SlideShare une entreprise Scribd logo
1  sur  7
Télécharger pour lire hors ligne
Gastroenterol Hepatol. 2005;28(Supl 2):3-9 3
INSUFICIENCIA PANCREÁTICA EXOCRINA. ¿CÓMO SE PRODUCE?
¿CUÁNDO Y CÓMO DIAGNOSTICARLA? ¿CÓMO TRATARLA?
Fisiología de la secreción pancreática
J. Sastrea
, L. Sabaterb
y L. Aparisic
a
Departamento de Fisiología. Universitat de València. Valencia.
b
Servicio de Cirugía General. Hospital Clínico. Valencia.
c
Servicio de Aparato Digestivo. Hospital Clínico. Valencia. España.
99.646
ESTRUCTURA DEL PÁNCREAS EXOCRINO
El páncreas es una glándula mixta compuesta por 2 tipos
de tejido, endocrino y exocrino, que se agrupan formando
lóbulos macroscópicamente visibles y separados entre sí
por septos de tejido conjuntivo que contienen vasos san-
guíneos, linfáticos y nervios. En humanos, aproximada-
mente un 80-85% del volumen pancreático está compues-
to por la porción principal de tejido que es de naturaleza
exocrina, un 10-15% corresponde a la matriz extracelular
y los vasos, mientras que la porción endocrina constituye
alrededor del 2%1
. Las células endocrinas se sitúan en el
espesor del tejido exocrino formando acumulaciones que
se denominan islotes de Langerhans, de los que hay alre-
dedor de un millón, distribuidos por toda la glándula y
rodeados por una rica red capilar donde realizan su secre-
ción.
El páncreas exocrino está formado por los ácinos y el sis-
tema ductal2
. Cada unidad funcional básica está formada
por células secretoras acinares, células centroacinares y
células ductales, dispuestas en grupos redondeados o tu-
bulares (fig. 1A). Las células acinares tienen morfología
poligonal o piramidal, con el vértice dirigido hacia la luz
central del ácino. El núcleo se localiza en situación basal
y el citoplasma contiene abundante retículo endoplásmico
rugoso que le confiere una intensa basofilia. Las células
acinares tienen además un aparato de Golgi grande, ro-
deado de numerosos gránulos acidófilos o gránulos de
zimógeno, que están provistos de membrana, y que con-
tienen en su interior las enzimas constituyentes de la se-
creción pancreática (fig. 1B). En la membrana basolateral
de las células acinares hay receptores para las hormonas y
los neurotransmisores que regulan su secreción3
. Las cé-
lulas ductales y centroacinares tienen características simi-
lares: son cuboideas, con citoplasma claro, núcleo ovala-
do, aparato de Golgi y retículo endoplasmático poco
Correspondencia: Dr. L. Aparisi.
Servicio de Aparato Digestivo. Hospital Clínico.
Avda. Blasco Ibáñez, 17. 46010 Valencia. España.
Correo electrónico: aparisi_lui@gva.es
desarrollados y sin gránulos. La diferencia entre ambos ti-
pos celulares reside en su localización con respecto a las
células acinares. Las centroacinares se localizan hacia la
luz del ácino al inicio de los conductos intercalares, mien-
tras que las ductales forman estos conductos intercalares.
Los conductos intercalares concurren para formar los con-
ductos intralobulares, que a su vez van confluyendo para
formar los interlobulares. Finalmente, éstos irán conver-
giendo hasta formar los conductos pancreáticos principa-
les, el de Wirsung y el de Santorini.
SECRECIONES DEL PÁNCREAS EXOCRINO
Características del jugo pancreático
El jugo pancreático es un líquido incoloro, acuoso, de
densidad entre 1.007 y 1.035 según la concentración de
proteínas, con pH alcalino, que contiene 2 tipos de secre-
ciones: la enzimática y la hidroelectrolítica. La enzimáti-
ca es la causante de la hidrólisis de las sustancias nutriti-
vas de los alimentos, mientras que la hidroelectrolítica
actúa como vehículo de la enzimática y proporciona un
medio alcalino, necesario para la actuación de las enzi-
mas. Para ello se precisa la neutralización del quimo
ácido procedente del estómago que entra en el duodeno,
gracias a la alta concentración de bicarbonato tan caracte-
rística de esta secreción4
.
