SlideShare une entreprise Scribd logo
1  sur  17
Télécharger pour lire hors ligne
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
32
SUCCESSIVE DIFFERENTIATION
Formulas:
1. If  
m
y ax b  then,
      1 2 ... 1
m nn
ny m m m m n a ax b

      if .n m
if n = m
if n > m
1a. If  
m
y ax b

  then,
        1 1 2 ... 1
n m nn
ny m m m m n a ax b
 
      
 
 
   
1 !
1
1 !
n
n
n m n
m n a
y
m ax b

 
  
 
Cor : If
1
,m
y
x
 then putting 1, 0,a b 
 
 
 
1 ! 1
1
1 !
n
n m n
m n
y
m x 
 
 

.
2. If ,m
y x then,     1 2 ... 1 . m n
ny m m m m n x 
     if n m .
3. If
 
1
,y
ax b


then
 
 
1
1 . !
n n
n n
n a
y
ax b




.
4. If  logy ax b  then
   
 
1
1 1 !
n n
n n
n a
y
ax b

 


.
5. If mx
y a then  log
nn mx
ny m a a
Cor : If 1,m  i.e. if ,x
y a then  log
nx
ny a a .
6. If mx
y e then n mx
ny m e
Cor : If 1m  i.e. if ,x
y e then x
ny e .
7. If  siny ax b  then sin
2
n
n
n
y a ax b
 
    
Cor : If 0,b  i.e. if sin ,y ax then sin
2
n
n
n
y a ax
 
   
.
8. If  cosy ax b  then cos
2
n
n
n
y a ax b
 
    
Cor : If 0,b  i.e. if cos ,y ax then cos
2
n
n
n
y a ax
 
   
.
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
33
9. If  sinax
y e bx c  then  sinn ax
ny r e bx c n  
where 2 2
r a b  and 1
tan
b
a
   
  
 
Cor : If 0,c  i.e. if sinax
y e bx , then  sinn ax
ny r e bx n  .
10. If  cosax
y e bx c  then  cosn ax
ny r e bx c n  
Cor : If 0,c  i.e. if cosax
y e bx , then  cosn ax
ny r e bx n  .
11. If  sinx
y k bx c  then  sinn x
ny r k bx c n  
where  
2 2
logr k b  and 1
tan
log
b
k
   
  
 
.
12. If  cosx
y k bx c  then  cosn x
ny r k bx c n  
where  
2 2
logr k b  and 1
tan
log
b
k
   
  
 
.
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
34
Type 1 : nth Derivative Of Algebraic Functions
Questions Answers
1. 2 2
x
x a
 
   
1 1
1 ! 1 1
2
n
n n
n
x a x a
 
 
 
   
2. 4 4
1
x a
 
   
1 13
1 ! 1 1
4
n
n n
n
a x a x a
 
 
 
   
 
   
1 13
1 ! 1 1
4 ! ! !
n
n n
n
a x a x a
 
 
  
   
3.
  
4
1 2
x
x x     
2 16 1
3 7
2 1
y x x
x x
    
 
 
   
1 1
16 1
1 !
2 1
n
n n n
y n
x x
 
 
   
   
for 3n 
4.
2
4
1
x
x
 
   
1 1
1 ! 1 1
4 1 1
n
n n
n
x x
 
 
 
   
 
   
1 1
1 ! 1 1
4!
n
n n
n
x i x i
 
 
  
   
5. 2
1
6 5 1x x 
 
   
1 1
1 1
2 3
1 !
2 1 3 1
n n
n
n n
n
x x
 
 
 
  
   
6. 2
1
4
x
x


 
   
1 1
3 1 1 1
1 ! . .
4 42 2
 
 
  
   
n
n n
n
x x
7. 3 2
6 11 6
x
x x x  
 
     
1 1 1
1 2 3
1 !
2 1 2 2 3
n
n n n
n
x x x
  
 
   
    
8.
  
2
2
4
2 3 1
x
x x

 
(M.U.1992)
 
 
   
 
1 2
1 !2 1 1 !
2 3 1
n nn
n n
n n
x x
 
  

 
9. 2
9
x
x 
 
   
1 1
1 ! 1 1
2 3 3
n
n n
n
x i x i
 
 
 
   
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
35
10.
  
2
1 2 3
x
x x 
 
   
1 1
1 ! 2 9.2
10 1 2 3
n n
n n
n
x x
 
 
 
   
11. 2
1 4
x
x
(M.U.1983)
   
 
 
 
1 1
1 ! 2 2
4 1 2 1 2
n n n
n n
n
x x
 
  
 
   
12.
 
5
1
x
x 
   
 
 5
1 3 !
4
4! 1
n
n
n
x n
x

 


13.
   
2
4
1 1
x
x x 
(M.U.1983, 2002, 04)  
 
 
   
1 2 1
2 1 !! !
1
1 1 1
n
n n n
nn n
x x x
  
 
   
    
14.
  
2
1
3 2 3x x 
(M.U.1995)
 
2
9 1 3 1 1 1
. . .
49 3 2 49 3 7 3
y
x x x
  
  
 
 
 
 
   
 
1 1 2
1 . !3 1 . ! 1 . 1 !9 3 1
.
49 49 73 2 3 3
n n nn
n n n n
n n n
y
x x x
  
   
  
  
15.
2
3 2
4 1
2 2
x x
x x x
 
  
(M.U.1984)  
     
1 1 1
1 1 1
1 . !
1 1 2
n
n n n
n
x x x
  
 
   
    
16. If
 
 
1
log ,
1
x
y x
x



prove that    
   
1 2 !
1 1
n
n n n
x n x n
y n
x x
  
    
   
Type 2 : nth Derivative Of Trigonometric Functions
1. sin cos3x x Ans :
1
. 4 sin 4 2 sin 2
2 2 2
n nn n
x x
     
      
    
2. sin2 sin3 cos4x x x (M.U.2004)
Ans :        
1
5 cos 5 / 2 3 cos 3 / 2 9 cos 9 / 2 cos / 2
4
n n n
x n x n x n x n           
3. sin2 sin3 sin4x x x
Ans :        
1
5 sin 5 / 2 3 sin 3 / 2 sin / 2 9 sin 9 / 2
4
n n n
x n x n x n x n           
4. 3
sin 3x Ans :    
3 1
.3 sin 3 / 2 .9 sin 9 / 2
4 4
n n
x n x n   
5. 4
sin x Ans :
3 1 1
cos2 cos4
8 2 8
y x x  
   
1 1
.2 cos 2 / 2 4 cos 4 / 2
2 8
n n
ny x n x n     
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
36
6. 4
cos x Ans :
3 1 1
cos2 cos4
8 2 8
y x x  
   
1 1
.2 cos 2 / 2 4 cos 4 / 2
2 8
n n
ny x n x n    
7. 2 3
cos sinx x Ans :      
1
2sin / 2 3 sin 3 / 2 5 sin 5 / 2
16
n n
y x n x n x n         
8. cos2 cosx
e x x Ans :    /2 1 /21
10 cos 3 tan 3 2 cos / 4
2
x n n
e x n x n
    
9. 5
cos cos3x
e x x (M.U.2007) Ans : 5 /2 1 /2 11 4 2
41 cos 4 tan 29 cos 2 tan
2 5 5
x n n
e x n x n        
         
       
10. 2
sin cosx
e x x Ans :      3/2 1 /2 11 1
10 cos 3 tan 3 2 cos tan 1
4 4
x n x
e x n e x n 
   
11. 2
cos cosx
e x x Ans :    /2 1 /2
10 cos 3 tan 3 2 cos / 4
4
x
n ne
x n x n
    
12. 2
cos sinx
e x x Ans :    /2 1 /2
10 sin 3 tan 3 2 sin / 4
4
x
n ne
x n x n
    
13. cos2 sinax
e x x Ans :    
/2 /22 1 2 13 1
9 sin 3 tan 1 sin tan
2
ax
n ne
a x n a x n
a a
        
           
       
14. 2
2 sin cosx
x x Ans :    1 1 2 2
1 1
2 cos 3 2 cos
4 4
n x n x
r x n r x n    
where    
2 2 1
1 1log2 3 , tan 3/ log2 ,r  
  
