SlideShare une entreprise Scribd logo
1  sur  16
Télécharger pour lire hors ligne
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. VI (Jan - Feb. 2015), PP 19-34
www.iosrjournals.org
DOI: 10.9790/5728-11161934 www.iosrjournals.org 19 | Page
On Least Square, Minimum Norm Generalized Inverses of
Bimatrices
G.Ramesh*, P.Maduranthaki**
*Associate Professor of Mathematics, Govt. Arts College(Autonomous), Kumbakonam.
**Assistant Professor of Mathematics, Arasu Engineering College, Kumbakonam.
Abstract: The characterization of g-inverses, minimum norm g-inverses and least square g-inverses of
bimatrices are derived as a generalization of the generalized inverses of matrices.
Keywords: g-inverse, minimum norm g-inverse, least square g-inverse.
AMS Classification: 15A09, 15A15, 15A57.
I. Introduction
Let n nC  be the space of n n complex matrices of order n. A matrix 1 2BA A A  is called a bimatrix if
1A and 2A are matrices of same (or) different orders [7,8] and a bimatrix is called unitary if
* *
B B B B BA A A A I  [8]. For 1 2, n nA A C  , 1 2BA A A  and let  *
,B BA r A and BA
denote the
conjugate transpose, rank and generalized inverse of the bimatrix BA where BA
is the solution of the equation
B B B BA X A A [1,4,6]. In general, the generalized inverse BA
of BA is not uniquely determined. Since BA
is not unique, the set of generalized inverses of BA is some times denoted as  BA
.
In this paper we analyze the characterization of g-inverse, minimum norm g-inverse and least square
g-inverses of bimatrices as a generalization of the g-inverses of matrices [2,3,5] .
II. Generalized Inverses of Bimatrices
In this section some of the properties of generalized inverses of matrices found in [1,2,3,5] are extended
to generalized inverses of bimatrices .
Theorem: 2.1
Let B B BH A A
 and B B BF A A
 . Then the following relations hold :
(i)
2
B BH H and
2
B BF F .
(ii) ( ) ( ) ( )B B Br H r F r A 
(iii)    B Br A r A

(iv)    B B B Br A A A r A 
 .
Proof of (i)
Now
2
.B B BH H H
  B B B BA A A A 

       1 2 1 2 1 2 1 2A A A A A A A A
 
    
       1 2 1 2 1 2 1 2A A A A A A A A   
    
  1 1 2 2 1 1 2 2A A A A A A A A   
  
   1 1 1 1 2 2 2 2A A A A A A A A   
 
  1 1 1 2 2 2 1 2A A A A A A A A   
  
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 20 | Page
     1 2 1 2 1 2 1 2A A A A A A A A   
      
      1 2 1 2 1 2 1 2A A A A A A A A
 
     
  
 B B B BA A A A 

B BA A

.BH
Hence ,
2
B BH H .
Now
2
.B B BF F F
  B B B BA A A A 

       1 2 1 2 1 2 1 2A A A A A A A A   
    
  1 1 2 2 1 1 2 2A A A A A A A A   
  
     1 1 1 1 2 2 2 2A A A A A A A A   
 
     1 2 1 2 1 2 1 2A A A A A A A A   
      
 B B B BA A A A 

B BA A

= BF .
Hence,
2
.B BF F
Proof of (ii)
Now    B B Br A r A A

   B Br A r H (1)
Also  Br A  B B Br A A A

    1 2 1 2 1 2r A A A A A A 
   
    1 1 1 2 2 2r A A A A A A 
 
   1 1 2 2 1 2r A A A A A A 
  
    1 2 1 2 1 2r A A A A A A 
   
  B B Br A A A

 B Br H A
   B Br A r H (2)
From (1) and (2), we get    B Br A r H (3)
Now    B B Br A r A A

   B Br A r F (4)
Also    B B B Br A r A A A

    1 2 1 2 1 2r A A A A A A 
   
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 21 | Page
    1 1 1 2 2 2r A A A A A A 
 
   1 2 1 1 2 2r A A A A A A 
  
    1 2 1 2 1 2r A A A A A A 
   
  B B Br A A A

 B Br A F
   B Br A r F (5)
From (4) and (5), we get    B Br A r F (6)
From (3) and (6) we get      B B Br A r H r F 
.
(7)
Proof of (iii)
Now    B B B Br A r A A A

    1 2 1 2 1 2r A A A A A A 
   
 1 1 1 2 2 2r A A A A A A 
 
 1 1 2 2r A A A A 
 
 1 2r A A 
 
 Br A

Hence,    B Br A r A
 .
Proof of (iv)
Now    B B B B Br A A A r A A 

Also we have    B B B B B B Br A A A r A A A A   

     1 2 1 2 1 2 1 2r A A A A A A A A   
    
    1 1 1 1 2 2 2 2r A A A A A A A A   
 
   1 2 1 1 1 2 2 2r A A A A A A A A   
  
      1 2 1 2 1 2 1 2r A A A A A A A A        
 
 B B B Br A A A A 
   
 B Br A A

 Br H
 Br A ( by (7) )
Hence,    B B B Br A A A r A 
 .
Theorem: 2.2
Let BA be a bimatrix, then the following relations hold for a generalized inverse BA
of BA .
(i)      B BA A
  

On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 22 | Page
(ii)  B B B B B BA A A A A A
 

(iii)     
*
* * * *
B B B B B B B BA A A A A A A A
 

Proof of (i)
Let B B B BA A A A

 B B B BA A A A
 

      *
1 2 1 2 1 2 1 2A A A A A A A A

 
    
 
** *
1 2 1 1 1 2 2 2A A A A A A A A 
  
   
* *
1 1 1 2 2 2A A A A A A 
 
     ** * * *
1 1 1 2 2 2A A A A A A
 
 
       
* ** * * * * *
1 2 1 2 1 2 1 2A A A A A A A A 
    
 
** * *
B B B BA A A A

Thus      * *
B BA A

 (8)
On the other hand,  * * *
B B B BA A A A

 and so     
*
*
B BA A
 

     **
B BA A
 
 (9)
From (8) and (9), we get      * *
B BA A

 .
Proof of (ii)
Let   B B B B B B BG A I A A A A
 
 
 B B B B B BA A A A A A
 
 
         1 2 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A A A

   
         
         1 2 1 2 1 2 1 2 1 2 1 2BG A A A A A A A A A A A A
    
       
         1 2 1 2 1 2 1 2 1 2 1 2BG A A A A A A A A A A A A
            
  
           1 2 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A A A

              
  
        1 2 1 1 1 1 1 2 2 2 2 2A A A A A A A A A A A A

          
  
     1 1 1 1 1 1 2 2 2 2 2 2A A A A A A A A A A A A

          
  
     1 1 1 1 1 1 2 2 2 2 2 2A A A A A A A A A A A A
       
   
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 23 | Page
     1 1 1 1 1 1 2 2 2 2 2 2A A A A A A A A A A A A
            
      
   
     1 1 1 1 1 1 2 2 2 2 2 2A A A A A A A A A A A A
          
   
           1 2 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A A A
          
       
           1 2 1 2 1 2 1 2 1 2 1 2BG A A A A A A A A A A A A
    
       
           
         
1 2 1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2
B BG G I I A A A A A A A A A A
A A A A A A A A A A A A
    
    
          
       
  
         
               
1 2 1 2 1 2 1 2 1 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
B BG G I I A A A A A A A A
A A A A A A A A A A A A A A A A
  
    
         
           
     B B B B B B B B B B B B B B BG G I A A A A A A A A A A A A
         
  
     B B B B B B B B B B B B B B BG G I A A A A A A A A A A A A
       
  
Let B B BB A A
 .
  B B B B B B B B BG G I B B B B B B  
  
  B B B B BI B B B B
  
0
Hence, 0BG 
That is,    0B B B B B BA I A A A A
 
 
  0B B B B B BA A A A A A
 
 
Hence,  B B B B B BA A A A A A
 
 .
Proof of (iii)
Let BG denote a generalized inverse of B BA A
.Then BG
is also a generalized inverse of B BA A
and
2
B B
B
G G
S


 is a symmetric generalized inverse of B BA A
.
Let  B B B B B B B BH A S A A A A A
  
 
          1 2 1 2 1 2 1 2 1 2 1 2 1 2BH A A S S A A A A A A A A A A

     
           
          1 2 1 2 1 2 1 2 1 2 1 2 1 2BH A A S S A A A A A A A A A A
                
  
             1 2 1 2 1 2 1 2 1 2 1 2 1 2BH A A S S A A A A A A A A A A

                   
  