El volumen de secreción de jugo pancreático oscila entre
0,2-0,3 ml/min en condiciones basales y 5 ml/min cuando
se estimula de forma adecuada; el volumen total diario
oscila entre 1 y 4 l1,5-7
.
Secreción hidroelectrolítica
Las células centroacinares y las ductales son las encarga-
das de la secreción hidroelectrolítica del páncreas exocri-
no. Esta secreción está constituida principalmente por
agua, en un 98%, y es muy rica en sodio y bicarbonato.
Los cationes se encuentran en concentraciones relativa-
Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
4 Gastroenterol Hepatol. 2005;28(Supl 2):3-9
SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA
A
B
Gránulos
de
zimógeno
Célula
acinar
Células
paracinares
Células
ductales
Basolateral
SecretinaCO2 Na+ HCO3–
+
CO2
H2O
AC
H+ + HCO3–
+
HCO3–
+
CI–
Luminal
CI–
+
CFTR
Fig. 2. Mecanismo de secreción de bicarbonato en las células ductales
del páncreas. Efecto de la secretina. AC: anhidrasa carbónica; CFTR:
regulador de la conductancia transmembrana de la fibrosis quística.
mente constantes similares a las del plasma; los principa-
les son sodio (154 ± 7 mEq/l), potasio (4,8 ± 0,9 mEq/l),
calcio (1,7 ± 0,3 mEq/l) y magnesio (0,27 ± 0,08 mEq/l)8
.
En cuanto a los aniones, son fundamentalmente el cloro y
el bicarbonato. Este último procedente tanto de la hidrata-
ción del CO2 catalizada por la anhidrasa carbónica (espe-
cialmente la isoenzima II), presente en las células ducta-
les y centroacinares, como por cotransporte con Na+
a
través de la membrana basolateral9,10
. El cloro y el bicar-
bonato se encuentran en concentraciones variables; con el
flujo de secreción aumenta la de bicarbonato, y disminu-
ye proporcionalmente la de cloro para mantener su suma
constante (154 ± 10 mEq/l)7
.
Figs. 1A y B. Esquema de la estructu-
ra microscópica del ácino pancreático
y de la célula acinar.
La secreción hidroelectrolítica es estimulada principal-
mente por la secretina, que controla, por tanto, el volu-
men de jugo pancreático. Esta hormona provoca el
aumento de secreción de bicarbonato por las células
ductales y centroacinares al activar la adenilciclasa y au-
mentar el adenosín monofosfato cíclico (AMPc)6
. El
mecanismo por el cual el AMPc aumenta la secreción de
bicarbonato implica principalmente la activación de un
tipo de canal de cloro en la membrana luminal, identifi-
cado como el regulador de la conductancia transmem-
brana de la fibrosis quística, cuya alteración está rela-
cionada con esta emfermedad. La activación de este
canal de cloro aumenta la secreción de este anión en la
luz ductal, y como este incremento está acoplado a un
–
intercambiador de Cl–
/HCO3 de la membrana luminal,
se produce la sustitución de cloro por bicarbonato; el re-
sultado final es el aumento de bicarbonato en la luz duc-
tal6
. La secretina, además de activar al intercambiador
–
de Cl–
/HCO3 en la membrana luminal, estimula al co-
–
transportador de Na+
-HCO3 en la membrana basolate-
–
ral. Ambos efectos favorecen la secreción de HCO3 ha-
cia la luz ductal (fig. 2). Finalmente, se ha propuesto la
existencia de un gradiente electroquímico que a su vez
–
favorecería la secreción de HCO3 a través de canales de
conductancia a aniones10
.
Secreción enzimática
El páncreas posee una gran capacidad de síntesis de pro-
teínas, y de hecho se considera que es el órgano que ma-
yor cantidad de proteínas produce por gramo de tejido.