   
2 2 1
2 2log2 1 , tan 1/ log2r  
  
15. If cosh 2y x prove that 2 sinh 2n
ny x if n is odd and 2 cosh 2n
ny x if n is even.
(M.U.2002) .
Type 3 : nth Derivative Using De Moivre’s Theorem
1. If 2
1
,
1
y
x


prove that    1
1 . sin sin 1
n n
ny n n 
   where  1
tan 1/ .x 

2. If 2
,
1
x
y
x


prove that    1
1 . !sin cos 1
n n
ny n n 
   where  1
tan 1/ .x 

3. If  1
tan / ,y x a
 prove that    
1
1 1 ! sin sin
n n n
ny n a n 
 
   where  1
tan 1/ .x 

4. If 1
2
2
tan ,
1
x
y
x
  
  
 
prove that    
1
2. 1 1 !sin sin
n n
ny n n 

   where  1
tan 1/ .x 

5. If 1
2
2
sin ,
1
x
y
x
  
  
 
prove that    
1
2. 1 1 !sin sin
n n
ny n n 

   where  1
tan 1/ .x 

6. If
2
1
2
1
sec ,
1
x
y
x
  
  
 
prove that    
1
2 1 1 !sin sin
n n
ny n n 

   where  1
tan 1/ .x 

7. If 1
tan ,y x x
 find ny (M.U.1998)
Ans :          
1 2 1
1 1 !sin cos 1 2 !sin sin 1
n nn n
n n n   
  
      where  1
tan 1/ .x 

8. If 7
sin ,y x find ny
Ans :
1
7 sin 7 7.5 sin 5 21.3 sin 3 35sin
64 2 2 2 2
n n n
n
n n n n
y x x x x
           
                
        
9. If 4 3
sin cos ,y x x find ny
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
37
Ans :
1
7 cos 7 cos 5 3.3 cos 3 3cos
64 2 2 2 2
n n
n
n n n n
y x x x x
           
               
        
10. If 5
sin ,y x find ny Ans :
1
5 sin 5 5.3 sin 3 10sin
16 2 2 2
n n
n
n n n
y x x x
        
           
      
.
Type 4 : Leibnitz’s Theorem
0 1 1 1 2 2 2 .....n n n
n n n ny C u v C u v C u v     .......n n
r n r r n nC u v C uv  
1. If  1
cos sin ,y m x
 prove that      2 2 2
2 11 2 1 0.n n nx y n xy m n y      
Hence, obtain  0 .ny (M.U.2008)
Soln
: We have  1
1 2
1
sin sin . .
1
y m x m
x

 

 2 1
11 . sin sin .x y m m x
   
Differentiating again, we get
 2 1
2 2 2
1
1 cos sin .
1 1
xy
x y m m x m
x x

   
 
 2 2
2 11 0.x y xy m y     ………………………(1)
Applying Leibnitz’s Theorem to each term,
   
 
 2
2 1
1
1 2 2
2!
n n n
n n
x y n x y y 

    
2
1 0.n n nxy ny m y   
   2
2 11 2 1n n nx y nxy n n y    
2
1 0.n n nxy ny m y   
     2 2 2
2 11 2 1 0n n nx y n xy m n y        ………………..(2)
Putting 0x  in
     1
cos sin , 0 cos 0 1y m x y
  
Putting 0x  in
 1
1 2
1
sin sin ,
1
y m x
x



we get    1 0 sin 0 0y  
Putting 0x  in (1), we get    2 2
2 0 0y m y m   
Putting 0x  in (2),
     2 2
2 0 0 ...................(3)  n ny n m y
Putting 1,3,5........x  in (3), we get,
     
     
2 2
3 1
2 2
5 3
0 1 0 0
0 3 0 0
y m y
y m y
  
  
 0 0ny  if n is odd
Putting 2,4,6.......n  in (3), we get.
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
38
        
         
       
2 2 2 2 2
4 2
2 2 2 2 2 2 2
6 4
2 2 2 2 2 2 2
0 2 0 2
0 4 0 4 2
0 .......... 4 2 .n
y m y m m
y m y m m m
y n m m m m
    
     
     
2. If
1
sin 1
sin log ,m x
y e or x y
m
   
    
  
prove that      2 2 2
2 11 2 1 0.n n nx y n x y n m y      
Soln
: We have,
1
sin
1 2 2
1
.
1 1
m x my
y e m
x x
  
  
  
2
11 .x y my  
Differentiating again, w.r.t., x
2
2 1
2 12 2
1 .
1 1
   
 
xy m y
x y my
x x
 2 2
2 11 x y xy m y   
Applying Leibnitz’s Theorem, to each term,
   
 
 2
2 1
1
1 2 2
2!
n n n
n n
x y n x y y 

    
  2
1n n nxy ny m y  
     2 2 2
2 11 2 1 0.n n nx y n x y n m y       
3. If
1
sin
,

 a x
y e prove that
       
22 2 2 2 2 2 2
2 0 2 4 6 ........ 2 2my a a a a a m      
 
       
22 2 2 2 2 2 2 2
2 1 0 1 3 5 .......... 2 1my a a a a a m
      
 
(M.U.1985)
Soln
: We have
1
sin
,a x
y e

 ……………………………………(1)
Replacing m by a in the above example, we get,
1 2
1
ay
y
x


…………………………………..(2)
 2 2
2 11 x y xy a y   ……………………………….(3)
     2 2 2
2 11 2 1 0n n nx y n xy n a y       ………………………….(4)
Putting 0,x  in (1), we get,
  0
0 1y e 
Putting 0,x  in (2), we get,
   1 0 0y a y a 
Putting 0,x  in (3), we get,
   2 2
2 0 0y a y a 
Putting 0x  in (4), we get,
     2 2
2 0 0n ny n a y   …………………………………….(5)
Putting 1,n  in (5),
       2 2 2 2
3 10 1 0 1y a y a a   
Putting 2n  in (5),
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
39
       2 2 2 2 2
4 20 2 0 2y a y a a   
Putting 3,n  in (5),
        2 2 2 2 2 2
5 30 3 0 1 3y a y a a a     …………………(6)
Putting 4,n  in (5),
        2 2 2 2 2 2 2
6 40 4 0 2 4y a y a a a     ………………………(7)
Generalising from (6) and (7), we get
       
       
22 2 2 2 2 2 2
2 1
22 2 2 2 2 2 2 2
2
0 1 3 5 ......... 2 1
0 2 4 6 .......... 2 2
m
m
y a a a a a m
y a a a a a m

      
 
      
 
4. If   1,x y  prove that
       
2 21 2 2
1 2! . . ..... 1         
n
nn n n n n n n n
nn
d
x y n y C y x C y x x
dx
(M.U.2006)
Soln
: Since 1x y  1y x  
   1
n n
nn n n
n n
d d
x y x x
dx dx
  
 
Let  , 1
nn n
u x v x y   
Then    .
n n
n n
n n
d d
x y u v
dx dx

Now
 
    
   
 
     
    
 
1
1
2
2
1
2 2
2
1 1
1
2 2
2
2
1
.....................................................
1 ..... 3 2 !
!
1 ..... 3 .
2
1 ...3.2.1 !
1 1 1
1 1 1
1
n
n
n
n n
n
n
n n
n
u nx
u n n x
u n n x n x
n
u n n n n x x
u n n n
v n x ny
v n n x
n



 

 


 
  
    
  
    
   
   
    
 
 
2
1
1
1
1
.........................................................
1 ....3.2 1 1
! 1
! 1
n
n
n
n
n
n
n y
v n n x
n y
v n





   
 
 
  1 1 1 2 2 2 2 ....
n
n n n
n n xn
d
x y u v nc u v nc u u v uv
dx
      
     1
1! ! 1
n n
n y nc n x n y 
  
   
22 2
2
!
. . 1 1 ....
2
nn
nc x n n y 
   
     
2 21 2 2
1 2! ... 1
nn n n n
n y nc y x nc y x x       
 
.
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
40
Homework Problems
1. 3
.x
y x e Ans :     3 2
3 . 3 1 1 2      x x x x
ny e x ne x n n e x n n n e .
2. 2
.x
y x a Ans :    
12
log . . log . 2

 
n nx x
ny a a x n a a x    
2
1 . log

 
nx
n n a a .
3. 2
siny x x Ans : 2
sin 2 sin 1
2 2
n
n
y x x n x n x
    
       
   
 1 sin 2
2
n n x n x
 
    
 
4. 2 mx
y x e Ans :  2 1 2
. . . 2 1 . . 
   n mx n mx n mx
ny m e x n m e x n n m e
5. 3
sin 2y x x
Ans : 3 2 1
2 sin 2 . .3 2 sin 2 1.
2 2
    
       
   
n n
n
n
y x x n x x n   2
1 .3 2 sin 2 2.
2
n
n n x x n
  
    
 
   3
1 2 2 sin 2 3.
2
n
n n n x n
  
     
 
.
6.  
2
2 3 .x
y x e  Ans :      
2
2 3 .4 2 3 1 4x x x
ny e x ne x n n e     
7.  
3
3 sin3y x x  Ans :    
3 2
3 sin 3 . 3 .3 sin 3 1. . 3
2 2
n n
n
n
y x x n x n x
    
         
   
   
  
1
3
1 3 sin 3 2. . 3
2
1 2 3 sin 3 3. .
2
n
n
n n x n x
n n n x n




 
     
 
 
     
 