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 24 | Page
      1 1 1 2 2 2 1 1 1 1 2 2 2 2A S A A S A A A A A A A A A

            
  
     1 1 1 1 1 1 1 2 2 2 2 2 2 2A S A A A A A A S A A A A A

            
  
     
* *
1 1 1 1 1 1 1 2 2 2 2 2 2 2A S A A A A A A S A A A A A
        
   
         1 1 1 1 1 1 1 2 2 2 2 2 2 2A S A A A A A A S A A A A A
              
      
   
     * *
1 1 1 1 1 1 1 2 2 2 2 2 2 2AS A A A A A A S A A A A A         
   
      * *
1 1 1 2 2 2 1 1 1 1 2 2 2 2AS A A S A A A A A A A A A         
   
            
* *
1 2 1 2 1 2 1 2 1 2 1 2 1 2A A S S A A A A A A A A A A
                     
            * *
1 2 1 2 1 2 1 2 1 2 1 2 1 2BH A A S S A A A A A A A A A A
                       
            
            
* *
1 2 1 2 1 2 1 2 1 2 1 2
* *
1 2 1 2 1 2 1 2 1 2 1 2 1 2
B BH H A A S S A A A A A A A A
A A S S A A A A A A A A A A
       
      
        
  
        
  
          
              
* *
1 2 1 2 1 2 1 2 1 2
* *
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
A A S S A A A A A A
A A A A S S A A A A A A A A A A A A
    
          
       
  
          
  
   * * * * * *
B B B B B B B B B B B B B BA S A A A A A S A A A A A A
        
      
   * * * * * * *
B B B B B B B B B B B B B B B BH H A S A A A A A S A A A A A A
      
      
Let  *
B B BS A A


 * * * * *
B B B B B B B B B B B B B BH H A S A S A A S A A A S A
    
*
0B BH H  .
Hence , 0BH  .
That is ,  * * *
0B B B B B B BA S A A A A A

  .
     
*
* * * *
0B B B B B B B BA A A A A A A A
 
 
    
*
* * * *
B B B B B B B BA A A A A A A A
 
 .
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 25 | Page
III. Minimum norm generalized inverses of bimatrices
In this section some of the characteristics of minimum norm g-inverses of matrices found in [2,3] are
extended to minimum norm g-inverses of bimatrices.
Definition: 3.1
A generalized inverse BA
that satisfies both B B B BA A A A
 and  B B B BA A A A
 
 is called a
minimum norm g-inverse of BA and is denoted by  B m
A

.
Theorem: 3.2
Let BA be a bimatrix, then the following three conditions are equivalent:
(i)     
*
B B B Bm m
A A A A
 
 and  B B B Bm
A A A A


(ii)   * *
B B B Bm
A A A A


(iii)    * *
B B B B B Bm
A A A A A A


.
Proof of (i) (ii)
From (i),  B B B Bm
A A A A


  
*
*
B B B Bm
A A A A


    
*
1 2 1 2 1 2m
A A A A A A

    
 
       
*
1 2 1 2 1 2m m
A A A A A A
 
    
 
   
*
1 1 1 2 2 2m m
A A A A A A
 
  
 
     
* *
1 1 1 2 2 2m m
A A A A A A
 
 
     
* *
* * * *
1 1 1 2 2 2m m
A A A A A A
 
 
       
* *
* * * *
1 2 1 2 1 2( )m m
A A A A A A
          
  
*
* *
B B Bm
A A A
    
  
*
*
B B Bm
A A A


  *
B B Bm
A A A


Hence,   * *
B B B Bm
A A A A

 .
Proof of (ii) (iii)
From (ii),  * *
B B B Bm
A A A A


Postmultiply by  *
B B BA A A

on both sides
     * * * *
B B B B B B B B B Bm
A A A A A A A A A A
 

            * * * *
1 2 1 2 1 2 1 2 1 2 1 2m m
A A A A A A A A A A A A
 
      
       * * * *
1 1 1 2 2 2 1 1 2 2 1 2m m
A A A A A A A A A A A A
 
   
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 26 | Page
          * * * *
1 1 1 2 2 2 1 1 2 2 1 2m m
A A A A A A A A A A A A
  
   
          * * * *
1 1 1 2 2 2 1 1 2 2 1 2m m
A A A A A A A A A A A A
   
   
            * * * *
1 1 2 2 1 2 1 2 1 2 1 2m m
A A A A A A A A A A A A
    
     
           
* ** *
1 1 2 2 1 1 2 2 1 2 1 2m m
A A A A A A A A A A A A
     
    
          
* *
1 1 2 2 1 1 2 2 1 1 2 2m m
A A A A A A A A A A A A
     
   
        
*
1 2 1 2 1 1 2 2B Bm m
A A A A A A A A A A
    
   
   B B B B B Bm
A A A A A A
  

 B B B Bm
A A A A
 
 ( by definition 3.1)
( )B m BA A
 ( by definition 3.1)
Hence,    * *
B B B B B Bm
A A A A A A

 .
Proof of (iii) (i)
From (ii) of theorem (2.2),  * *
B B B B B BA A A A A A


Replace BA by
*
BA we get
    * * * * * *
B B B B B BA A A A A A
 

 * * * *
B B B B B BA A A A A A


        * * * * * * *
1 2 1 2 1 2 1 2 1 2BA A A A A A A A A A A

     
       * * * * * *
1 2 1 2 1 2 1 2 1 2A A A A A A A A A A
 
     
          * * * * * *
1 2 1 2 1 2 1 2 1 2A A A A A A A A A A
         
  
     * * * * * *
1 1 1 1 2 2 2 2 1 2A A A A A A A A A A
  
  
     * * * * * *
1 1 1 1 2 2 2 2 1 2A A A A A A A A A A
 
  
         * * * * * *
1 2 1 1 2 2 1 2 1 2A A A A A A A A A A
 
     
  
 * * *
B B B B BA A A A A

 
  
 * *
B B B Bm
A A A A

 ( by (iii))
    * *
B B B Bm
A A A A
 

      * *
1 2 1 2 1 2B m m
A A A A A A A

 
    
 
     * *
1 1 1 2 2 2m m
A A A A A A

 
  
 
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 27 | Page
     
*
* *
1 1 1 2 2 2m m
A A A A A A
 
 
     
* *
* *
1 1 1 2 2 2m m
A A A A A A
 
 
        * *
1 2 1 2 1 2m m
A A A A A A
       
 
  
*
*
B B B B m
A A A A


Premultiply by  * *
B B BA A A

on both sides
       
*
* * * * *
B B B B B B B B B B m
A A A A A A A A A A
  

       
*
*
B B B B B Bm m m
A A A A A A
  
 ( by (iii))
  
*
*
B B m
A A

 ( by(ii))
  
*
B Bm
A A


Hence,     
*
B B B Bm m
A A A A
 
 .
Also, from (iii) of theorem (2.2),
    
*
* * * *
B B B B B B B BA A A A A A A A
 

Replace BA by
*
BA we get
         
* * * ** * * * * * * *
B B B B B B B BA A A A A A A A
 
 
  
 
    
*
* * * *
B B B B B B B BA A A A A A A A
 

         
*
* * * *
1 2 1 2 1 2 1 2B Bm
A A A A A A A A A A
      
  
    
*
* * * *
1 2 1 1 2 2 1 2A A A A A A A A

    
  
       
*
* * * *
1 2 1 1 2 2 1 2A A A A A A A A
 
    
  
       
*
* * * *
1 2 1 1 2 2 1 2A A A A A A A A
      
  
     
*
* * * *
1 1 1 1 2 2 2 2A A A A A A A A
    
  
     
* *
* * * *
1 1 1 1 2 2 2 2A A A A A A A A
   
  
 
         
* ** ** * * *
1 1 1 1 2 2 2 2A A A A A A A A
     
    
   
       * ** *
1 1 1 1 2 2 2 2A A A A A A A A   
 
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 28 | Page
        
* ** *
1 2 1 2 1 2 1 2A A A A A A A A   
    
 
**
B B B BA A A A 

 
*
B B B BA A A A 

 B B B BA A A A 
 ( by definition 3.1)
 B B B Bm
A A A A
 
 ( by definition 3.1)
Premultiply by BA on both sides,
 B B B B B Bm
A A A A A A
 

 B B B Bm
A A A A

 ( by definition 3.1)
Hence,  B B B Bm
A A A A

 .
Theorem: 3.3
Let BA be a bimatrix, then the following relations hold for a minimum norm generalized inverse
 B m
A

of BA :
(i) One choice of  *
B B m
A A

is     
*
.B Bm m
A A
 
(ii) One choice of    1
B Bm m
A A 
 
 where  is a non- zero scalar.
(iii) One choice of  B B B m
U A V

is  B B Bm
V A U
 
where BU and BV are unitary bimatrices.
(iv)     
*
* *
B B B B B B mm
A A A A A A
 