Las células acinares son las encargadas de la síntesis y la
secreción de las enzimas y proenzimas, que según la fun-
Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
Gastroenterol Hepatol. 2005;28(Supl 2):3-9 5
SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA
TABLA I. Enzimas del jugo pancreático
Enzima Zimógeno Activador Función-acción
Tripsina Tripsinógeno Enteroquinasa Rompe enlaces peptídicos
Quimotripsina Quimotripsinógeno Tripsina Rompe enlaces peptídicos
Elastasa Proelastasa Tripsina Rompe enlaces peptídicos
Carboxipeptidasa A Procarboxipeptidasa A Tripsina Escinde restos de Fen, Tir y Trp del extremo carboxiterminal de un polipéptido
Carboxipeptidasa B Procarboxipeptidasa B Tripsina Escinde restos de Arg y Lis del extremo carboxiterminal de un polipéptido
Fosfolipasa A2 Profosfolipasa A2 Tripsina Escinde AG de los fosfolípidos (p. ej., lecitina)
Amilasa – – Digiere el almidón a pequeños polímeros de Glu, maltosa y Glu
Lipasa – – Escinde AG del glicerol
Carboxilesterasa – – Hidroliza ésteres de colesterol
Ribonucleasa – – Escinde ARN para formar cadenas cortas
Desoxirribonucleasa – – Escinde ADN para formar cadenas cortas
AG: ácido graso; Arg: arginina; Fen: fenilalanina; Glu: glucosa; Lis: lisina; Tir: tirosina, Trp: triptófano.
ción que desarrollan se clasifican en 4 grupos: proteolíti-
cas, lipolíticas, glucolíticas y nucleolíticas (tabla I).
La síntesis de las enzimas digestivas tiene lugar en el re-
tículo endoplásmico rugoso, desde donde son transpor-
tadas al aparato de Golgi. Allí experimentan diversas
modificaciones postraduccionales, especialmente glicosi-
lación, se concentran y, posteriormente, son transportadas
a los gránulos de zimógeno. La secreción de las enzimas
digestivas tiene lugar mediante exocitosis, que incluye el
desplazamiento de los gránulos secretores hacia la mem-
brana apical, y el reconocimiento de un lugar de la mem-
brana plasmática para la fusión.
La especificidad de la expresión de las enzimas digestivas
en los ácinos se debe a la presencia del PCE (pancreas
consensus element) en los promotores de los genes, el cual
regula la transcripción de sus ARN mensajeros (ARNm)11
.
El factor transcripcional PTF-1 es esencial para la expre-
sión de las enzimas digestivas y está presente de forma se-
lectiva en el páncreas exocrino donde se une al PCE.
La mayoría de las enzimas pancreáticas se secretan en for-
ma de zimógenos o proenzimas inactivas, para evitar la au-
todigestión y la consiguiente lesión del propio páncreas.
Junto con estas proenzimas, el páncreas secreta el péptido
inhibidor de tripsina, que evita su activación antes de llegar
al duodeno. A este nivel el tripsinógeno se convierte en trip-
sina por acción de la enterocinasa o enteropeptidasa de la
mucosa duodenal, y esta tripsina produce la activación en
cascada del resto de las proenzimas pancreáticas. En la acti-
vación del tripsinógeno a tripsina se liberan pequeños pépti-
dos denominados péptidos de activación del tripsinógeno.