8. If 1
cos ,y x
 prove that    2 2
2 11 2 1 0n n nx y n xy n y     
9. If 1
sin ,y x
 prove that    2 2
2 11 2 1 0n n nx y n xy n y     
Also find  9 0y and  10 0y Ans :   2 2 2 2
9 0 1 .3 .5 .7y  and  10 0 0y  (M.U.2003)
10. If  2 2
,
m
y x a x   prove that at 0x  ,  2 2 2
2 0n na y n m y    . (M.U.1992)
11. If 1
tan ,y x
 prove that      2
2 11 2 1 1 0n n nx y n xy n n y      
Hence deduce that  0 0ny  if n is even and    0 1 !ny n  if n is odd.
12. If  
2
2 2
,y x a x   prove that      2 2 2
2 12 1 4 0n n na x y n xy n y      
13. If coslog sinlog ,y a x b x  prove that,    2 2
2 12 1 1 0n n nx y n xy n y      . (M.U. 02, 04, 05)
14. If
1
,
1
r
x
y
x
 
  
 
prove that,      2
1 11 2 1 0n n nx y r nx y n n y      
15. If  2
1 ,
n
y x  prove that,    2
2 11 2 1 0n n nx y xy n n y      (M.U.1987, 96)
16. If  1 . ,x
y x e
  
  prove that    1 11 0n n nx y n x y n y      
17. If  1
sin siny m x
 or if 1 1
sin sin ,m x y 
 prove that
     2 2 2
2 11 2 1 0n n nx y n xy m n y       (M.U.2000, 02, 04, 05)
Hence deduce that  0 0ny  if n is even and       2 2 2 2 2 2
0 ....... 3 1ny n m m m m    if n is
odd
18. If
1
sin
, 
 x
y e prove that      2 2 2
2 11 2 1 0n n nx y n xy n y      
19. If  
21
sin ,y x
 prove that    2 2
2 11 2 1 0n n nx y n xy n y      (M.U.1988, 97)
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
41
20. If  
1/22 1
1 sin ,y x x
  prove that      2
1 11 2 1 2 0n n nx y n xy n n y       (M.U.1995)
21. If
1
cos
,

 m x
y e prove that      2 2 2
2 11 2 1 0n n nx y n xy n m y       (M.U.1995)
22. If 1
sin log ,
n
y x
b n
    
   
   
prove that  2 2
2 12 1 2 0.n n nx y n xy n y    
23. If 1/ 1/
2 ,m m
y y x
  prove that,      2 2 2
2 11 2 1 0n n nx y n xy n m y       (M.U.2007)
24. If
1
cosh log ,x y
m
 
  
 
prove that      2 2 2
2 11 2 1 0n n nx y n xy n m y       (M.U.1993)
25. If 1
sinh ,y x
 prove that    2 2
2 11 2 1 0n n nx y n xy n y      (M.U.1987)
26. If  2
cos log 2 1 ,y x x     prove that       2 2
2 11 2 1 1 4 0n n nx y n x y n y       
27. If
log
,
x
y
x
 prove that
 
1
1 . ! 1 1 1
log 1 .....
2 3
n
n n
n
y x
x n
  
      
(M.U.1991, 96)
28. If
1
,
1
x
y
x
 
  
 
prove that  2
11y x y  and hence, prove that
      2
1 21 2 1 1 1 2 0n n nx y n x y n n y           (M.U.1983, 2004, 06)
29. If log ,n
y x x prove that  2 2
2 12 1 0x y n xy n y   
and hence, prove that    
22
2 12 2 1 0p p px y p n xy p n y       (M.U.1984, 88)
30. If  2
sinlog 2 1y x x   prove that       2 2
2 11 2 1 1 4 0n n nx y n x y n y       
31. If  cos log ,y m x show that    2 2 2
2 12 1 0n n nx y n xy m n y     
32. If 1
tan
a x
y
a x
  
   
prove that      2 2
2 12 1 1 0n n na x y n xy n n y       (M.U.1998, 2002)
33. If 1
sec ,y x
 prove that      2 2
2 11 2 3 1n nx x y n x n y 
          2
13 1 1 0n nn n xy n n y     
34. If  
2
2 2
log ,y x x a   prove that    2 2 2
2 12 1 0n n nx a y n xy n y      (M.U.1998)
35. If  
2
2
log 1y x x   
  
prove that    2
2 0 0n ny n y   (M.U.1997)
36. If    2
/ 2 ,y Lx M x Bx C    prove that
 
  
 
 
2
2 1
2
2 0
1 2 1
n n n
x Bx C x B
y y y
n n n
 
  
  
  
37. If
1
2
sinh
,
1
x
y
x



prove that      
22
2 11 2 3 1 0n n nx y n xy n y      
38. If cos ,t
x e y mt  prove that    2 2 2
2 12 1 0n n nx y n xy m n y    
39. If
1
cos ; log ,x y
m
   prove that      2 2 2
2 11 2 1 0n n nx y n xy n m y       .
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
42
Extra Solved Examples
1. If  1 ,
n
y x  prove that 31 2
.......
1! 2! 3! !
nny yy y
y x
n
     
Soln
: We have  1
n
y x 
    
        
1 2
1 2
3 4
3 4
1 1 1
1 2 1 1 2 3 1
n n
n n
y n x y n n x
y n n n x y n n n n x
 
 
     
        
………………………………………. ……………………………………………
        
   
 
 
0
1 2
1 2 ....... 1 1 ! 1
1
. . . 1 1 1
1! 2!
n n
n
n n n
y n n n n n x n x
n nn
I h s x x x

 
          

      
  
   
3 01 2 !
1 ..... 1
3! !
nn n n n
x x
n
 
    
 1 1
n n
x x    (By Binomial Theorem)
Hence, the result
2. If tan ,y x prove that        2 2 4 40 0 0 ... sin / 2    n n
n n ny C y C y n
Soln
: We have cos siny x x
Now applying Leibnitz’s theorem to the left hand side
     1 1 2 2cos sin cosn n
n n ny x C y x C y x    
   3 3 4 4sin cos ... sin
2
n n
n n
n
C y x C y x x

 
 
     
 
Now put 0x  ,      2 2 4 40 0 0 ... sin
2
n n
n n n
n
y C y C y

      .
3. If  2
log 1 ,y x x    2
if e 1y
or x x  
prove that  2 0 0ny  and      
22 2 2
2 1 0 1 .1 .3 .5 .... 2 1
n
ny n    .
Soln
: Since  2
log 1y x x   …………………..(1)
1 2 2 2
1 1
1
1 1 1
x
y
x x x x
 
   
    
……………….(2)
Differentiating again,
2
2 12
1. . 0
1
  

x
x y y
x
 2
2 11 . 0x y xy    ……………………(3)
Applying Leibnitz’s Theorem
   
 
 2
2 1
1
1 . 2 . 2 .
2!
n n n
n n
x y n x y y 

    1. . 1 0n nx y n y  
   2 2
2 11 2 1 0n n nx y n xy n y       ………………….(4)
Putting 0x  in (1),(2),(3) we get
   0 log 1 0,y    1 0 1,y   2 0 0y 
Now from (4), we get,
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
43
   2
2 0 0n ny n y   ………………………(5)
Putting  1,2,3,4,...... 5n in
       
       
       
2 2 2
3 1 4 2
2 2 2 2
5 3 6 4
2 2 2 2 2
7 3 8 6
0 1 . 0 1 ., 0 2 . 0 0
0 3 . 0 3 .1 , 0 4 . 0 0
0 5 . 0 5 .3 .1 , 0 6 . 0 0
y y y y
y y y y
y y y y
      
     
      
Hence by generalization
 2 0 0ny  and      
22 2 2
2 1 0 1 1 .3 .5 ..... 2 1
n
ny n
   
 
.
4. If  
21
siny x
 , prove that
 0 0ny  if n odd and
   
22 2 2
0 2. 2 . 4 .6 ........ 2ny n  if 2
2n and n is even.
Soln
: We have  
21
siny x
 ……..(1)
 1
1 2
1
2 sin .
1
y x
x

 

…………(2)
2 1
11 . 2sinx y x
  
Differentiating again,
2
2 1 2 2
2
1 . .
1 1
x
x y y
x x
   
 
 2
2 11 . 2x y x y    …………..(3)
By Leibnitz’s theorem,
   
 
 2
2 1
1
1 2 2
2!
n n n
n n
x y n x y y 

      1 1 0n nx y n y    
   2 2
2 11 2 1 0n n nx y n xy n y       …………(4)
Putting    2
20, 0 0n nx y n y  …………..(5)
Putting 0,x  in (1), (2), and (3) we get,
         1 20 0 , 0 0 , 0 2,y y y  
Putting 1,3,5,............n  in (5), we get,
       2 2
3 1 5 30 1 . 0 0, 0 3 . 0 0,y y y y    
     2
7 50 5 . 0 0, 0 0ny y y   if n is odd
Putting 2,4,6,.............n  in (5), we get,
       2 2 2 2 2
4 2 6 40 2 . 0 2 .2; 0 4 . 0 4 . 2 . 2y y y y   
   