.
Proof of (i)
Now   * * *
1 2 1 2B BA A A A A A  
* *
1 1 2 2A A A A 
   * * *
1 1 2 2B B m m
A A A A A A
 
 
   * *
1 1 2 2m m
A A A A
 
 
       * *
1 1 2 2m mm m
A A A A
  
 
         * *
1 2 1 2m mm m
A A A A
   
  
       
* *
1 2 1 2m m m
A A A A
      
 
      
*
1 2 Bm m m
A A A
  
 
    
*
B Bm m
A A
 
 .
Hence,       
*
*
B B B Bm mm
A A A A
  
 .
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 29 | Page
Proof of (ii)
Now    1 2B m m
A A A 

   
 1 2 m
A A 

 
   1 2m m
A A 
 
 
   1 1
1 2m m
A A 
  
 
    1
1 2m m
A A
 
 
 1
B m
A


Hence ,    1
B Bm m
A A 
 
 .
Proof of (iii)
      1 2 1 2 1 2B B B m m
U A V U U A A V V

   
 1 1 1 2 2 2 m
U AV U AV

 
   1 1 1 2 2 2m m
U AV U AV
 
 
           1 1 1 2 2 2m m m m m m
V A U V A U
     
 
             * * * * * * * *
1 1 1 1 1 1 1 2 2 2 2 2 2 2m m
V VV A U U U V V V A U U U
    
 
since    * *
B B B Bm
A A A A


             * * * *
1 1 1 1 1 2 2 2 2 2m m
V I A U I V I A U I
     
 
( Since 1 2 1 2, , &U U V V are unitary matrices )
     * * * *
1 1 1 2 2 2m m
V A U V A U
 
 
       * * * *
1 2 1 2 1 2m m
V V A A U U
 
   
 * *
B B Bm
V A U

 .
Hence,    * *
B B B B B Bm m
U A V V A U
 
 .
Proof of (iv)
        * * * * * *
1 2 1 2 1 2 1 2B B B Bm m
A A A A A A A A A A A A

    
   * * * *
1 1 2 2 1 1 2 2m
A A A A A A A A

  
     * * * *
1 1 2 2 1 1 2 2m m
A A A A A A A A
 
  
         * * * *
1 1 1 1 2 2 2 2m mm m
A A A A A A A A
  
 
          
* *
* *
1 1 1 1 2 2 2 2m m m m
A A A A A A A A
      
 
          
* *
* *
1 2 1 1 1 2 2 2m m m m
A A A A A A A A
       
 
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 30 | Page
            
* *
* *
1 2 1 2 1 2 1 2m m m m
A A A A A A A A
            
     
*
*
B B B Bm m
A A A A
 

  
*
*
B Bm
A A

 ( by (ii) of theorem 3.2)
  
*
B B m
A A


Hence,     
*
* *
B B B B B B mm
A A A A A A
 
 .
IV. Least Square Generalized Inverses of Bimatrices
In this section some of the characteristics of least square g-inverses of matrices found in [2,3,5] are
extended to least square g-inverses of bimatrices .
Definition: 4.1
A generalized inverse BA
that satisfies both B B B BA A A A
 and 
*
B B B BA A A A 
 is called a least
square generalized inverse bimatrix of BA and is denoted by B l
A

.
Theorem: 4.2
Let BA be a bimatrix, then the following three conditions are equivalent:
(i)  B B B Bl
A A A A

 and     B B B Bl l
A A A A
 

(ii)  * *
B B B Bl
A A A A


(iii)    * *
B B B B B Bl
A A A A A A


.
Proof of (i) (ii)
From (i),  B B B Bl
A A A A


  
*
*
B B B Bl
A A A A


         *
1 2 1 2 1 2B l l
A A A A A A A

 
   
    
*
1 1 1 2 2 2l l
A A A A A A
 
 
     1 1 1 2 2 2l l
A A A A A A
  
 
     
* *
* * * *
1 1 1 2 2 2l l
A A A A A A
 
 
         
* *
* * * *
1 2 1 2 1 2l l
A A A A A A
          
  
*
* *
B B Bl
A A A
   
 
  
*
*
B B B l
A A A


 *
B B B l
A A A


On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 31 | Page
Hence ,  * *
B B B Bl
A A A A

 .
Proof of (ii) (iii)
From (ii),  * *
B B B Bl
A A A A


Premultiply by  *
B B BA A A

on both sides
     * * * *
B B B B B B B B B B l
A A A A A A A A A A
  

             * * * *
1 2 1 2 1 2 1 2 1 2 1 2l l
A A A A A A A A A A A A
  
      
            * * * *
1 2 1 2 1 2 1 2 1 2 1 2l l
A A A A A A A A A A A A
  
      
              * * * *
1 2 1 2 1 2 1 2 1 2 1 2l l
A A A A A A A A A A A A
    
      
         * * * *
1 1 1 1 1 1 2 2 2 2 2 2l l
A A A A A A A A A A A A
   
 
         * ** *
1 1 1 1 1 1 2 2 2 2 2 2l l
A A A A A A A A A A A A
    
 ( by (i) theorem 2.2)
              * * * *
1 2 1 2 1 2 1 2 1 2 1 2l l
A A A A A A A A A A A A
    
      
   *
B B B B B B l
A A A A A A
  

   B B B B B B l
A A A A A A
  

  B B B B B B l
A A A A A A
 
 ( by definition 4.1)
  B B B B l
A A A A

 ( by definition 4.1)
 B B l
A A

 ( by definition 4.1)
Hence,    * *
B B B B B Bl
A A A A A A

 .
Proof of (iii) (i)
From (iii) of theorem (2.2),
    
*
* * * *
B B B B B B B BA A A A A A A A
 

          
*
* * * *
1 2 1 2 1 2 1 2B B l
A A A A A A A A A A

     ( by (iii))
      
*
* * * *
1 2 1 2 1 2 1 2A A A A A A A A
     
  
        
*
* * * *
1 2 1 2 1 2 1 2A A A A A A A A
       
  
     * * * *
1 1 1 1 2 2 2 2A A A A A A A A

    
  
     * * * *
1 1 1 1 2 2 2 2A A A A A A A A
   
 
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 32 | Page
         
* ** ** * * *
1 1 1 1 2 2 2 2A A A A A A A A
     
    
   
         
* ** * * ** *
1 1 1 1 2 2 2 2A A A A A A A A      
    
   
     * ** *
1 1 1 1 2 2 2 2A A A A A A A A   
 
        
* * * *
1 2 1 2 1 2 1 2A A A A A A A A   
    
  *
B B B BA A A A
 

 
*
B B B BA A A A 

 B B B BA A A A 
 ( by definition 4.1)
 B B B Bl
A A A A
 
 ( by definition 4.1)
Postmultiply by BA on both sides
 B B B B B Bl
A A A A A A
 

 B B B Bl
A A A A

 ( by definition 4.1)
Hence ,  B B B Bl
A A A A

 .
Also, from (ii) of theorem (2.4),
 * *
B B B B B BA A A A A A


  
*
* * *
B B B B B BA A A A A A


        
*
* * * *
1 2 1 2 1 2 1 2 1 2A A A A A A A A A A

      
  
       
*
* * * *
1 2 1 2 1 2 1 2 1 2A A A A A A A A A A
      
  
         
*
* * * *
1 2 1 2 1 2 1 2 1 2A A A A A A A A A A
        
  
     
* *
* * * *
1 1 1 1 1 2 2 2 2 2A A A A A A A A A A
   
  
 
         
* ** ** * * * * *
1 1 1 1 1 2 2 2 2 2A A A A A A A A A A
  
 
     * ** * * *
1 1 1 1 1 2 2 2 2 2A A A A A A A A A A   
 
      * * * * * *
1 1 1 1 1 2 2 2 2 2A A A A A A A A A A
  
 
     * * * * * *
1 1 1 1 1 2 2 2 2 2A A A A A A A A A A
 
 
         * * * * * *
1 2 1 2 1 1 2 2 1 2A A A A A A A A A A
 
     
  
   * * * *
1 2 B B B BA A A A A A

  
  
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 33 | Page
 * *
B B B B l
A A A A

 ( by (iii))
    
*** *
B B B B l
A A A A


      
*** * * *
1 2 1 2 1 2 1 2 l
A A A A A A A A

    
       