Las enzimas proteolíticas activas procedentes del jugo pan-
creático pueden ser de 2 tipos: endopeptidasas —mayorita-
riamente serinproteasas— y exopeptidasas. Las endopepti-
dasas hidrolizan enlaces peptídicos en lugares específicos
de las cadenas polipeptídicas, y en este caso son la tripsina,
la quimotripsina y la elastasa. La tripsina escinde enlaces
peptídicos de los que forma parte el grupo carboxílico de
un aminoácido básico, como la lisina o la arginina4
. La qui-
motripsina hidroliza enlaces peptídicos en los que intervie-
nen grupos carbonilo de aminoácidos aromáticos. La elas-
tasa humana presenta 2 isoformas: la elastasa 1 o proteasa
E y la elastasa 2. La proteasa E actúa específicamente en
enlaces en los que participan la alanina, la isoleucina, la
valina y los hidroxiaminoácidos. En cambio, la elastasa 2
actúa en la proteína elastina hidrolizando preferentemente
enlaces peptídicos de los que forma parte un aminoácido
neutro con radical alifático4
. Las exopeptidasas del jugo
pancreático son la carboxipeptidasa A y B. La primera hi-
droliza enlaces peptídicos en el extremo carboxiterminal,
liberando cualquier tipo de aminoácido excepto arginina,
lisina y prolina. La carboxipeptidasa B también hidroliza
enlaces peptídicos carboxiterminales, pero sólo cuando el
aminoácido carboxiterminal es arginina o lisina.
En cuanto a las enzimas glucolíticas, la amilasa es una
α-1,4-glucosidasa que participa en la digestión de los po-
lisacáridos hidrolizando enlaces α-1-4. Por lo que respec-
ta a las enzimas lipolíticas, la lipasa pancreática actúa so-
bre los triacilglicéridos para dar ácidos grasos libres y
monoacilglicéridos. Para que la lipasa sea plenamente ac-
tiva requiere de la denominada activación de interfase
con la colipasa, formando un complejo de anclaje en la
interfase hidrófoba/hidrofílica, en presencia de sales bilia-
res. La colipasa es una glucoproteína hidrófoba formada a
partir de la procolipasa de la secreción pancreática por ac-
ción de la tripsina. La fosfolipasa A2 hidroliza el enlace
éster en posición 2 de los fosfolípidos para liberar ácidos
grasos y lisofosfolípidos. Esta enzima tiene una gran im-
portancia en la patogenia de las enfermedades pancreáti-
cas por su capacidad para destruir las membranas fosfoli-
pídicas y para dar lugar a la lisolecitina, con efecto
citotóxico por su marcado efecto detergente5
. La activi-
dad de la carboxilesterasa está muy aumentada en presen-
cia de sales biliares y actúa principalmente hidrolizando
ésteres de colesterol y de retinol4
. La secreción enzimáti-
ca también incluye ribonucleasas y desoxirribonucleasas,
que son fosfodiesterasas capaces de hidrolizar los enlaces
fosfodiésteres de los ácidos nucleicos.
Por tanto, las enzimas digestivas pancreáticas participan
en la hidrólisis tanto de proteínas como de glúcidos, lípi-
dos y ácidos nucleicos, y desempeñan un papel clave en
la digestión de los principios inmediatos.
REGULACIÓN DE LA SECRECIÓN DEL PÁNCREAS
EXOCRINO
Fases de la secreción del páncreas exocrino
En la secreción del páncreas exocrino se distinguen 2 pe-
ríodos, el interdigestivo y el digestivo-posprandial12
. En
el período interdigestivo la secreción pancreática es esca-
Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
6 Gastroenterol Hepatol. 2005;28(Supl 2):3-9
SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA
sa, cíclica y está relacionada con las 4 fases interdigesti-
vas de la motilidad gastrointestinal, y es máxima en la
fase III13
. La duración y la tasa de secreción durante estas
fases varían considerablemente incluso en los mismos in-
dividuos, y dependen de la hora del día, el estado de con-
ciencia y el tiempo de ayuno. Se considera que este perío-
do interdigestivo está bajo el control de mecanismos
nerviosos y hormonales. La regulación nerviosa se realiza
mediante control principalmente parasimpático, con co-
nexiones enteropancreáticas. El sistema nervioso simpáti-
co influye inhibiendo la secreción y la motilidad interdi-
gestiva. Las hormonas con un mayor papel en este
período son la motilina y el polipéptido pancreático, que
estimulan e inhiben, respectivamente, la secreción. Se
considera que esta regulación interdigestiva es importante
para desalojar o limpiar el tracto gastrointestinal superior
de partículas alimentarias, descamación celular y flora in-
testinal. Así, cuando sucede una alteración en la regula-
ción hay frecuentemente un sobrecrecimiento bacteriano.