22 2 2
0 2.2 .4 .6 ....... 2ny n  if n is even and 2.n 
5. If  
21
sin ,y x
 prove that at    2
20, 0 0 .n nx y n y 
If, further,  
21 2
0 1 2sin ... .....n
ny x a a x a x a x
     
prove that    2
21 2 .n nn n a n a  
Soln
: We have proved above that,
   2
2 0 0n ny n y 
Now consider,
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
44
 
0 1
1
1 1 2
2
2 2
........... ......
2 ....... ......
2 ..... 1 .......
n
n
n
n
n
n
y a a x a x
y a a x n a x
y a n n a x


    
     
     
…….. ……. …….. ……
  1 2 ...........2. 1. a +.........n ny n n n  
! ........nn a 
 0 ! .n ny n a
Similarly,     22 0 2 ! nny n a   
But    2
2 0 0n ny n y  (proved above in (5))
 
  
2
2
2
2
2 ! !
1 2 .
n n
n n
n a n n a
n n a n a


  
   
6. If
1
tan
0 1 ...... ......,

     m x n
ny e a a x a x
prove that at 0,x         2 10 0 1 0 0.n n ny my n n y    
Hence, or otherwise deduce that    1 11 1 .n n nn a n a ma    
Soln
: Proceeding as in Ex. 11 page (5.28), we can prove that,
     2
2 11 2 1 1 0.n n nx y n x m y n n y         
Putting 0,x  we get
       2 10 0 1 0 0n n ny m y n n y     …………(1)
Now if,
 
2
0 1 2
1
1 1 2
1
2 2
..... .....
2 ...... .......
2 ...... 1 .......
n
n
n
n
n
n
y a a x a x a x
y a a x na x
y a n n a x


     
    
    
………… ……… ……… ……….. ………….
! ....n ny n a  as above.
Putting 0,x  we get,
 0 !n ny n a ……………..(2)
Changing n to 1n  in (1),
     1 10 0 1 . 0n n ny my n n y     ………….(3)
Putting 1n n  and 1n  in (2) we get,
       1 1 1 10 1 ! , 0 1 !n n n ny n a y n a      
Putting these values in (3)
   
   
   
1 1
1 1
1 1
1 ! . ! 1 ! 0
1 1 0
1 1
n n n
n n n
n n n
n a m n a n n a
n a m a n a
n a n a ma
 
 
 
    
     
    
7. If  log ,
n
n
n n
d
l x x
dx
 prove that  1 1 !n nl nl n  
Hence show that
1 1 1
! log 1 ........
2 3
nl n x
n
 
       
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
45
Soln
: We have
   
1
1
log . log
n n
n n
n n n
d d d
l x x x x
dx dx dx


 
 
 
1
1
1
1 1
1 1
1 1
1
1
log .
.log
1 !
n
n n
n
n n
n n
n n
n
d
nx x x
dx x
d d
n x x x
dx dx
n l n



 
 
 

 
   
   
  
Dividing both sides by !n we get,
  1
1 1
! 1 !
n
n
l
l
n n n
 

Putting 2,3,4,...... ,n n
 
2
1
3
2
2
3
1
1 1
.
2! 1! 2
1 1
.
3! 2! 3
1 1
.
4! 3! 4
..... .... .... ....
..... .... .... ....
1 1
.
! 1 !
n
n
l
l
l
l
l
l
l
l
n n n

 
 
 


 

Adding all these equalities, we get,
1
1 1 1 1
............
! 2 3 4
nl
l
n n
     
Now  1 log 1 log
d
l x x x
dx
  
1 1 1
! log 1 ......
2 3
nl n x
n
 
        
.
8. If  1
log ,n n
nU D x x
 prove that   11n nU n U   and hence deduct that
 1 !
n
n
U
x

 .
Soln
: We have
   
1
1 1
1
log . log
n n
n n
n n n
d d d
U x x x x
dx dx dx

 

 
 
   
   
 
1
2 1
1
1
1 1 2
1
1 1
1 1 2
1 1
1
1 .log .
1 .log
1 .log
n
n n
n
n
n n
n
n n
n n
n n
d
n x x x
dx x
d
n x x x
dx
d d
n x x x
dx dx

 


  

 
  
 
 
    
    
    
  11 nn U   (Second term is zero)
Applying the result repeatedly,
   21 2n nU n n U   
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
46
   
   
 
3
1
1
1 2 3
1 2 3 ...........3. 2. 1.
1 !.
nn n n U
n n n U
n U
   
   
 
But    0
1
1
log log
d d
U x x x
dx dx x
  
 
1
1 !nU n
x
   .
9. If  2
1 ,
n
y x  prove that    2
2 11 2 1 0.n n nx y xy n n y     
Hence deduct that if  2
1 ,
n
n
n n
d
l x
dx
  then    2
1 1 .n
n
x
dld
x n n l
dx d
 
    
 
Soln
: We have  2
1
n
y x 
 
12
1 1 .2
n
y n x x

  
   2 2
11 1 .2 2
n
x y n x x n x y    
Differentiating again,
 2
2 1 11 2 2 2x y x y n x y n y   
   2
2 11 2 1 y 2 y = 0x y n x n    
Now by Leibnitz’s Theorem
   
 2
2 1
1
1 2 .2
2!
n n n
n n
x y n x y y 

  
  12 1 2 0n n nn xy ny n y    
   2
2 11 2 1 0n n nx y xy n n y       ………………..(1)
We first note that
   2
1
n n
n
n nn n
d d
l x y y
dx dx
  
Now  2
1 ndld
x
dx dx
 
 
 
   
  
 
2
2
1
2
2 1
1
1
1 2
n
n
n n
d d
x y
dx dx
d
x y
dx
x y x y

 
 
  
 
 
  
 1 nn n y   from (1) .
10. If u is a function of x and ,ax
y e u Prove that   .
nn ax
D y e D a u 
Soln
: Let ax
v e then 1
ax
v ae
2 3
2 3, ,......ax ax n ax
nv a e v a e v a e  
By Leibnitz’s theorem,
  0 1 1 1
n n n
n nD y D uv C u v nC u v  
2 2 2 ... n
n n nnC u v C uv  
Treating D as an operator, we write .n
nD u u
INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
47
1 2
0 1 1 2 2. . .n n n n n n n
D y C D u v C D u v C D u v 
   
3
3 3. ..... . .n n n
n nC D u v C u v
  
1 2 2
0 1 2. . .n n ax n n ax n n ax
C D u e C D u ae C D u a e 
  
3 3
3 . .... .n n ax n n ax
nC D u a e C u a e
  
1 2 2 3 3
0 1 2 3
1 2 2 3 3
0 1 2 3
. . . . .... .
. ....
ax n n n n n n n n n n
n
ax n n n n n n n n n n
n
e C D u C D u a C D u a C D u a C u a
e C D C D a C D a C D a C a u
  
  
       
       
  . .
nax
e D a u 
11. If  
2
2
log 1 ,y x x   
  
prove that    2 2
2 11 2 1 0n n nx y n xy n y     
Hence, deduce that    2
2 0 0n ny n y  
Soln
: We have  
2
2
log 1y x x   
  
…………….(1)
Differentiating it w.r.t.x, we get,
 2
1 2 2
1
2 log 1 . 1
1 1
x
y x x
x x x
            
 2
2
1
2 log 1 .
1
x x
x
   
   
 2 2
11 y 2.log 1x x x    ……………….(2)
Differentiating again,
2
2 12 2 2
1
1 y y 2. 1
1 1 1
x x
x
x x x x
 
    
    
2
2
1 x


 2
2 11 2x y xy    …………………..(3)
Applying Leibniz’s theorem, we get,
   
 
 2
2 1
1
1 . 2 2
2!
n n n
n n
x y n x y y 

  
 1 . 1 0n nxy n y  
   2 2
2 11 2 1 0n n nx y n xy n y       …………….(4)
Putting 0x  in (4), we get    2
2 0 0n ny n y   .
12. Using Leibnitz theorem for 2n
x prove that
       
 
2 2 22 22
22 2 2 2 2
1 1 2 2 !
1 ....
1! 1 .2 1 .2 .3 !
n n n n n nn
n
  
    
Soln
: We obtain nth
derivative of 2n
y x in two different ways.
By applying the formula (2), page (5.2),
     2
2 2 1 2 2 ...... 2 1 n n
ny n n n n n x 
    
      
 
 
2 2 1 2 2 .... 1 . ...3.2.1
1 ....3.2.1
2 !
!
n
n
n n n n n
x
n n
n
x
n
  



INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776
48
By applying Leibnitz’s rule to .n n
y x x we have
     1
. .n n n n n n
ny D x x nD x D x
 
 
   2 21
2!
n n nn n
D x D x

  
   3 31 2
....
3!
n n nn n n
D x D x 
 
 
 1!
! .
1!
n nn x
n x n n x 
 
 
  
  
   
2 2
3 3
1 !
1
2! 2!
1 2 !
1 2
3! 3!
...........
n
n
n n n
x n n x
n n n n
x n n n x


  
  
 
   
   
 

     
2 2 22 22
2 2 2 2 2 2
1 1 2
! 1 ........
1 1 .2 1 .2 .3
n n n n n nn
n x
   
     
  
Equating the two results, we get
     
2 2 22 22
2 2 2 2 2 2
1 1 2
! 1 ........
1 1 .2 1 .2 .3
n n n n nn
n
   
     
  
 2 !
!
n
n

       
 
2 2 22 22
22 2 2 2 2 2
1 1 2 2 !
1 ........
1 1 .2 1 .2 .3 !
n n n n n nn
n
  
      .