*
* *
1 2 1 2 1 2 1 2l l
A A A A A A A A
 
     
 
     
*
* *
1 1 1 2 2 2B l l
A A A A A A A
 
  
 
     
* *
* *
1 1 1 2 2 2l l
A A A A A A
 
 
     
* *
* *
1 1 1 2 2 2l l
A A A A A A
 
 
        
* *
* *
1 2 1 2 1 2l l
A A A A A A
      
 
  
*
*
B B B Bl
A A A A


Postmultiply by  * *
B B BA A A

on both sides
      
*
* * * * *
B B B B B B B B B Bl
A A A A A A A A A A
   
  
      
*
*
B B B B B Bl l l
A A A A A A
  
 ( by (iii) )
  
*
*
B Bl
A A

 ( by (ii) )
  
*
B B l
A A


Hence,   
*
B B l
A A

=  B B l
A A

.
Theorem: 4.3
Let BA be a bimatrix, then the following relations hold for a least square generalized inverse  B l
A

of
BA :
(i)    1
B Bl l
A A 
 
 where  is a non zero scalar.
(ii) One choice of    * *
B B B B B Bl l
U A V V A U
 
 where BU and BV are unitary bimatrices.
Proof of (i)
Now    1 2B l l
A A A 

   
 1 2 l
A A 

   
   1 2l l
A A 
 
 
   1 1
1 2l l
A A 
  
 
    1
1 2l l
A A
 
 
 1
B l
A


Hence,    1
B Bl l
A A 
 
 .
On Least Square, Minimum Norm Generalized Inverses of Bimatrices
DOI: 10.9790/5728-11161934 www.iosrjournals.org 34 | Page
Proof of (ii)
Now       1 2 1 2 1 2B B B l l
U A V U U A A V V

   
    1 1 1 2 2 2 l
U AV U AV

 
   1 1 1 2 2 2l l
U AV U AV
 
 
             1 1 1 2 2 2l l l l l l
V A U V A U
     
 
             * * * * * * * *
1 1 1 1 1 1 1 2 2 2 2 2 2 2l l
V V V A U U U V V V A U U U
    
 
    * *
since B B B Bl
A A A A


             * * * *
1 1 1 1 1 2 2 2 2 2l l
I V A I U I V A I U
     
 
(since 1 2 1 2, ,U U V and V are unitary bimatrices)
     * * * *
1 1 1 2 2 2l l
V A U V A U
 
 
       * * * *
1 2 1 2 1 2l l
V V A A U U
 
   
 * *
B B Bl
V A U


Hence,    * *
B B B B B Bl l
U A V V A U
 
 .
References
[1]. Ben Isreal.A and Greville.T.N.E, Generalized Inverse: Theory and Applications, Wiley-Interscience, New York, 1994.
[2]. Campbell.S.L and Meyer.C.D, Generalized Inverses of Linear Transformations,Society for Industrial and Applied
Mathematics,Philadelphia, 2009.
[3]. Haruo Yanai, Kei Takeuchi, Yashio Takane, Projection Matrices, Geneneralized Inverse Matrices, and Singular Value
Decomposition, Springer, New York, 2011.
[4]. Penrose.R, A generalized Inverse for Matrices, Proc. Cambridge Phil. Soc., Vol.51, 1955, (PP 406-413).
[5]. Radhakrishna Rao.C, Calculus of Generalized Inverses of Matrices Part-I: General Theory, Sankhya, Series A, Vol.29, No. 3,
September 1967, (PP 317-342).
[6]. Radhakrishna Rao.C and Sujit Kumar Mitra, Generalised Inverse of a matrix and its Applications, Wiley, New York, 1971.
[7]. Ramesh.G. and Maduranthaki.P, On Unitary Bimatrices, International Journal of Current Research, Vol.6, Issue 09, September
2014, (PP 8395-8407).
[8]. Ramesh.G. and Maduranthaki.P, On Some properties of Unitary and Normal Bimatrices, International Journal of Recent Scientific
Research, Vol.5, Issue10 , October 2014, ( PP 1936-1940).

Contenu connexe

En vedette

Qtp important frameworks
Qtp important frameworksQtp important frameworks
Qtp important frameworks
prs0302
 
Jerryhu english version
Jerryhu english versionJerryhu english version
Jerryhu english version
jerry hu
 
30美丽的名片
30美丽的名片30美丽的名片
30美丽的名片
zsk91186
 
Kode etik jurnalistik ifj penafsiran dan praktik
Kode etik jurnalistik ifj penafsiran dan praktikKode etik jurnalistik ifj penafsiran dan praktik
Kode etik jurnalistik ifj penafsiran dan praktik
Teras Lampung
 
Ch11 z5e solutions
Ch11 z5e solutionsCh11 z5e solutions
Ch11 z5e solutions
blachman
 
Uuriv ja aktiivne õppeviis algklassides
Uuriv ja aktiivne õppeviis algklassidesUuriv ja aktiivne õppeviis algklassides
Uuriv ja aktiivne õppeviis algklassides
hajao
 

En vedette (18)

Supply Chain Management Workshop
Supply Chain Management WorkshopSupply Chain Management Workshop
Supply Chain Management Workshop
 
Dynamic ticket pricing. Squeezing more juice from half time oranges
Dynamic ticket pricing. Squeezing more juice from half time oranges  Dynamic ticket pricing. Squeezing more juice from half time oranges
Dynamic ticket pricing. Squeezing more juice from half time oranges
 
Qtp important frameworks
Qtp important frameworksQtp important frameworks
Qtp important frameworks
 
Jerryhu english version
Jerryhu english versionJerryhu english version
Jerryhu english version
 
30美丽的名片
30美丽的名片30美丽的名片
30美丽的名片
 
C++Builder XE8 Datasheet
C++Builder XE8 DatasheetC++Builder XE8 Datasheet
C++Builder XE8 Datasheet
 
A New Dimension Of Time Ppt Time Design
A New Dimension Of Time Ppt Time DesignA New Dimension Of Time Ppt Time Design
A New Dimension Of Time Ppt Time Design
 
Resultados Reunión N16
Resultados Reunión N16Resultados Reunión N16
Resultados Reunión N16
 
Al Fazl International 21st October 2016 - Weekly
Al Fazl International 21st October  2016 - WeeklyAl Fazl International 21st October  2016 - Weekly
Al Fazl International 21st October 2016 - Weekly
 
Megapolis i
Megapolis i Megapolis i
Megapolis i
 
Physician, the finest flower of civilization
Physician, the finest flower of civilizationPhysician, the finest flower of civilization
Physician, the finest flower of civilization
 
Removal of Transformation Errors by Quarterion In Multi View Image Registration
Removal of Transformation Errors by Quarterion In Multi View Image RegistrationRemoval of Transformation Errors by Quarterion In Multi View Image Registration
Removal of Transformation Errors by Quarterion In Multi View Image Registration
 
Happy Paths: UX Tested, Unicorn Approved -- Katie Swindler
Happy Paths: UX Tested, Unicorn Approved -- Katie SwindlerHappy Paths: UX Tested, Unicorn Approved -- Katie Swindler
Happy Paths: UX Tested, Unicorn Approved -- Katie Swindler
 
Systems analysis and design (abe)
Systems analysis and design (abe)Systems analysis and design (abe)
Systems analysis and design (abe)
 
Kode etik jurnalistik ifj penafsiran dan praktik
Kode etik jurnalistik ifj penafsiran dan praktikKode etik jurnalistik ifj penafsiran dan praktik
Kode etik jurnalistik ifj penafsiran dan praktik
 
Ch11 z5e solutions
Ch11 z5e solutionsCh11 z5e solutions
Ch11 z5e solutions
 
Sujal enterprise
Sujal enterpriseSujal enterprise
Sujal enterprise
 
Uuriv ja aktiivne õppeviis algklassides
Uuriv ja aktiivne õppeviis algklassidesUuriv ja aktiivne õppeviis algklassides
Uuriv ja aktiivne õppeviis algklassides
 

Plus de iosrjce

Plus de iosrjce (20)

An Examination of Effectuation Dimension as Financing Practice of Small and M...
An Examination of Effectuation Dimension as Financing Practice of Small and M...An Examination of Effectuation Dimension as Financing Practice of Small and M...
An Examination of Effectuation Dimension as Financing Practice of Small and M...
 
Does Goods and Services Tax (GST) Leads to Indian Economic Development?
Does Goods and Services Tax (GST) Leads to Indian Economic Development?Does Goods and Services Tax (GST) Leads to Indian Economic Development?
Does Goods and Services Tax (GST) Leads to Indian Economic Development?
 