En el período digestivo se produce la mayor secreción
exocrina del páncreas, inducida por los estímulos hormo-
nales y nerviosos provocados por los alimentos. Clásica-
mente se reconocen en este período 3 fases: cefálica, gás-
trica e intestinal.
La fase cefálica es desencadenada por vía vagal mediante
un estímulo psíquico, la vista, el olfato y, especialmente,
la masticación. La fase gástrica está mediada por un me-
canismo colinérgico, tras la distensión gástrica, además
de que la llegada del bolo alimenticio al estómago libera
gastrina, estímulo, aunque débil, de la secreción pancreá-
tica. El ritmo de vaciamiento de los alimentos desde el es-
tómago modula la siguiente fase o fase intestinal, que
constituye el período en que se produce el mayor flujo de
secreción pancreática exocrina. La cuantía de la secreción
pancreática en esta fase depende de los principios inme-
diatos que llegan al duodeno (tipo, cantidad, propiedades
físicas), de la concentración de sales biliares, de la secre-
ción ácida que llega del estómago y de la concentración
de las propias enzimas pancreáticas en la luz intestinal.
La secreción pancreática está mayoritariamente regulada
por el área duodenal. En ella, la liberación de colecisto-
quinina (CCK) causa más de la mitad de la secreción en-
zimática posprandial, actuando indirectamente mediante
un mecanismo reflejo colinérgico duodenopancreático14
.
Regulación neurohormonal
Las secreciones del páncreas exocrino están reguladas
principalmente por 2 hormonas intestinales: la secretina,
que estimula la secreción hidroelectrolítica, y la CCK, que
estimula la secreción rica en enzimas. La secretina se libe-
ra hacia la sangre por la mucosa del intestino delgado
como respuesta a los productos de digestión de los lípidos
y, sobre todo, al ácido, mientras que la CCK se libera por
el intestino delgado como respuesta a los productos de di-
gestión de los lípidos y de las proteínas. Otras hormonas
con efecto en la secreción pancreática exocrina son la in-
sulina, que la estimula, y el glucagón, la somatostatina y el
polipéptido pancreático (PP), que la inhiben. La regula-
ción nerviosa corre a cargo del sistema nervioso parasim-
pático, que estimula la secreción a través de vías vagales
colinérgicas, y el simpático, que inhibe la secreción. La
acetilcolina es el neurotransmisor más importante en la re-
gulación de la secreción pancreática exocrina. No obstan-
te, no podemos olvidar el papel de los neuropéptidos, que
también son liberados por la importante inervación del
páncreas4,5
. El polipéptido intestinal vasoactivo (PIV) es el
neuropéptido que desempeña el papel más importante en
la regulación, y su acción es estimular la secreción hidro-
electrolítica. El polipéptido liberador de gastrina (PLG)
estimula la secreción enzimática, mientras que el neuro-
péptido Y inhibe la secreción exocrina, principalmente por
su potente acción vasoconstrictora. En cualquier caso, la
regulación hormonal no se puede separar de la nerviosa ya
que están íntimamente relacionadas. De hecho, tal y como
se comenta más adelante, la CCK ejerce sus acciones indi-
rectamente actuando sobre las aferencias vagales.
El estudio reciente más profundo de los receptores de
CCK en células acinares ha permitido demostrar la exis-
tencia de una relación muy estrecha entre la regulación
hormonal y el control nervioso de la secreción pancreá-
tica exocrina en condiciones fisiológicas. Así, se ha ob-
servado que la CCK actúa a través de las vías vagales
colinérgicas para estimular la secreción pancreática exo-
crina14
. Se han encontrado 2 tipos de receptores de CCK
en los ácinos pancreáticos: receptores CCK-A o de tipo 1,
y receptores CCK-B o de tipo 2. Los receptores CCK-A
son específicos de la CCK, mientras que tanto la gastrina
como la CCK se unen a los CCK-B con alta afinidad15
.