Contenu connexe

Tendances

Arc Length, Curvature and Torsion
Arc Length, Curvature and TorsionArc Length, Curvature and Torsion
Arc Length, Curvature and Torsionvaani pathak
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline InterpolationVARUN KUMAR
 
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions ManualEngineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions Manualxoreq
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsSoma Shabbir
 
Signals and systems-5
Signals and systems-5Signals and systems-5
Signals and systems-5sarun soman
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normalsumanmathews
 
engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiKundan Kumar
 
Partial Derivatives
Partial DerivativesPartial Derivatives
Partial DerivativesAman Singh
 
Numerical Analysis (Solution of Non-Linear Equations)
Numerical Analysis (Solution of Non-Linear Equations)Numerical Analysis (Solution of Non-Linear Equations)
Numerical Analysis (Solution of Non-Linear Equations)Asad Ali
 
Fixed point iteration
Fixed point iterationFixed point iteration
Fixed point iterationIsaac Yowetu
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinatesEmiey Shaari
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.Kartikey Rohila
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremSamiul Ehsan
 
6 comparison statements, inequalities and intervals y
6 comparison statements, inequalities and intervals y6 comparison statements, inequalities and intervals y
6 comparison statements, inequalities and intervals ymath260
 
The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpointJuwileene Soriano
 

Tendances (20)

Arc Length, Curvature and Torsion
Arc Length, Curvature and TorsionArc Length, Curvature and Torsion
Arc Length, Curvature and Torsion
 
Cubic Spline Interpolation
Cubic Spline InterpolationCubic Spline Interpolation
Cubic Spline Interpolation
 
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions ManualEngineering Electromagnetics 8th Edition Hayt Solutions Manual
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
 
Improper integral
Improper integralImproper integral
Improper integral
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Signals and systems-5
Signals and systems-5Signals and systems-5
Signals and systems-5
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normal
 
Remainder theorem
Remainder theoremRemainder theorem
Remainder theorem
 
engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-ii
 
Partial Derivatives
Partial DerivativesPartial Derivatives
Partial Derivatives
 
Voronoi Diagrams
Voronoi DiagramsVoronoi Diagrams
Voronoi Diagrams
 
Numerical Analysis (Solution of Non-Linear Equations)
Numerical Analysis (Solution of Non-Linear Equations)Numerical Analysis (Solution of Non-Linear Equations)
Numerical Analysis (Solution of Non-Linear Equations)
 
Derivatives
DerivativesDerivatives
Derivatives
 
Fixed point iteration
Fixed point iterationFixed point iteration
Fixed point iteration
 
14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates14.6 triple integrals in cylindrical and spherical coordinates
14.6 triple integrals in cylindrical and spherical coordinates
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.
 
Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes Theorem
 
6 comparison statements, inequalities and intervals y
6 comparison statements, inequalities and intervals y6 comparison statements, inequalities and intervals y
6 comparison statements, inequalities and intervals y
 
The remainder theorem powerpoint
The remainder theorem powerpointThe remainder theorem powerpoint
The remainder theorem powerpoint
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 