Childhood Factors that influence success in later life
Childhood Factors that influence success in later lifeChildhood Factors that influence success in later life
Childhood Factors that influence success in later life
 
Emotional Intelligence and Work Performance Relationship: A Study on Sales Pe...
Emotional Intelligence and Work Performance Relationship: A Study on Sales Pe...Emotional Intelligence and Work Performance Relationship: A Study on Sales Pe...
Emotional Intelligence and Work Performance Relationship: A Study on Sales Pe...
 
Customer’s Acceptance of Internet Banking in Dubai
Customer’s Acceptance of Internet Banking in DubaiCustomer’s Acceptance of Internet Banking in Dubai
Customer’s Acceptance of Internet Banking in Dubai
 
A Study of Employee Satisfaction relating to Job Security & Working Hours amo...
A Study of Employee Satisfaction relating to Job Security & Working Hours amo...A Study of Employee Satisfaction relating to Job Security & Working Hours amo...
A Study of Employee Satisfaction relating to Job Security & Working Hours amo...
 
Consumer Perspectives on Brand Preference: A Choice Based Model Approach
Consumer Perspectives on Brand Preference: A Choice Based Model ApproachConsumer Perspectives on Brand Preference: A Choice Based Model Approach
Consumer Perspectives on Brand Preference: A Choice Based Model Approach
 
Student`S Approach towards Social Network Sites
Student`S Approach towards Social Network SitesStudent`S Approach towards Social Network Sites
Student`S Approach towards Social Network Sites
 
Broadcast Management in Nigeria: The systems approach as an imperative
Broadcast Management in Nigeria: The systems approach as an imperativeBroadcast Management in Nigeria: The systems approach as an imperative
Broadcast Management in Nigeria: The systems approach as an imperative
 
A Study on Retailer’s Perception on Soya Products with Special Reference to T...
A Study on Retailer’s Perception on Soya Products with Special Reference to T...A Study on Retailer’s Perception on Soya Products with Special Reference to T...
A Study on Retailer’s Perception on Soya Products with Special Reference to T...
 
A Study Factors Influence on Organisation Citizenship Behaviour in Corporate ...
A Study Factors Influence on Organisation Citizenship Behaviour in Corporate ...A Study Factors Influence on Organisation Citizenship Behaviour in Corporate ...
A Study Factors Influence on Organisation Citizenship Behaviour in Corporate ...
 
Consumers’ Behaviour on Sony Xperia: A Case Study on Bangladesh
Consumers’ Behaviour on Sony Xperia: A Case Study on BangladeshConsumers’ Behaviour on Sony Xperia: A Case Study on Bangladesh
Consumers’ Behaviour on Sony Xperia: A Case Study on Bangladesh
 
Design of a Balanced Scorecard on Nonprofit Organizations (Study on Yayasan P...
Design of a Balanced Scorecard on Nonprofit Organizations (Study on Yayasan P...Design of a Balanced Scorecard on Nonprofit Organizations (Study on Yayasan P...
Design of a Balanced Scorecard on Nonprofit Organizations (Study on Yayasan P...
 
Public Sector Reforms and Outsourcing Services in Nigeria: An Empirical Evalu...
Public Sector Reforms and Outsourcing Services in Nigeria: An Empirical Evalu...Public Sector Reforms and Outsourcing Services in Nigeria: An Empirical Evalu...
Public Sector Reforms and Outsourcing Services in Nigeria: An Empirical Evalu...
 
Media Innovations and its Impact on Brand awareness & Consideration
Media Innovations and its Impact on Brand awareness & ConsiderationMedia Innovations and its Impact on Brand awareness & Consideration
Media Innovations and its Impact on Brand awareness & Consideration
 
Customer experience in supermarkets and hypermarkets – A comparative study
Customer experience in supermarkets and hypermarkets – A comparative studyCustomer experience in supermarkets and hypermarkets – A comparative study
Customer experience in supermarkets and hypermarkets – A comparative study
 
Social Media and Small Businesses: A Combinational Strategic Approach under t...
Social Media and Small Businesses: A Combinational Strategic Approach under t...Social Media and Small Businesses: A Combinational Strategic Approach under t...
Social Media and Small Businesses: A Combinational Strategic Approach under t...
 
Secretarial Performance and the Gender Question (A Study of Selected Tertiary...
Secretarial Performance and the Gender Question (A Study of Selected Tertiary...Secretarial Performance and the Gender Question (A Study of Selected Tertiary...
Secretarial Performance and the Gender Question (A Study of Selected Tertiary...
 
Implementation of Quality Management principles at Zimbabwe Open University (...
Implementation of Quality Management principles at Zimbabwe Open University (...Implementation of Quality Management principles at Zimbabwe Open University (...
Implementation of Quality Management principles at Zimbabwe Open University (...
 
Organizational Conflicts Management In Selected Organizaions In Lagos State, ...
Organizational Conflicts Management In Selected Organizaions In Lagos State, ...Organizational Conflicts Management In Selected Organizaions In Lagos State, ...
Organizational Conflicts Management In Selected Organizaions In Lagos State, ...
 

Dernier

Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptx
GOWTHAMIM22
 
Tuberculosis (TB)-Notes.pdf microbiology notes
Tuberculosis (TB)-Notes.pdf microbiology notesTuberculosis (TB)-Notes.pdf microbiology notes
Tuberculosis (TB)-Notes.pdf microbiology notes
jyothisaisri
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
US Environmental Protection Agency (EPA), Center for Computational Toxicology and Exposure
 
Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!
University of Hertfordshire
 

Dernier (20)

Introduction and significance of Symbiotic algae
Introduction and significance of  Symbiotic algaeIntroduction and significance of  Symbiotic algae
Introduction and significance of Symbiotic algae
 
Isolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptxIsolation of AMF by wet sieving and decantation method pptx
Isolation of AMF by wet sieving and decantation method pptx
 
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
Molecular and Cellular Mechanism of Action of Hormones such as Growth Hormone...
 
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptxPlasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
Plasmapheresis - Dr. E. Muralinath - Kalyan . C.pptx
 
dkNET Webinar: The 4DN Data Portal - Data, Resources and Tools to Help Elucid...
dkNET Webinar: The 4DN Data Portal - Data, Resources and Tools to Help Elucid...dkNET Webinar: The 4DN Data Portal - Data, Resources and Tools to Help Elucid...
dkNET Webinar: The 4DN Data Portal - Data, Resources and Tools to Help Elucid...
 
Information science research with large language models: between science and ...
Information science research with large language models: between science and ...Information science research with large language models: between science and ...
Information science research with large language models: between science and ...
 
NUMERICAL Proof Of TIme Electron Theory.
NUMERICAL Proof Of TIme Electron Theory.NUMERICAL Proof Of TIme Electron Theory.
NUMERICAL Proof Of TIme Electron Theory.
 
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)PHOTOSYNTHETIC BACTERIA  (OXYGENIC AND ANOXYGENIC)
PHOTOSYNTHETIC BACTERIA (OXYGENIC AND ANOXYGENIC)
 
Tuberculosis (TB)-Notes.pdf microbiology notes
Tuberculosis (TB)-Notes.pdf microbiology notesTuberculosis (TB)-Notes.pdf microbiology notes
Tuberculosis (TB)-Notes.pdf microbiology notes
 
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
 
Lubrication System in forced feed system
Lubrication System in forced feed systemLubrication System in forced feed system
Lubrication System in forced feed system
 
short range interaction for protein and factors influencing or affecting the ...
short range interaction for protein and factors influencing or affecting the ...short range interaction for protein and factors influencing or affecting the ...
short range interaction for protein and factors influencing or affecting the ...
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptxPOST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
POST TRANSCRIPTIONAL GENE SILENCING-AN INTRODUCTION.pptx
 
GBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) EnzymologyGBSN - Biochemistry (Unit 8) Enzymology
GBSN - Biochemistry (Unit 8) Enzymology
 
Abortion uae unmarried price +27791653574 Contact Us Dubai Abu Dhabi Sharjah ...
Abortion uae unmarried price +27791653574 Contact Us Dubai Abu Dhabi Sharjah ...Abortion uae unmarried price +27791653574 Contact Us Dubai Abu Dhabi Sharjah ...
Abortion uae unmarried price +27791653574 Contact Us Dubai Abu Dhabi Sharjah ...
 
Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!Quantifying Artificial Intelligence and What Comes Next!
Quantifying Artificial Intelligence and What Comes Next!
 
In-pond Race way systems for Aquaculture (IPRS).pptx
In-pond Race way systems for Aquaculture (IPRS).pptxIn-pond Race way systems for Aquaculture (IPRS).pptx
In-pond Race way systems for Aquaculture (IPRS).pptx
 
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for...
 