Los receptores CCK-A son mayoritarios en ácinos pan-
creáticos de roedores y en nervios aferentes del vago,
pero los ácinos humanos carecen de receptores CCK-A
funcionales y sólo expresan los receptores CCK-B. Los
ácinos humanos muestran una intensa respuesta a la acti-
vación de receptores colinérgicos muscarínicos, pero no
responden a concentraciones fisiológicas de CCK y sólo
lo hacen a muy altas concentraciones de esta hormona.
Aunque los receptores de la CCK son diferentes en roe-
dores y en humanos, el mecanismo productor de las ac-
ciones fisiológicas de esta hormona es similar en ambas
especies. La atropina inhibe completamente la secreción
pancreática de enzimas inducida por dosis fisiológicas de
CCK, que originan concentraciones hormonales similares
a las posprandiales, tanto en ratas como en humanos14
. La
vagotomía tiene el mismo efecto en ratas16
. Estos resulta-
dos indican que la estimulación de la secreción pancreáti-
ca por la CCK tiene lugar de forma indirecta por vías co-
linérgicas vagales. Además, se ha demostrado que estas
vías vagales aferentes tienen su origen en la mucosa gas-
troduodenal16
. Anteriormente ya se conocía que la CCK
actúa por medio de las vías vagales aferentes para produ-
cir saciedad y disminuir el vaciado gástrico.
Los receptores CCK-A pueden presentar un estado de alta
afinidad y otro de baja afinidad. El efecto de la CCK en la
secreción pancreática está mediado por los receptores
CCK-A vagales de alta afinidad, mientras que su efecto
en la saciedad está mediado por los receptores CCK-A
Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
Gastroenterol Hepatol. 2005;28(Supl 2):3-9 7
SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA
Vías vagales
eferentes
Vías vagales aferentes
LSO
Secreción enzimática
CCK
CE
CMD
****
** *
****
******** * * * * *
Péptidos
Aminoácidos
Ácidos grasos
Glúcidos
CCK
Serotonina
Ach
PIV
PLGFig. 3. Regulación neurohormonal de
la fase intestinal de la secreción enzi-
mática del páncreas. Ach: acetilcolina;
CE: célula enterocromafín; CMD: cé-
lula de la mucosa duodenal; CCK: co-
lecistocinina; PIV: polipéptido inhibi-
dor vasoactivo; PLG: polipéptido
liberador de gastrina.
vagales de baja afinidad14
. Estos efectos de la CCK se
atribuyen a la hormona liberada endógenamente en el or-
ganismo, que es heterogénea ya que está formada por di-
versos polipéptidos, de los que destacan las formas CCK-
58, CCK-33 y CCK-8.
Por otro lado, la secreción pancreática posprandial rica en
enzimas está controlada principalmente tanto por la CCK
de las células de la mucosa duodenal como por la seroto-
nina liberada por las células enterocromafines de la mu-
cosa intestinal, que estimula el reflejo vagovagal y activa
las neuronas posganglionares colinérgicas del páncreas14
.
La serotonina es liberada por las células cromafines ante
estímulos osmóticos, mecánicos o por la presencia de glú-
cidos —especialmente disacáridos—, y actúa de forma
paracrina activando las terminales vagales aferentes de la
mucosa intestinal (fig. 3). La interacción sinérgica entre
la CCK y la serotonina en las vías aferentes vagales ex-
plicaría la intensa secreción pancreática posprandial que
tiene lugar con un pequeño incremento de la CCK plas-
mática en el período posprandial14
.