Successive differentiation

  • 1. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 32 SUCCESSIVE DIFFERENTIATION Formulas: 1. If   m y ax b  then,       1 2 ... 1 m nn ny m m m m n a ax b        if .n m if n = m if n > m 1a. If   m y ax b    then,         1 1 2 ... 1 n m nn ny m m m m n a ax b                  1 ! 1 1 ! n n n m n m n a y m ax b         Cor : If 1 ,m y x  then putting 1, 0,a b        1 ! 1 1 1 ! n n m n m n y m x       . 2. If ,m y x then,     1 2 ... 1 . m n ny m m m m n x       if n m . 3. If   1 ,y ax b   then     1 1 . ! n n n n n a y ax b     . 4. If  logy ax b  then       1 1 1 ! n n n n n a y ax b      . 5. If mx y a then  log nn mx ny m a a Cor : If 1,m  i.e. if ,x y a then  log nx ny a a . 6. If mx y e then n mx ny m e Cor : If 1m  i.e. if ,x y e then x ny e . 7. If  siny ax b  then sin 2 n n n y a ax b        Cor : If 0,b  i.e. if sin ,y ax then sin 2 n n n y a ax       . 8. If  cosy ax b  then cos 2 n n n y a ax b        Cor : If 0,b  i.e. if cos ,y ax then cos 2 n n n y a ax       .
  • 2. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 33 9. If  sinax y e bx c  then  sinn ax ny r e bx c n   where 2 2 r a b  and 1 tan b a          Cor : If 0,c  i.e. if sinax y e bx , then  sinn ax ny r e bx n  . 10. If  cosax y e bx c  then  cosn ax ny r e bx c n   Cor : If 0,c  i.e. if cosax y e bx , then  cosn ax ny r e bx n  . 11. If  sinx y k bx c  then  sinn x ny r k bx c n   where   2 2 logr k b  and 1 tan log b k          . 12. If  cosx y k bx c  then  cosn x ny r k bx c n   where   2 2 logr k b  and 1 tan log b k          .
  • 3. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 34 Type 1 : nth Derivative Of Algebraic Functions Questions Answers 1. 2 2 x x a       1 1 1 ! 1 1 2 n n n n x a x a           2. 4 4 1 x a       1 13 1 ! 1 1 4 n n n n a x a x a                 1 13 1 ! 1 1 4 ! ! ! n n n n a x a x a            3.    4 1 2 x x x      2 16 1 3 7 2 1 y x x x x              1 1 16 1 1 ! 2 1 n n n n y n x x             for 3n  4. 2 4 1 x x       1 1 1 ! 1 1 4 1 1 n n n n x x                 1 1 1 ! 1 1 4! n n n n x i x i            5. 2 1 6 5 1x x        1 1 1 1 2 3 1 ! 2 1 3 1 n n n n n n x x              6. 2 1 4 x x         1 1 3 1 1 1 1 ! . . 4 42 2            n n n n x x 7. 3 2 6 11 6 x x x x           1 1 1 1 2 3 1 ! 2 1 2 2 3 n n n n n x x x               8.    2 2 4 2 3 1 x x x    (M.U.1992)           1 2 1 !2 1 1 ! 2 3 1 n nn n n n n x x         9. 2 9 x x        1 1 1 ! 1 1 2 3 3 n n n n x i x i          
  • 4. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 35 10.    2 1 2 3 x x x        1 1 1 ! 2 9.2 10 1 2 3 n n n n n x x           11. 2 1 4 x x (M.U.1983)           1 1 1 ! 2 2 4 1 2 1 2 n n n n n n x x            12.   5 1 x x         5 1 3 ! 4 4! 1 n n n x n x      13.     2 4 1 1 x x x  (M.U.1983, 2002, 04)           1 2 1 2 1 !! ! 1 1 1 1 n n n n nn n x x x               14.    2 1 3 2 3x x  (M.U.1995)   2 9 1 3 1 1 1 . . . 49 3 2 49 3 7 3 y x x x                     1 1 2 1 . !3 1 . ! 1 . 1 !9 3 1 . 49 49 73 2 3 3 n n nn n n n n n n n y x x x              15. 2 3 2 4 1 2 2 x x x x x      (M.U.1984)         1 1 1 1 1 1 1 . ! 1 1 2 n n n n n x x x               16. If     1 log , 1 x y x x    prove that         1 2 ! 1 1 n n n n x n x n y n x x             Type 2 : nth Derivative Of Trigonometric Functions 1. sin cos3x x Ans : 1 . 4 sin 4 2 sin 2 2 2 2 n nn n x x                   2. sin2 sin3 cos4x x x (M.U.2004) Ans :         1 5 cos 5 / 2 3 cos 3 / 2 9 cos 9 / 2 cos / 2 4 n n n x n x n x n x n            3. sin2 sin3 sin4x x x Ans :         1 5 sin 5 / 2 3 sin 3 / 2 sin / 2 9 sin 9 / 2 4 n n n x n x n x n x n            4. 3 sin 3x Ans :     3 1 .3 sin 3 / 2 .9 sin 9 / 2 4 4 n n x n x n    5. 4 sin x Ans : 3 1 1 cos2 cos4 8 2 8 y x x       1 1 .2 cos 2 / 2 4 cos 4 / 2 2 8 n n ny x n x n     
  • 5. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 36 6. 4 cos x Ans : 3 1 1 cos2 cos4 8 2 8 y x x       1 1 .2 cos 2 / 2 4 cos 4 / 2 2 8 n n ny x n x n     7. 2 3 cos sinx x Ans :       1 2sin / 2 3 sin 3 / 2 5 sin 5 / 2 16 n n y x n x n x n          8. cos2 cosx e x x Ans :    /2 1 /21 10 cos 3 tan 3 2 cos / 4 2 x n n e x n x n      9. 5 cos cos3x e x x (M.U.2007) Ans : 5 /2 1 /2 11 4 2 41 cos 4 tan 29 cos 2 tan 2 5 5 x n n e x n x n                           10. 2 sin cosx e x x Ans :      3/2 1 /2 11 1 10 cos 3 tan 3 2 cos tan 1 4 4 x n x e x n e x n      11. 2 cos cosx e x x Ans :    /2 1 /2 10 cos 3 tan 3 2 cos / 4 4 x n ne x n x n      12. 2 cos sinx e x x Ans :    /2 1 /2 10 sin 3 tan 3 2 sin / 4 4 x n ne x n x n      13. cos2 sinax e x x Ans :     /2 /22 1 2 13 1 9 sin 3 tan 1 sin tan 2 ax n ne a x n a x n a a                              14. 2 2 sin cosx x x Ans :    1 1 2 2 1 1 2 cos 3 2 cos 4 4 n x n x r x n r x n     where     2 2 1 1 1log2 3 , tan 3/ log2 ,r          2 2 1 2 2log2 1 , tan 1/ log2r      15. If cosh 2y x prove that 2 sinh 2n ny x if n is odd and 2 cosh 2n ny x if n is even. (M.U.2002) . Type 3 : nth Derivative Using De Moivre’s Theorem 1. If 2 1 , 1 y x   prove that    1 1 . sin sin 1 n n ny n n     where  1 tan 1/ .x   2. If 2 , 1 x y x   prove that    1 1 . !sin cos 1 n n ny n n     where  1 tan 1/ .x   3. If  1 tan / ,y x a  prove that     1 1 1 ! sin sin n n n ny n a n       where  1 tan 1/ .x   4. If 1 2 2 tan , 1 x y x         prove that     1 2. 1 1 !sin sin n n ny n n      where  1 tan 1/ .x   5. If 1 2 2 sin , 1 x y x         prove that     1 2. 1 1 !sin sin n n ny n n      where  1 tan 1/ .x   6. If 2 1 2 1 sec , 1 x y x         prove that     1 2 1 1 !sin sin n n ny n n      where  1 tan 1/ .x   7. If 1 tan ,y x x  find ny (M.U.1998) Ans :           1 2 1 1 1 !sin cos 1 2 !sin sin 1 n nn n n n n             where  1 tan 1/ .x   8. If 7 sin ,y x find ny Ans : 1 7 sin 7 7.5 sin 5 21.3 sin 3 35sin 64 2 2 2 2 n n n n n n n n y x x x x                                       9. If 4 3 sin cos ,y x x find ny
  • 6. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 37 Ans : 1 7 cos 7 cos 5 3.3 cos 3 3cos 64 2 2 2 2 n n n n n n n y x x x x                                      10. If 5 sin ,y x find ny Ans : 1 5 sin 5 5.3 sin 3 10sin 16 2 2 2 n n n n n n y x x x                             . Type 4 : Leibnitz’s Theorem 0 1 1 1 2 2 2 .....n n n n n n ny C u v C u v C u v     .......n n r n r r n nC u v C uv   1. If  1 cos sin ,y m x  prove that      2 2 2 2 11 2 1 0.n n nx y n xy m n y       Hence, obtain  0 .ny (M.U.2008) Soln : We have  1 1 2 1 sin sin . . 1 y m x m x      2 1 11 . sin sin .x y m m x     Differentiating again, we get  2 1 2 2 2 1 1 cos sin . 1 1 xy x y m m x m x x         2 2 2 11 0.x y xy m y     ………………………(1) Applying Leibnitz’s Theorem to each term,        2 2 1 1 1 2 2 2! n n n n n x y n x y y        2 1 0.n n nxy ny m y       2 2 11 2 1n n nx y nxy n n y     2 1 0.n n nxy ny m y         2 2 2 2 11 2 1 0n n nx y n xy m n y        ………………..(2) Putting 0x  in      1 cos sin , 0 cos 0 1y m x y    Putting 0x  in  1 1 2 1 sin sin , 1 y m x x    we get    1 0 sin 0 0y   Putting 0x  in (1), we get    2 2 2 0 0y m y m    Putting 0x  in (2),      2 2 2 0 0 ...................(3)  n ny n m y Putting 1,3,5........x  in (3), we get,             2 2 3 1 2 2 5 3 0 1 0 0 0 3 0 0 y m y y m y        0 0ny  if n is odd Putting 2,4,6.......n  in (3), we get.