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptxSaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
SaffronCrocusGenomicsThessalonikiOnlineMay2024TalkOnline.pptx
 

On Least Square, Minimum Norm Generalized Inverses of Bimatrices

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 11, Issue 1 Ver. VI (Jan - Feb. 2015), PP 19-34 www.iosrjournals.org DOI: 10.9790/5728-11161934 www.iosrjournals.org 19 | Page On Least Square, Minimum Norm Generalized Inverses of Bimatrices G.Ramesh*, P.Maduranthaki** *Associate Professor of Mathematics, Govt. Arts College(Autonomous), Kumbakonam. **Assistant Professor of Mathematics, Arasu Engineering College, Kumbakonam. Abstract: The characterization of g-inverses, minimum norm g-inverses and least square g-inverses of bimatrices are derived as a generalization of the generalized inverses of matrices. Keywords: g-inverse, minimum norm g-inverse, least square g-inverse. AMS Classification: 15A09, 15A15, 15A57. I. Introduction Let n nC  be the space of n n complex matrices of order n. A matrix 1 2BA A A  is called a bimatrix if 1A and 2A are matrices of same (or) different orders [7,8] and a bimatrix is called unitary if * * B B B B BA A A A I  [8]. For 1 2, n nA A C  , 1 2BA A A  and let  * ,B BA r A and BA denote the conjugate transpose, rank and generalized inverse of the bimatrix BA where BA is the solution of the equation B B B BA X A A [1,4,6]. In general, the generalized inverse BA of BA is not uniquely determined. Since BA is not unique, the set of generalized inverses of BA is some times denoted as  BA . In this paper we analyze the characterization of g-inverse, minimum norm g-inverse and least square g-inverses of bimatrices as a generalization of the g-inverses of matrices [2,3,5] . II. Generalized Inverses of Bimatrices In this section some of the properties of generalized inverses of matrices found in [1,2,3,5] are extended to generalized inverses of bimatrices . Theorem: 2.1 Let B B BH A A  and B B BF A A  . Then the following relations hold : (i) 2 B BH H and 2 B BF F . (ii) ( ) ( ) ( )B B Br H r F r A  (iii)    B Br A r A  (iv)    B B B Br A A A r A   . Proof of (i) Now 2 .B B BH H H   B B B BA A A A          1 2 1 2 1 2 1 2A A A A A A A A               1 2 1 2 1 2 1 2A A A A A A A A           1 1 2 2 1 1 2 2A A A A A A A A          1 1 1 1 2 2 2 2A A A A A A A A        1 1 1 2 2 2 1 2A A A A A A A A      
  • 2. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 20 | Page      1 2 1 2 1 2 1 2A A A A A A A A                 1 2 1 2 1 2 1 2A A A A A A A A             B B B BA A A A   B BA A  .BH Hence , 2 B BH H . Now 2 .B B BF F F   B B B BA A A A          1 2 1 2 1 2 1 2A A A A A A A A           1 1 2 2 1 1 2 2A A A A A A A A            1 1 1 1 2 2 2 2A A A A A A A A           1 2 1 2 1 2 1 2A A A A A A A A            B B B BA A A A   B BA A  = BF . Hence, 2 .B BF F Proof of (ii) Now    B B Br A r A A     B Br A r H (1) Also  Br A  B B Br A A A      1 2 1 2 1 2r A A A A A A          1 1 1 2 2 2r A A A A A A       1 1 2 2 1 2r A A A A A A         1 2 1 2 1 2r A A A A A A        B B Br A A A   B Br H A    B Br A r H (2) From (1) and (2), we get    B Br A r H (3) Now    B B Br A r A A     B Br A r F (4) Also    B B B Br A r A A A      1 2 1 2 1 2r A A A A A A     
  • 3. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 21 | Page     1 1 1 2 2 2r A A A A A A       1 2 1 1 2 2r A A A A A A         1 2 1 2 1 2r A A A A A A        B B Br A A A   B Br A F    B Br A r F (5) From (4) and (5), we get    B Br A r F (6) From (3) and (6) we get      B B Br A r H r F  . (7) Proof of (iii) Now    B B B Br A r A A A      1 2 1 2 1 2r A A A A A A       1 1 1 2 2 2r A A A A A A     1 1 2 2r A A A A     1 2r A A     Br A  Hence,    B Br A r A  . Proof of (iv) Now    B B B B Br A A A r A A   Also we have    B B B B B B Br A A A r A A A A          1 2 1 2 1 2 1 2r A A A A A A A A             1 1 1 1 2 2 2 2r A A A A A A A A         1 2 1 1 1 2 2 2r A A A A A A A A             1 2 1 2 1 2 1 2r A A A A A A A A            B B B Br A A A A       B Br A A   Br H  Br A ( by (7) ) Hence,    B B B Br A A A r A   . Theorem: 2.2 Let BA be a bimatrix, then the following relations hold for a generalized inverse BA of BA . (i)      B BA A    
  • 4. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 22 | Page (ii)  B B B B B BA A A A A A    (iii)      * * * * * B B B B B B B BA A A A A A A A    Proof of (i) Let B B B BA A A A   B B B BA A A A          * 1 2 1 2 1 2 1 2A A A A A A A A           ** * 1 2 1 1 1 2 2 2A A A A A A A A         * * 1 1 1 2 2 2A A A A A A         ** * * * 1 1 1 2 2 2A A A A A A             * ** * * * * * 1 2 1 2 1 2 1 2A A A A A A A A         ** * * B B B BA A A A  Thus      * * B BA A   (8) On the other hand,  * * * B B B BA A A A   and so      * * B BA A         ** B BA A    (9) From (8) and (9), we get      * * B BA A   . Proof of (ii) Let   B B B B B B BG A I A A A A      B B B B B BA A A A A A              1 2 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A A A                         1 2 1 2 1 2 1 2 1 2 1 2BG A A A A A A A A A A A A                       1 2 1 2 1 2 1 2 1 2 1 2BG A A A A A A A A A A A A                            1 2 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A A A                            1 2 1 1 1 1 1 2 2 2 2 2A A A A A A A A A A A A                     1 1 1 1 1 1 2 2 2 2 2 2A A A A A A A A A A A A                     1 1 1 1 1 1 2 2 2 2 2 2A A A A A A A A A A A A            
  • 5. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 23 | Page      1 1 1 1 1 1 2 2 2 2 2 2A A A A A A A A A A A A                              1 1 1 1 1 1 2 2 2 2 2 2A A A A A A A A A A A A                           1 2 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A A A                               1 2 1 2 1 2 1 2 1 2 1 2BG A A A A A A A A A A A A                                    1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B BG G I I A A A A A A A A A A A A A A A A A A A A A A                                                           1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B BG G I I A A A A A A A A A A A A A A A A A A A A A A A A                                    B B B B B B B B B B B B B B BG G I A A A A A A A A A A A A                   B B B B B B B B B B B B B B BG G I A A A A A A A A A A A A            Let B B BB A A  .   B B B B B B B B BG G I B B B B B B        B B B B BI B B B B    0 Hence, 0BG  That is,    0B B B B B BA I A A A A       0B B B B B BA A A A A A     Hence,  B B B B B BA A A A A A    . Proof of (iii) Let BG denote a generalized inverse of B BA A .Then BG is also a generalized inverse of B BA A and 2 B B B G G S    is a symmetric generalized inverse of B BA A . Let  B B B B B B B BH A S A A A A A                1 2 1 2 1 2 1 2 1 2 1 2 1 2BH A A S S A A A A A A A A A A                              1 2 1 2 1 2 1 2 1 2 1 2 1 2BH A A S S A A A A A A A A A A                                  1 2 1 2 1 2 1 2 1 2 1 2 1 2BH A A S S A A A A A A A A A A                        
