.3 PRODUCTO VECTORIAL………………………………………………………..72 PROBLEMAS…………………………………………………………………………………. 77 AUTOEVALUACION……………………………………………………………………….. 79 3. MATRICES……………………………………………………………………………..81 3.1 OPERACIONES CON MATRICES………………………………………………83 3.1.1 Suma de matrices……………………………………………………84 3.1.2 Multiplicación por escalar…………………………………………87 3.1.3 Multiplicación de matrices………………………………………..88 3.2 OPERACIONES SOBRE MATRICES…………………………………………...92 3.2.1 Forma escalonada y forma escalonada reducida……95 3.2.2 Inversa de una matriz………………………………………..99 3.2.3 Matrices Elementales…………………………………………105 3.2.4 La Factorización LU…………………………………………..119 4. DETERMINANTES…………………………………………………………………131 4.1 ALGUNAS PROPIEDADES DE LOS DETERMINANTES…………………138 4.2 INVERSAS…………………………………………………………………………….140 INTERPRETACION GEOMETRICA DEL PRODUCTO CRUZ….…………………147 PROBLEMAS……………………………………………………………………………………155 AUTOEVALUACION………………………………………………………………………….159 UNIDAD II 5. SISTEMAS DE ECUACIONES LINEALES………………………………………163 5.1 PRIMER METODO PARA RESOLVER ECUACIONES LINEALES ELIMINACION GAUSSIANA………..……………………………………………186 5.2 SEGUNDO METODO PARA RESOLVER ECUACIONES LINEALES METODO DE GAUSS – JORDAN……………………………………………….189 -5-
  • 6. 5.3 TERCER METODO PARA RESOLVER ECUACIONES LINEALES REGLA DE CRAMER………………………………………………………………..195 5.4 CUARTO METODO PARA RESOLVER ECUACIONES LINEALES EMPLEANDO LA FACTORIZACION LU……………………………………….198 5.5 QUINTO METODO PARA RESOLVER ECUACIONES LINEALES EMPLEANDO LA MATRIZ INVERSA…………………………………………..203 SISTEMAS LINEALES HOMOGENEOS…….………………………………….206 6. RECTAS EN R 3 ………………………………………………………..……………208 7. PLANOS………………………………………………………..……………………220 8. ESPACIOS VECTORIALES………………………………..……………………..228 PROBLEMAS………………………………………………………………………………………..235 AUTOEVALUACION…………………………………………………………………….…………239 -6-
  • 7. UNIDAD 1 VECTORES, MATRICES Y DETERMINANTES -7-
  • 8. OBJETIVO GENERAL Que el estudiante comprenda el conjunto de conocimientos relacionados con los fundamentos básicos que constituyen el campo teórico y aplicativo de los vectores, matrices y determinantes a través del estudio y análisis de fuentes documentales y situaciones particulares en diferentes campos del saber. OBJETIVOS ESPECIFICOS  Evidenciar en el estudiante una apropiación conceptual que refleje el entendimiento de nociones como la de vector, complementado con un manejo pertinente de las operaciones con los mismos.  Lograr que el estudiante conozca de cerca el concepto de matriz, lo lleve a espacios mas generales y reconozca su importancia en aplicaciones mas especificas. Además, debe entender y manejar con propiedad las distintas operaciones que con ellas puede realizar y que le permitirán utilizar herramientas como el determinante y el proceso de obtener la inversa de matrices para resolver a futuro sistemas lineales. -8-
  • 9. -9-
  • 10. 1.1 NOCION DE DISTANCIA Ahora abordemos el problema de dos puntos del plano. Nuestro interés es encontrar la distancia entre ellos. Para esto podemos recurrir a un teorema de la geometría elemental, llamado Teorema de Pitágoras, que nos establece que: - 10 -
  • 11. a 2  6 2  82 a 2  100 a   100 Dado que a es una distancia, entonces consideramos únicamente los valores positivos, es decir, a  10 unidades. - 11 -
  • 66. Imagen obtenida de: ALGEBRA LINEAL Autor: Stanley Grossman. Quinta Edición. Pag. 251 - 66 -
  • 67. Imagen obtenida de: ALGEBRA LINEAL Autor: Stanley Grossman. Quinta Edición. Pag. 263 - 67 -
  • 108. 1 0 0 1 0 0 1 1 0 , por lo tanto E 1   1 E1   1 0 1 0 0 1  0 0 1        1 0 0   1 0 0  1 1 E2   0 0  , por lo tanto E 2  0 6 0   6 0 0 1      0 0 1       1 2 0  1 2 0  E3   0 1  , por lo tanto E 1  0 1 0 0  3 0 0 1  0 0 1         1 0 0 1 0 0 E4   0 1  , por lo tanto E 1  0 1 0 0 4 0 6 1 0 6 1         1 0 0   1 0 0  1 E5   0 1 0  , por lo tanto E5  0 1 0   0 0 3    1   0 0     3 5  5 1 0  1 0   3  3  E6   0 1 0  , por lo tanto E 61   0 1 0          0 0 1  0 0 1         1 0 0 1 0 0     1  1 E7   0 1  , por lo tanto E 7 1   0 1    6 6    0 0 1  0 0 1         Ahora realicemos el siguiente producto E11  E 2 1  E 61  E 7 1   - 108 -