  • 7. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 38                            2 2 2 2 2 4 2 2 2 2 2 2 2 2 6 4 2 2 2 2 2 2 2 0 2 0 2 0 4 0 4 2 0 .......... 4 2 .n y m y m m y m y m m m y n m m m m                  2. If 1 sin 1 sin log ,m x y e or x y m             prove that      2 2 2 2 11 2 1 0.n n nx y n x y n m y       Soln : We have, 1 sin 1 2 2 1 . 1 1 m x my y e m x x          2 11 .x y my   Differentiating again, w.r.t., x 2 2 1 2 12 2 1 . 1 1       xy m y x y my x x  2 2 2 11 x y xy m y    Applying Leibnitz’s Theorem, to each term,        2 2 1 1 1 2 2 2! n n n n n x y n x y y          2 1n n nxy ny m y        2 2 2 2 11 2 1 0.n n nx y n x y n m y        3. If 1 sin ,   a x y e prove that         22 2 2 2 2 2 2 2 0 2 4 6 ........ 2 2my a a a a a m                 22 2 2 2 2 2 2 2 2 1 0 1 3 5 .......... 2 1my a a a a a m          (M.U.1985) Soln : We have 1 sin ,a x y e   ……………………………………(1) Replacing m by a in the above example, we get, 1 2 1 ay y x   …………………………………..(2)  2 2 2 11 x y xy a y   ……………………………….(3)      2 2 2 2 11 2 1 0n n nx y n xy n a y       ………………………….(4) Putting 0,x  in (1), we get,   0 0 1y e  Putting 0,x  in (2), we get,    1 0 0y a y a  Putting 0,x  in (3), we get,    2 2 2 0 0y a y a  Putting 0x  in (4), we get,      2 2 2 0 0n ny n a y   …………………………………….(5) Putting 1,n  in (5),        2 2 2 2 3 10 1 0 1y a y a a    Putting 2n  in (5),
  • 8. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 39        2 2 2 2 2 4 20 2 0 2y a y a a    Putting 3,n  in (5),         2 2 2 2 2 2 5 30 3 0 1 3y a y a a a     …………………(6) Putting 4,n  in (5),         2 2 2 2 2 2 2 6 40 4 0 2 4y a y a a a     ………………………(7) Generalising from (6) and (7), we get                 22 2 2 2 2 2 2 2 1 22 2 2 2 2 2 2 2 2 0 1 3 5 ......... 2 1 0 2 4 6 .......... 2 2 m m y a a a a a m y a a a a a m                    4. If   1,x y  prove that         2 21 2 2 1 2! . . ..... 1          n nn n n n n n n n nn d x y n y C y x C y x x dx (M.U.2006) Soln : Since 1x y  1y x      1 n n nn n n n n d d x y x x dx dx      Let  , 1 nn n u x v x y    Then    . n n n n n n d d x y u v dx dx  Now                           1 1 2 2 1 2 2 2 1 1 1 2 2 2 2 1 ..................................................... 1 ..... 3 2 ! ! 1 ..... 3 . 2 1 ...3.2.1 ! 1 1 1 1 1 1 1 n n n n n n n n n n u nx u n n x u n n x n x n u n n n n x x u n n n v n x ny v n n x n                                              2 1 1 1 1 ......................................................... 1 ....3.2 1 1 ! 1 ! 1 n n n n n n n y v n n x n y v n                1 1 1 2 2 2 2 .... n n n n n n xn d x y u v nc u v nc u u v uv dx             1 1! ! 1 n n n y nc n x n y         22 2 2 ! . . 1 1 .... 2 nn nc x n n y            2 21 2 2 1 2! ... 1 nn n n n n y nc y x nc y x x          .
  • 9. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 40 Homework Problems 1. 3 .x y x e Ans :     3 2 3 . 3 1 1 2      x x x x ny e x ne x n n e x n n n e . 2. 2 .x y x a Ans :     12 log . . log . 2    n nx x ny a a x n a a x     2 1 . log    nx n n a a . 3. 2 siny x x Ans : 2 sin 2 sin 1 2 2 n n y x x n x n x                   1 sin 2 2 n n x n x          4. 2 mx y x e Ans :  2 1 2 . . . 2 1 . .     n mx n mx n mx ny m e x n m e x n n m e 5. 3 sin 2y x x Ans : 3 2 1 2 sin 2 . .3 2 sin 2 1. 2 2                  n n n n y x x n x x n   2 1 .3 2 sin 2 2. 2 n n n x x n              3 1 2 2 sin 2 3. 2 n n n n x n            . 6.   2 2 3 .x y x e  Ans :       2 2 3 .4 2 3 1 4x x x ny e x ne x n n e      7.   3 3 sin3y x x  Ans :     3 2 3 sin 3 . 3 .3 sin 3 1. . 3 2 2 n n n n y x x n x n x                           1 3 1 3 sin 3 2. . 3 2 1 2 3 sin 3 3. . 2 n n n n x n x n n n x n                         8. If 1 cos ,y x  prove that    2 2 2 11 2 1 0n n nx y n xy n y      9. If 1 sin ,y x  prove that    2 2 2 11 2 1 0n n nx y n xy n y      Also find  9 0y and  10 0y Ans :   2 2 2 2 9 0 1 .3 .5 .7y  and  10 0 0y  (M.U.2003) 10. If  2 2 , m y x a x   prove that at 0x  ,  2 2 2 2 0n na y n m y    . (M.U.1992) 11. If 1 tan ,y x  prove that      2 2 11 2 1 1 0n n nx y n xy n n y       Hence deduce that  0 0ny  if n is even and    0 1 !ny n  if n is odd. 12. If   2 2 2 ,y x a x   prove that      2 2 2 2 12 1 4 0n n na x y n xy n y       13. If coslog sinlog ,y a x b x  prove that,    2 2 2 12 1 1 0n n nx y n xy n y      . (M.U. 02, 04, 05) 14. If 1 , 1 r x y x        prove that,      2 1 11 2 1 0n n nx y r nx y n n y       15. If  2 1 , n y x  prove that,    2 2 11 2 1 0n n nx y xy n n y      (M.U.1987, 96) 16. If  1 . ,x y x e      prove that    1 11 0n n nx y n x y n y       17. If  1 sin siny m x  or if 1 1 sin sin ,m x y   prove that      2 2 2 2 11 2 1 0n n nx y n xy m n y       (M.U.2000, 02, 04, 05) Hence deduce that  0 0ny  if n is even and       2 2 2 2 2 2 0 ....... 3 1ny n m m m m    if n is odd 18. If 1 sin ,   x y e prove that      2 2 2 2 11 2 1 0n n nx y n xy n y       19. If   21 sin ,y x  prove that    2 2 2 11 2 1 0n n nx y n xy n y      (M.U.1988, 97)
  • 10. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 41 20. If   1/22 1 1 sin ,y x x   prove that      2 1 11 2 1 2 0n n nx y n xy n n y       (M.U.1995) 21. If 1 cos ,   m x y e prove that      2 2 2 2 11 2 1 0n n nx y n xy n m y       (M.U.1995) 22. If 1 sin log , n y x b n              prove that  2 2 2 12 1 2 0.n n nx y n xy n y     23. If 1/ 1/ 2 ,m m y y x   prove that,      2 2 2 2 11 2 1 0n n nx y n xy n m y       (M.U.2007) 24. If 1 cosh log ,x y m        prove that      2 2 2 2 11 2 1 0n n nx y n xy n m y       (M.U.1993) 25. If 1 sinh ,y x  prove that    2 2 2 11 2 1 0n n nx y n xy n y      (M.U.1987) 26. If  2 cos log 2 1 ,y x x     prove that       2 2 2 11 2 1 1 4 0n n nx y n x y n y        27. If log , x y x  prove that   1 1 . ! 1 1 1 log 1 ..... 2 3 n n n n y x x n           (M.U.1991, 96) 28. If 1 , 1 x y x        prove that  2 11y x y  and hence, prove that       2 1 21 2 1 1 1 2 0n n nx y n x y n n y           (M.U.1983, 2004, 06) 29. If log ,n y x x prove that  2 2 2 12 1 0x y n xy n y    and hence, prove that     22 2 12 2 1 0p p px y p n xy p n y       (M.U.1984, 88) 30. If  2 sinlog 2 1y x x   prove that       2 2 2 11 2 1 1 4 0n n nx y n x y n y        31. If  cos log ,y m x show that    2 2 2 2 12 1 0n n nx y n xy m n y      32. If 1 tan a x y a x        prove that      2 2 2 12 1 1 0n n na x y n xy n n y       (M.U.1998, 2002) 33. If 1 sec ,y x  prove that      2 2 2 11 2 3 1n nx x y n x n y            2 13 1 1 0n nn n xy n n y      34. If   2 2 2 log ,y x x a   prove that    2 2 2 2 12 1 0n n nx a y n xy n y      (M.U.1998) 35. If   2 2 log 1y x x       prove that    2 2 0 0n ny n y   (M.U.1997) 36. If    2 / 2 ,y Lx M x Bx C    prove that          2 2 1 2 2 0 1 2 1 n n n x Bx C x B y y y n n n            37. If 1 2 sinh , 1 x y x    prove that       22 2 11 2 3 1 0n n nx y n xy n y       38. If cos ,t x e y mt  prove that    2 2 2 2 12 1 0n n nx y n xy m n y     39. If 1 cos ; log ,x y m    prove that      2 2 2 2 11 2 1 0n n nx y n xy n m y       .
  • 11. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 42 Extra Solved Examples 1. If  1 , n y x  prove that 31 2 ....... 1! 2! 3! ! nny yy y y x n       Soln : We have  1 n y x                1 2 1 2 3 4 3 4 1 1 1 1 2 1 1 2 3 1 n n n n y n x y n n x y n n n x y n n n n x                    ………………………………………. ……………………………………………                  0 1 2 1 2 ....... 1 1 ! 1 1 . . . 1 1 1 1! 2! n n n n n n y n n n n n x n x n nn I h s x x x                              3 01 2 ! 1 ..... 1 3! ! nn n n n x x n         1 1 n n x x    (By Binomial Theorem) Hence, the result 2. If tan ,y x prove that        2 2 4 40 0 0 ... sin / 2    n n n n ny C y C y n Soln : We have cos siny x x Now applying Leibnitz’s theorem to the left hand side      1 1 2 2cos sin cosn n n n ny x C y x C y x        3 3 4 4sin cos ... sin 2 n n n n n C y x C y x x              Now put 0x  ,      2 2 4 40 0 0 ... sin 2 n n n n n n y C y C y        . 3. If  2 log 1 ,y x x    2 if e 1y or x x   prove that  2 0 0ny  and       22 2 2 2 1 0 1 .1 .3 .5 .... 2 1 n ny n    . Soln : Since  2 log 1y x x   …………………..(1) 1 2 2 2 1 1 1 1 1 1 x y x x x x            ……………….(2) Differentiating again, 2 2 12 1. . 0 1     x x y y x  2 2 11 . 0x y xy    ……………………(3) Applying Leibnitz’s Theorem        2 2 1 1 1 . 2 . 2 . 2! n n n n n x y n x y y       1. . 1 0n nx y n y      2 2 2 11 2 1 0n n nx y n xy n y       ………………….(4) Putting 0x  in (1),(2),(3) we get    0 log 1 0,y    1 0 1,y   2 0 0y  Now from (4), we get,