  • 6. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 24 | Page       1 1 1 2 2 2 1 1 1 1 2 2 2 2A S A A S A A A A A A A A A                       1 1 1 1 1 1 1 2 2 2 2 2 2 2A S A A A A A A S A A A A A                        * * 1 1 1 1 1 1 1 2 2 2 2 2 2 2A S A A A A A A S A A A A A                       1 1 1 1 1 1 1 2 2 2 2 2 2 2A S A A A A A A S A A A A A                                * * 1 1 1 1 1 1 1 2 2 2 2 2 2 2AS A A A A A A S A A A A A                    * * 1 1 1 2 2 2 1 1 1 1 2 2 2 2AS A A S A A A A A A A A A                           * * 1 2 1 2 1 2 1 2 1 2 1 2 1 2A A S S A A A A A A A A A A                                   * * 1 2 1 2 1 2 1 2 1 2 1 2 1 2BH A A S S A A A A A A A A A A                                                   * * 1 2 1 2 1 2 1 2 1 2 1 2 * * 1 2 1 2 1 2 1 2 1 2 1 2 1 2 B BH H A A S S A A A A A A A A A A S S A A A A A A A A A A                                                                  * * 1 2 1 2 1 2 1 2 1 2 * * 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 A A S S A A A A A A A A A A S S A A A A A A A A A A A A                                             * * * * * * B B B B B B B B B B B B B BA S A A A A A S A A A A A A                    * * * * * * * B B B B B B B B B B B B B B B BH H A S A A A A A S A A A A A A               Let  * B B BS A A    * * * * * B B B B B B B B B B B B B BH H A S A S A A S A A A S A      * 0B BH H  . Hence , 0BH  . That is ,  * * * 0B B B B B B BA S A A A A A    .       * * * * * 0B B B B B B B BA A A A A A A A          * * * * * B B B B B B B BA A A A A A A A    .
  • 7. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 25 | Page III. Minimum norm generalized inverses of bimatrices In this section some of the characteristics of minimum norm g-inverses of matrices found in [2,3] are extended to minimum norm g-inverses of bimatrices. Definition: 3.1 A generalized inverse BA that satisfies both B B B BA A A A  and  B B B BA A A A    is called a minimum norm g-inverse of BA and is denoted by  B m A  . Theorem: 3.2 Let BA be a bimatrix, then the following three conditions are equivalent: (i)      * B B B Bm m A A A A    and  B B B Bm A A A A   (ii)   * * B B B Bm A A A A   (iii)    * * B B B B B Bm A A A A A A   . Proof of (i) (ii) From (i),  B B B Bm A A A A      * * B B B Bm A A A A        * 1 2 1 2 1 2m A A A A A A                 * 1 2 1 2 1 2m m A A A A A A              * 1 1 1 2 2 2m m A A A A A A              * * 1 1 1 2 2 2m m A A A A A A           * * * * * * 1 1 1 2 2 2m m A A A A A A             * * * * * * 1 2 1 2 1 2( )m m A A A A A A               * * * B B Bm A A A         * * B B Bm A A A     * B B Bm A A A   Hence,   * * B B B Bm A A A A   . Proof of (ii) (iii) From (ii),  * * B B B Bm A A A A   Postmultiply by  * B B BA A A  on both sides      * * * * B B B B B B B B B Bm A A A A A A A A A A                * * * * 1 2 1 2 1 2 1 2 1 2 1 2m m A A A A A A A A A A A A                 * * * * 1 1 1 2 2 2 1 1 2 2 1 2m m A A A A A A A A A A A A      
  • 8. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 26 | Page           * * * * 1 1 1 2 2 2 1 1 2 2 1 2m m A A A A A A A A A A A A                  * * * * 1 1 1 2 2 2 1 1 2 2 1 2m m A A A A A A A A A A A A                     * * * * 1 1 2 2 1 2 1 2 1 2 1 2m m A A A A A A A A A A A A                        * ** * 1 1 2 2 1 1 2 2 1 2 1 2m m A A A A A A A A A A A A                       * * 1 1 2 2 1 1 2 2 1 1 2 2m m A A A A A A A A A A A A                    * 1 2 1 2 1 1 2 2B Bm m A A A A A A A A A A             B B B B B Bm A A A A A A      B B B Bm A A A A    ( by definition 3.1) ( )B m BA A  ( by definition 3.1) Hence,    * * B B B B B Bm A A A A A A   . Proof of (iii) (i) From (ii) of theorem (2.2),  * * B B B B B BA A A A A A   Replace BA by * BA we get     * * * * * * B B B B B BA A A A A A     * * * * B B B B B BA A A A A A           * * * * * * * 1 2 1 2 1 2 1 2 1 2BA A A A A A A A A A A               * * * * * * 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A                   * * * * * * 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A                   * * * * * * 1 1 1 1 2 2 2 2 1 2A A A A A A A A A A            * * * * * * 1 1 1 1 2 2 2 2 1 2A A A A A A A A A A               * * * * * * 1 2 1 1 2 2 1 2 1 2A A A A A A A A A A             * * * B B B B BA A A A A        * * B B B Bm A A A A   ( by (iii))     * * B B B Bm A A A A          * * 1 2 1 2 1 2B m m A A A A A A A                * * 1 1 1 2 2 2m m A A A A A A        
  • 9. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 27 | Page       * * * 1 1 1 2 2 2m m A A A A A A           * * * * 1 1 1 2 2 2m m A A A A A A             * * 1 2 1 2 1 2m m A A A A A A              * * B B B B m A A A A   Premultiply by  * * B B BA A A  on both sides         * * * * * * B B B B B B B B B B m A A A A A A A A A A             * * B B B B B Bm m m A A A A A A     ( by (iii))    * * B B m A A   ( by(ii))    * B Bm A A   Hence,      * B B B Bm m A A A A    . Also, from (iii) of theorem (2.2),      * * * * * B B B B B B B BA A A A A A A A    Replace BA by * BA we get           * * * ** * * * * * * * B B B B B B B BA A A A A A A A               * * * * * B B B B B B B BA A A A A A A A              * * * * * 1 2 1 2 1 2 1 2B Bm A A A A A A A A A A                * * * * * 1 2 1 1 2 2 1 2A A A A A A A A                  * * * * * 1 2 1 1 2 2 1 2A A A A A A A A                   * * * * * 1 2 1 1 2 2 1 2A A A A A A A A                 * * * * * 1 1 1 1 2 2 2 2A A A A A A A A               * * * * * * 1 1 1 1 2 2 2 2A A A A A A A A                    * ** ** * * * 1 1 1 1 2 2 2 2A A A A A A A A                       * ** * 1 1 1 1 2 2 2 2A A A A A A A A     
  • 10. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 28 | Page          * ** * 1 2 1 2 1 2 1 2A A A A A A A A           ** B B B BA A A A     * B B B BA A A A    B B B BA A A A   ( by definition 3.1)  B B B Bm A A A A    ( by definition 3.1) Premultiply by BA on both sides,  B B B B B Bm A A A A A A     B B B Bm A A A A   ( by definition 3.1) Hence,  B B B Bm A A A A   . Theorem: 3.3 Let BA be a bimatrix, then the following relations hold for a minimum norm generalized inverse  B m A  of BA : (i) One choice of  * B B m A A  is      * .B Bm m A A   (ii) One choice of    1 B Bm m A A     where  is a non- zero scalar. (iii) One choice of  B B B m U A V  is  B B Bm V A U   where BU and BV are unitary bimatrices. (iv)      * * * B B B B B B mm A A A A A A    . Proof of (i) Now   * * * 1 2 1 2B BA A A A A A   * * 1 1 2 2A A A A     * * * 1 1 2 2B B m m A A A A A A        * * 1 1 2 2m m A A A A            * * 1 1 2 2m mm m A A A A               * * 1 2 1 2m mm m A A A A                * * 1 2 1 2m m m A A A A                 * 1 2 Bm m m A A A           * B Bm m A A    . Hence,        * * B B B Bm mm A A A A     .
  • 11. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 29 | Page Proof of (ii) Now    1 2B m m A A A        1 2 m A A        1 2m m A A         1 1 1 2m m A A           1 1 2m m A A      1 B m A   Hence ,    1 B Bm m A A     . Proof of (iii)       1 2 1 2 1 2B B B m m U A V U U A A V V       1 1 1 2 2 2 m U AV U AV       1 1 1 2 2 2m m U AV U AV                1 1 1 2 2 2m m m m m m V A U V A U                      * * * * * * * * 1 1 1 1 1 1 1 2 2 2 2 2 2 2m m V VV A U U U V V V A U U U        since    * * B B B Bm A A A A                * * * * 1 1 1 1 1 2 2 2 2 2m m V I A U I V I A U I         ( Since 1 2 1 2, , &U U V V are unitary matrices )      * * * * 1 1 1 2 2 2m m V A U V A U            * * * * 1 2 1 2 1 2m m V V A A U U        * * B B Bm V A U   . Hence,    * * B B B B B Bm m U A V V A U    . Proof of (iv)         * * * * * * 1 2 1 2 1 2 1 2B B B Bm m A A A A A A A A A A A A          * * * * 1 1 2 2 1 1 2 2m A A A A A A A A          * * * * 1 1 2 2 1 1 2 2m m A A A A A A A A               * * * * 1 1 1 1 2 2 2 2m mm m A A A A A A A A                 * * * * 1 1 1 1 2 2 2 2m m m m A A A A A A A A                     * * * * 1 2 1 1 1 2 2 2m m m m A A A A A A A A          