Regulación por retroalimentación
La secreción pancreática exocrina también está regulada
por retroalimentación negativa por las enzimas pancreáti-
cas en el duodeno, particularmente por la tripsina. De he-
cho, cuando se deriva la secreción fuera del duodeno se
incrementa la secreción pancreática, y la administración
intraluminal de tripsina puede inhibir tanto esta secreción
como el incremento de la CCK. Por tanto, después de
las comidas la tripsina que queda libre inhibe la secreción
de CCK y la secreción pancreática. Dos péptidos intralu-
minales, uno de ellos denominado péptido liberador de
CCK, parecen mediar el efecto de la tripsina en la secre-
ción enzimática17
. Ambos péptidos estimulan la secreción
de CCK y son inactivados por la tripsina. También se ha
descrito un péptido liberador de secretina intraluminal
que participaría en el efecto de la tripsina en la secreción
hidroelectrolítica. Este péptido activa la secreción de se-
cretina y es inactivado por la tripsina18
.
Por otro lado, existe un mecanismo de retroalimentación
negativa que implica al páncreas endocrino. La estimula-
Vasos sanguíneos
ción vagal colinérgica que se produce en el período pos-
prandial no solamente estimula a los ácinos pancreáticos,
sino que también actúa en los islotes de Langerhans para
que secreten el PP. Esta hormona actúa de forma presi-
náptica en las vías vagales reduciendo la liberación de
acetilcolina y, por tanto, inhibe la secreción hidroelectro-
lítica y enzimática del páncreas exocrino6
.
Inhibición por nutrientes y sales biliares
Se han descrito efectos inhibidores de la secreción pan-
creática exocrina por parte de nutrientes, sales biliares y
algunas hormonas gastrointestinales. Los aminoácidos y
la glucosa disminuyen la secreción pancreática. Así, un
aumento de los valores sanguíneos de aminoácidos o la
hiperglucemia producen inhibición de la secreción pan-
creática inducida por la ingesta o por estimulación con
CCK. El glucagón y la somatostatina parecen mediar la
inhibición por aminoácidos y glucosa, mientras que el
péptido YY causaría un efecto inhibidor de los ácidos
grasos. La concentración de sales biliares en el duodeno
también afecta a la secreción pancreática. Así, un aumen-
to de su concentración en el duodeno provoca una dismi-
nución en la tasa de secreción enzimática del páncreas y,
por el contrario, su disminución produce un aumento de
la liberación de CCK y de la secreción enzimática19
.
Finalmente, la infusión intracolónica de ácido oleico tam-
bién inhibe la secreción pancreática exocrina, al igual que
la perfusión de hidratos de carbono o grasas en el íleon a
suficiente concentración. No obstante, cuando se perfun-
den hidratos de carbono a concentraciones fisiológicas en
el íleon en la fase posprandial, se observa un incremento
selectivo de la amilasa con una disminución global del
resto de la secreción enzimática20
.
Vías de señalización intracelular en la regulación
y la secreción de las células acinares
Los mecanismos de señalización intracelular implicados
en la estimulación neurohormonal de las células acinares
se han demostrado con el uso de preparaciones in vitro de
Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
8 Gastroenterol Hepatol. 2005;28(Supl 2):3-9
SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA
células acinares de animales de experimentación. Me-
diante el uso de ligandos marcados radiactivamente y de
antagonistas específicos, se han caracterizado los recepto-
res de la CCK, la secretina, la acetilcolina, la neuromedi-
na C (PLG o equivalente de bombesina en mamíferos), la
sustancia P y el PIV6,15
. Estos receptores están situados en
la membrana plasmática basolateral de las células acina-
res y están acoplados a proteínas G. Se dividen en 2 cate-
gorías: en una de ellas están los receptores de secretina y
PIV, y en la otra los receptores de la CCK, la acetilcolina,
la bombesina y la sustancia P6
. La unión de la secretina o
del PIV a su receptor da lugar a la activación de la adeni-
latociclasa, con el consiguiente incremento del AMPc in-
tracelular y activación de las proteincinasas dependientes
de AMPc. En la segunda categoría de receptores, la unión
del ligando específico estimula el metabolismo de los fos-
foinositoles de membrana, lo que conduce a un incremen-
to del Ca2
++
citoplasmático. Concretamente, se produce la
hidrólisis del fosfatidilinositol 4,5-difosfato mediante
la fosfolipasa C, liberando 1,2-diacilglicerol e inositol
1,4,5-trifosfato. Este último induce la liberación intrace-
lular de calcio desde depósitos no mitocondriales, dando
lugar a la activación de proteinquinasas dependientes del
calcio y de la calcineurina (o proteinfosfatasa 2B)15
. Por
otro lado, el diacilglicerol activa la proteinquinasa C. To-
dos estos mecanismos mencionados participan en la se-
creción enzimática de las células acinares.