  • 109. 1 0 0  1 0 0 1 2 0  1 0 0 1 0 0  1 1 0    0 6 0    0 1 0   0 1 0   0 1 0   0 0 1   0 0 1   0 0 1  0 6 1  0 0 3                       5   1 0 1 0 0   3    1  0 1 0  0 1    6      0 0 1  0 0 1          Realicemos los productos de izquierda a derecha, tenemos:  5  1 0 1 0 0   1 0 0  1 2 0 1 0 0 1 0 0  3    1  1 6 0   0 1 0   0 1 0   0 1 0    0 1 0  0 1    6  0 0 1  0 0 1  0 6 1  0 0 3               0 0 1  0 0 1                 Seguimos  5  1 0 1 0 0   1 2 0  1 0 0 1 0 0  3    1  1 4 0    0 1 0   0 1 0    0 1 0  0 1    6  0 0 1   0 6 1  0 0 3             0 0 1  0 0 1               Seguimos  5  1 0 1 0 0   1 2 0  1 0 0   3    1  1 4 0    0 1 0   0 1 0  0 1    6  0 6 1  0 0 3          0 0 1  0 0 1            Seguimos  5  1 0 1 0 0   1 2 0  3    1  1 4 0  0 1 0  0 1    6  0 6 3        0 0 1  0 0 1           - 109 -
  • 110. Seguimos  5   1 2 1 0 0   3   5    1  1 4  0 1  3   6    0 6 3  0 0 1          Finalmente 1 2  2 1 4 1  0 6 2     En conclusión, hemos visto que dada una matriz A, si esta es invertible, tanto A como su inversa pueden ser escritas como el producto de matrices elementales (ya que, las inversas de las matrices elementales son a su vez matrices elementales. - 110 -
  • 154. UNIDAD 2 SISTEMAS DE ECUACIONES LINEALES, RECTAS, PLANOS Y ESPACIOS VECTORIALES - 154 -
  • 155. OBJETIVO GENERAL Que el estudiante comprenda los fundamentos teóricos que soportan la concepción de los sistemas lineales, rectas, planos y los principios de espacio vectorial, a través del complejo ejercicio mental de abstracción, estudio, análisis e interpretación de fuentes bibliográficas referenciadas y casos específicos de aplicación en diferentes áreas del conocimiento. OBJETIVOS ESPECIFICOS  Evidenciar en el estudiante una apropiación conceptual que refleje el entendimiento de nociones como la de un plano o de una recta en el espacio. Complementado con un manejo pertinente de las diversas formas en que son obtenidas y empleadas las ecuaciones que las representan.  Lograr que el estudiante conozca de cerca el concepto de lo que es un sistema de ecuaciones lineales, lo lleve a espacios más generales y reconozca su importancia en aplicaciones mas especificas. Además, debe entender y manejar con propiedad los distintos procedimientos que le permiten obtener una solución del mismo (en el caso en que sea posible) - 155 -
  • 194. 5.5 QUINTO METODO PARA RESOLVER SISTEMAS LINEALES EMPLEANDO LA MATRIZ INVERSA El objetivo es resolver un sistema de la forma AX  b (con A de n  n ), donde A es invertible. Partiendo del sistema AX  b , podemos multiplicar a izquierda por A 1 (Que existe, dado que A es invertible), con lo que nos queda: A 1 AX  A 1b Agrupando obtenemos 1 1 A AX  A b Simplificando  I  X  A 1 b Finalmente 1 X A b La ultima afirmación, nos indica que se A es de n  n e invertible, entonces la solución del sistema lineal AX  b , la encontramos de la forma X  A 1b . Ejemplo Dado el sistema lineal 2 x1  3 x 2  10 x3  21 4 x1  x 2  x3  11 7 x1  5 x 2  4 x3  17 Determine si el sistema tiene solución única o no. De tener solución única, encuentre su inversa y úsela para resolver el sistema. Solución Para determinar si el sistema tiene solución única o no, debemos calcular su determinante. Si este nos da diferente de cero (0), entonces el sistema tendrá única solución y además la inversa de la matriz de coeficientes existirá (y esta será única) Encontremos el determinante: - 194 -
  • 195. 2  3 10 DetA  4 1 1  225 7 5 4 Recordemos que tenemos dos procedimientos para hallar la inversa: 1. Empleando el método de reducción de Gauss- Jordán 1 2. Empleando determinantes ( A 1  * AdjA ) det A Voy a emplear el método de reducción de Gauss- Jordán. Se deja al estudiante la invitación a realizarlo también por el otro método. 1 f1 f 2  4 f1 2 f 3  7 f1 1 f2 7 3 f1  f2 2 11  14 f3  f2 f3 2 225 - 195 -
  • 196. 13 f1  f3 19 14 f2  f3 7 Por lo tanto, dado que la matriz A pudo ser reducida (por medio de operaciones elementales) a la matriz identidad, se tiene que la matriz del lado derecho es la inversa de A. Es decir,   1 38 13   25 225 225  1 62  38  A 1    25 225 225   3 11  14   25 225 225    Finalmente, para obtener la solución del sistema, consideramos la ecuación X  A 1b . Donde, 21 b  11 17      Por tanto, 1 38 13   25 225 225  21 1 62  38     11  25 225 225    X  3 11  14  17     25  225 225  2 X  1  2     Es decir, la solución es x1  2; x 2  1; x3  2 - 196 -