  • 12. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 30 | Page              * * * * 1 2 1 2 1 2 1 2m m m m A A A A A A A A                    * * B B B Bm m A A A A       * * B Bm A A   ( by (ii) of theorem 3.2)    * B B m A A   Hence,      * * * B B B B B B mm A A A A A A    . IV. Least Square Generalized Inverses of Bimatrices In this section some of the characteristics of least square g-inverses of matrices found in [2,3,5] are extended to least square g-inverses of bimatrices . Definition: 4.1 A generalized inverse BA that satisfies both B B B BA A A A  and  * B B B BA A A A   is called a least square generalized inverse bimatrix of BA and is denoted by B l A  . Theorem: 4.2 Let BA be a bimatrix, then the following three conditions are equivalent: (i)  B B B Bl A A A A   and     B B B Bl l A A A A    (ii)  * * B B B Bl A A A A   (iii)    * * B B B B B Bl A A A A A A   . Proof of (i) (ii) From (i),  B B B Bl A A A A      * * B B B Bl A A A A            * 1 2 1 2 1 2B l l A A A A A A A             * 1 1 1 2 2 2l l A A A A A A          1 1 1 2 2 2l l A A A A A A            * * * * * * 1 1 1 2 2 2l l A A A A A A               * * * * * * 1 2 1 2 1 2l l A A A A A A               * * * B B Bl A A A          * * B B B l A A A    * B B B l A A A  
  • 13. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 31 | Page Hence ,  * * B B B Bl A A A A   . Proof of (ii) (iii) From (ii),  * * B B B Bl A A A A   Premultiply by  * B B BA A A  on both sides      * * * * B B B B B B B B B B l A A A A A A A A A A                  * * * * 1 2 1 2 1 2 1 2 1 2 1 2l l A A A A A A A A A A A A                       * * * * 1 2 1 2 1 2 1 2 1 2 1 2l l A A A A A A A A A A A A                         * * * * 1 2 1 2 1 2 1 2 1 2 1 2l l A A A A A A A A A A A A                      * * * * 1 1 1 1 1 1 2 2 2 2 2 2l l A A A A A A A A A A A A                * ** * 1 1 1 1 1 1 2 2 2 2 2 2l l A A A A A A A A A A A A       ( by (i) theorem 2.2)               * * * * 1 2 1 2 1 2 1 2 1 2 1 2l l A A A A A A A A A A A A                * B B B B B B l A A A A A A        B B B B B B l A A A A A A       B B B B B B l A A A A A A    ( by definition 4.1)   B B B B l A A A A   ( by definition 4.1)  B B l A A   ( by definition 4.1) Hence,    * * B B B B B Bl A A A A A A   . Proof of (iii) (i) From (iii) of theorem (2.2),      * * * * * B B B B B B B BA A A A A A A A               * * * * * 1 2 1 2 1 2 1 2B B l A A A A A A A A A A       ( by (iii))        * * * * * 1 2 1 2 1 2 1 2A A A A A A A A                   * * * * * 1 2 1 2 1 2 1 2A A A A A A A A                 * * * * 1 1 1 1 2 2 2 2A A A A A A A A               * * * * 1 1 1 1 2 2 2 2A A A A A A A A      
  • 14. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 32 | Page           * ** ** * * * 1 1 1 1 2 2 2 2A A A A A A A A                          * ** * * ** * 1 1 1 1 2 2 2 2A A A A A A A A                     * ** * 1 1 1 1 2 2 2 2A A A A A A A A               * * * * 1 2 1 2 1 2 1 2A A A A A A A A           * B B B BA A A A      * B B B BA A A A    B B B BA A A A   ( by definition 4.1)  B B B Bl A A A A    ( by definition 4.1) Postmultiply by BA on both sides  B B B B B Bl A A A A A A     B B B Bl A A A A   ( by definition 4.1) Hence ,  B B B Bl A A A A   . Also, from (ii) of theorem (2.4),  * * B B B B B BA A A A A A      * * * * B B B B B BA A A A A A            * * * * * 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A                    * * * * * 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A                     * * * * * 1 2 1 2 1 2 1 2 1 2A A A A A A A A A A                   * * * * * * 1 1 1 1 1 2 2 2 2 2A A A A A A A A A A                    * ** ** * * * * * 1 1 1 1 1 2 2 2 2 2A A A A A A A A A A           * ** * * * 1 1 1 1 1 2 2 2 2 2A A A A A A A A A A            * * * * * * 1 1 1 1 1 2 2 2 2 2A A A A A A A A A A           * * * * * * 1 1 1 1 1 2 2 2 2 2A A A A A A A A A A              * * * * * * 1 2 1 2 1 1 2 2 1 2A A A A A A A A A A               * * * * 1 2 B B B BA A A A A A       
  • 15. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 33 | Page  * * B B B B l A A A A   ( by (iii))      *** * B B B B l A A A A          *** * * * 1 2 1 2 1 2 1 2 l A A A A A A A A               * * * 1 2 1 2 1 2 1 2l l A A A A A A A A                 * * * 1 1 1 2 2 2B l l A A A A A A A              * * * * 1 1 1 2 2 2l l A A A A A A           * * * * 1 1 1 2 2 2l l A A A A A A              * * * * 1 2 1 2 1 2l l A A A A A A             * * B B B Bl A A A A   Postmultiply by  * * B B BA A A  on both sides        * * * * * * B B B B B B B B B Bl A A A A A A A A A A               * * B B B B B Bl l l A A A A A A     ( by (iii) )    * * B Bl A A   ( by (ii) )    * B B l A A   Hence,    * B B l A A  =  B B l A A  . Theorem: 4.3 Let BA be a bimatrix, then the following relations hold for a least square generalized inverse  B l A  of BA : (i)    1 B Bl l A A     where  is a non zero scalar. (ii) One choice of    * * B B B B B Bl l U A V V A U    where BU and BV are unitary bimatrices. Proof of (i) Now    1 2B l l A A A        1 2 l A A          1 2l l A A         1 1 1 2l l A A           1 1 2l l A A      1 B l A   Hence,    1 B Bl l A A     .
  • 16. On Least Square, Minimum Norm Generalized Inverses of Bimatrices DOI: 10.9790/5728-11161934 www.iosrjournals.org 34 | Page Proof of (ii) Now       1 2 1 2 1 2B B B l l U A V U U A A V V          1 1 1 2 2 2 l U AV U AV       1 1 1 2 2 2l l U AV U AV                  1 1 1 2 2 2l l l l l l V A U V A U                      * * * * * * * * 1 1 1 1 1 1 1 2 2 2 2 2 2 2l l V V V A U U U V V V A U U U            * * since B B B Bl A A A A                * * * * 1 1 1 1 1 2 2 2 2 2l l I V A I U I V A I U         (since 1 2 1 2, ,U U V and V are unitary bimatrices)      * * * * 1 1 1 2 2 2l l V A U V A U            * * * * 1 2 1 2 1 2l l V V A A U U        * * B B Bl V A U   Hence,    * * B B B B B Bl l U A V V A U    . References [1]. Ben Isreal.A and Greville.T.N.E, Generalized Inverse: Theory and Applications, Wiley-Interscience, New York, 1994. [2]. Campbell.S.L and Meyer.C.D, Generalized Inverses of Linear Transformations,Society for Industrial and Applied Mathematics,Philadelphia, 2009. [3]. Haruo Yanai, Kei Takeuchi, Yashio Takane, Projection Matrices, Geneneralized Inverse Matrices, and Singular Value Decomposition, Springer, New York, 2011. [4]. Penrose.R, A generalized Inverse for Matrices, Proc. Cambridge Phil. Soc., Vol.51, 1955, (PP 406-413). [5]. Radhakrishna Rao.C, Calculus of Generalized Inverses of Matrices Part-I: General Theory, Sankhya, Series A, Vol.29, No. 3, September 1967, (PP 317-342). [6]. Radhakrishna Rao.C and Sujit Kumar Mitra, Generalised Inverse of a matrix and its Applications, Wiley, New York, 1971. [7]. Ramesh.G. and Maduranthaki.P, On Unitary Bimatrices, International Journal of Current Research, Vol.6, Issue 09, September 2014, (PP 8395-8407). [8]. Ramesh.G. and Maduranthaki.P, On Some properties of Unitary and Normal Bimatrices, International Journal of Recent Scientific Research, Vol.5, Issue10 , October 2014, ( PP 1936-1940).