  • 12. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 43    2 2 0 0n ny n y   ………………………(5) Putting  1,2,3,4,...... 5n in                         2 2 2 3 1 4 2 2 2 2 2 5 3 6 4 2 2 2 2 2 7 3 8 6 0 1 . 0 1 ., 0 2 . 0 0 0 3 . 0 3 .1 , 0 4 . 0 0 0 5 . 0 5 .3 .1 , 0 6 . 0 0 y y y y y y y y y y y y                     Hence by generalization  2 0 0ny  and       22 2 2 2 1 0 1 1 .3 .5 ..... 2 1 n ny n       . 4. If   21 siny x  , prove that  0 0ny  if n odd and     22 2 2 0 2. 2 . 4 .6 ........ 2ny n  if 2 2n and n is even. Soln : We have   21 siny x  ……..(1)  1 1 2 1 2 sin . 1 y x x     …………(2) 2 1 11 . 2sinx y x    Differentiating again, 2 2 1 2 2 2 1 . . 1 1 x x y y x x        2 2 11 . 2x y x y    …………..(3) By Leibnitz’s theorem,        2 2 1 1 1 2 2 2! n n n n n x y n x y y         1 1 0n nx y n y        2 2 2 11 2 1 0n n nx y n xy n y       …………(4) Putting    2 20, 0 0n nx y n y  …………..(5) Putting 0,x  in (1), (2), and (3) we get,          1 20 0 , 0 0 , 0 2,y y y   Putting 1,3,5,............n  in (5), we get,        2 2 3 1 5 30 1 . 0 0, 0 3 . 0 0,y y y y          2 7 50 5 . 0 0, 0 0ny y y   if n is odd Putting 2,4,6,.............n  in (5), we get,        2 2 2 2 2 4 2 6 40 2 . 0 2 .2; 0 4 . 0 4 . 2 . 2y y y y        22 2 2 0 2.2 .4 .6 ....... 2ny n  if n is even and 2.n  5. If   21 sin ,y x  prove that at    2 20, 0 0 .n nx y n y  If, further,   21 2 0 1 2sin ... .....n ny x a a x a x a x       prove that    2 21 2 .n nn n a n a   Soln : We have proved above that,    2 2 0 0n ny n y  Now consider,
  • 13. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 44   0 1 1 1 1 2 2 2 2 ........... ...... 2 ....... ...... 2 ..... 1 ....... n n n n n n y a a x a x y a a x n a x y a n n a x                    …….. ……. …….. ……   1 2 ...........2. 1. a +.........n ny n n n   ! ........nn a   0 ! .n ny n a Similarly,     22 0 2 ! nny n a    But    2 2 0 0n ny n y  (proved above in (5))      2 2 2 2 2 ! ! 1 2 . n n n n n a n n a n n a n a          6. If 1 tan 0 1 ...... ......,       m x n ny e a a x a x prove that at 0,x         2 10 0 1 0 0.n n ny my n n y     Hence, or otherwise deduce that    1 11 1 .n n nn a n a ma     Soln : Proceeding as in Ex. 11 page (5.28), we can prove that,      2 2 11 2 1 1 0.n n nx y n x m y n n y          Putting 0,x  we get        2 10 0 1 0 0n n ny m y n n y     …………(1) Now if,   2 0 1 2 1 1 1 2 1 2 2 ..... ..... 2 ...... ....... 2 ...... 1 ....... n n n n n n y a a x a x a x y a a x na x y a n n a x                   ………… ……… ……… ……….. …………. ! ....n ny n a  as above. Putting 0,x  we get,  0 !n ny n a ……………..(2) Changing n to 1n  in (1),      1 10 0 1 . 0n n ny my n n y     ………….(3) Putting 1n n  and 1n  in (2) we get,        1 1 1 10 1 ! , 0 1 !n n n ny n a y n a       Putting these values in (3)             1 1 1 1 1 1 1 ! . ! 1 ! 0 1 1 0 1 1 n n n n n n n n n n a m n a n n a n a m a n a n a n a ma                       7. If  log , n n n n d l x x dx  prove that  1 1 !n nl nl n   Hence show that 1 1 1 ! log 1 ........ 2 3 nl n x n          
  • 14. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 45 Soln : We have     1 1 log . log n n n n n n n d d d l x x x x dx dx dx         1 1 1 1 1 1 1 1 1 1 1 log . .log 1 ! n n n n n n n n n n n d nx x x dx x d d n x x x dx dx n l n                        Dividing both sides by !n we get,   1 1 1 ! 1 ! n n l l n n n    Putting 2,3,4,...... ,n n   2 1 3 2 2 3 1 1 1 . 2! 1! 2 1 1 . 3! 2! 3 1 1 . 4! 3! 4 ..... .... .... .... ..... .... .... .... 1 1 . ! 1 ! n n l l l l l l l l n n n             Adding all these equalities, we get, 1 1 1 1 1 ............ ! 2 3 4 nl l n n       Now  1 log 1 log d l x x x dx    1 1 1 ! log 1 ...... 2 3 nl n x n            . 8. If  1 log ,n n nU D x x  prove that   11n nU n U   and hence deduct that  1 ! n n U x   . Soln : We have     1 1 1 1 log . log n n n n n n n d d d U x x x x dx dx dx                   1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 .log . 1 .log 1 .log n n n n n n n n n n n n n n d n x x x dx x d n x x x dx d d n x x x dx dx                                    11 nn U   (Second term is zero) Applying the result repeatedly,    21 2n nU n n U   
  • 15. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 46           3 1 1 1 2 3 1 2 3 ...........3. 2. 1. 1 !. nn n n U n n n U n U           But    0 1 1 log log d d U x x x dx dx x      1 1 !nU n x    . 9. If  2 1 , n y x  prove that    2 2 11 2 1 0.n n nx y xy n n y      Hence deduct that if  2 1 , n n n n d l x dx   then    2 1 1 .n n x dld x n n l dx d          Soln : We have  2 1 n y x    12 1 1 .2 n y n x x        2 2 11 1 .2 2 n x y n x x n x y     Differentiating again,  2 2 1 11 2 2 2x y x y n x y n y       2 2 11 2 1 y 2 y = 0x y n x n     Now by Leibnitz’s Theorem      2 2 1 1 1 2 .2 2! n n n n n x y n x y y        12 1 2 0n n nn xy ny n y        2 2 11 2 1 0n n nx y xy n n y       ………………..(1) We first note that    2 1 n n n n nn n d d l x y y dx dx    Now  2 1 ndld x dx dx                2 2 1 2 2 1 1 1 1 2 n n n n d d x y dx dx d x y dx x y x y                 1 nn n y   from (1) . 10. If u is a function of x and ,ax y e u Prove that   . nn ax D y e D a u  Soln : Let ax v e then 1 ax v ae 2 3 2 3, ,......ax ax n ax nv a e v a e v a e   By Leibnitz’s theorem,   0 1 1 1 n n n n nD y D uv C u v nC u v   2 2 2 ... n n n nnC u v C uv   Treating D as an operator, we write .n nD u u
  • 16. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 47 1 2 0 1 1 2 2. . .n n n n n n n D y C D u v C D u v C D u v      3 3 3. ..... . .n n n n nC D u v C u v    1 2 2 0 1 2. . .n n ax n n ax n n ax C D u e C D u ae C D u a e     3 3 3 . .... .n n ax n n ax nC D u a e C u a e    1 2 2 3 3 0 1 2 3 1 2 2 3 3 0 1 2 3 . . . . .... . . .... ax n n n n n n n n n n n ax n n n n n n n n n n n e C D u C D u a C D u a C D u a C u a e C D C D a C D a C D a C a u                         . . nax e D a u  11. If   2 2 log 1 ,y x x       prove that    2 2 2 11 2 1 0n n nx y n xy n y      Hence, deduce that    2 2 0 0n ny n y   Soln : We have   2 2 log 1y x x       …………….(1) Differentiating it w.r.t.x, we get,  2 1 2 2 1 2 log 1 . 1 1 1 x y x x x x x               2 2 1 2 log 1 . 1 x x x          2 2 11 y 2.log 1x x x    ……………….(2) Differentiating again, 2 2 12 2 2 1 1 y y 2. 1 1 1 1 x x x x x x x             2 2 1 x    2 2 11 2x y xy    …………………..(3) Applying Leibniz’s theorem, we get,        2 2 1 1 1 . 2 2 2! n n n n n x y n x y y       1 . 1 0n nxy n y      2 2 2 11 2 1 0n n nx y n xy n y       …………….(4) Putting 0x  in (4), we get    2 2 0 0n ny n y   . 12. Using Leibnitz theorem for 2n x prove that           2 2 22 22 22 2 2 2 2 1 1 2 2 ! 1 .... 1! 1 .2 1 .2 .3 ! n n n n n nn n         Soln : We obtain nth derivative of 2n y x in two different ways. By applying the formula (2), page (5.2),      2 2 2 1 2 2 ...... 2 1 n n ny n n n n n x                  2 2 1 2 2 .... 1 . ...3.2.1 1 ....3.2.1 2 ! ! n n n n n n n x n n n x n      
  • 17. INFOMATICA ENGG.ACADEMY CONTACT: 9821131002/9076931776 48 By applying Leibnitz’s rule to .n n y x x we have      1 . .n n n n n n ny D x x nD x D x        2 21 2! n n nn n D x D x        3 31 2 .... 3! n n nn n n D x D x       1! ! . 1! n nn x n x n n x                2 2 3 3 1 ! 1 2! 2! 1 2 ! 1 2 3! 3! ........... n n n n n x n n x n n n n x n n n x                            2 2 22 22 2 2 2 2 2 2 1 1 2 ! 1 ........ 1 1 .2 1 .2 .3 n n n n n nn n x              Equating the two results, we get       2 2 22 22 2 2 2 2 2 2 1 1 2 ! 1 ........ 1 1 .2 1 .2 .3 n n n n nn n               2 ! ! n n            2 2 22 22 22 2 2 2 2 2 1 1 2 2 ! 1 ........ 1 1 .2 1 .2 .3 ! n n n n n nn n          .