Además, existe un efecto sinérgico en la secreción cuan-
do actúan simultáneamente agonistas que actúan vía
AMPc junto con agonistas que lo hacen vía Ca2
++6
. Por
ello, la combinación de pequeños aumentos de ambos ti-
pos de hormonas puede producir un incremento significa-
tivo de la secreción en condiciones fisiológicas.
INTEGRACIÓN DE LA FUNCIÓN EXOCRINA
PANCREÁTICA EN LOS PROCESOS DIGESTIVOS.
RESERVA FUNCIONAL
La perfusión en el duodeno de lípidos, proteínas y glúci-
dos produce diferentes respuestas secretorias. Las grasas
producen una intensa y duradera respuesta secretora; las
proteínas también producen estímulo de la secreción aun-
que de menor cuantía; los glúcidos son los que menos du-
ración e intensidad secretoria producen.
Los lípidos constituyen, generalmente, una de las mayo-
res fuentes calóricas de la ingesta. En el mundo occiden-
tal la ingesta de grasas varía por término medio entre 90 y
140 g/día, a los que se añaden unos 40-50 g depositados
en el intestino de carácter endógeno. La mayor parte está
compuesta por triglicéridos (TG), cuya digestión y absor-
ción se efectúa con una gran eficacia. La hidrólisis de los
TG se inicia mediante la lipasa gástrica (resistente al pH
ácido), previa emulsión del bolo alimenticio en el estóma-
go, lo que supone un 20-30% de la digestión lipídica to-
tal. La digestión de los lípidos se produce mayoritaria-
mente en el duodeno y en el yeyuno. Para ello, se necesita
el concurso simultáneo de diferentes agentes, como las
sales biliares —que permiten la emulsión con formación
de micelas mixtas de lípidos-sales biliares, aumentando la
superficie sobre la que actúan las enzimas digestivas—, el
bicarbonato —que mantiene el pH duodenal por encima
de 5—, la colipasa pancreática —cofactor de activación
de la lipasa—, y especialmente de la lipasa pancreática,
que efectúa la hidrólisis de los triglicéridos. El páncreas
dispone funcionalmente de una gran reserva secretora que
rebasa hasta 10 veces las necesidades digestivas de la nu-
trición normal, tanto de lípidos como de proteínas. De
esta forma, cuando esta capacidad se reduce a menos del
10%, aparece esteatorrea y creatorrea, los signos caracte-
rísticos de la insuficiencia pancreática21
. Adicionalmente,
la fosfolipasa A2 hidroliza los fosfolípidos y la carboxi-
lesterasa contribuye a la absorción de las vitaminas lipo-
solubles. En general, la digestión de las grasas no tiene
mecanismos complementarios en la mucosa intestinal,
por lo que un fallo significativo de la reserva funcional
exocrina del páncreas producirá su deficiente digestión,
en contra de lo que ocurre con las proteínas y los hidratos
de carbono, donde existen mecanismos compensatorios
en la pared intestinal.
Las proteínas de la dieta suponen en el mundo occidental,
por término medio, unos 70-100 g/día, a lo que se añaden
unos 30-50 g de proteína endógena (secreciones, desca-
mación celular, moco, etc.). Su digestión se produce por
la secreción gástrica, pancreática y de la mucosa intesti-
nal. Las diferentes proteasas que proceden de la secreción
pancreática —tripsina, quimotripsina, elastasa, carboxi-
peptidasas— normalmente hidrolizan mayoritariamente
las proteínas de la ingesta. Al igual que con la lipasa, para
que se realice la acción hidrolítica de estas enzimas es ne-
cesario un pH superior a 5 en la luz intestinal. La existen-
cia de mecanismos compensatorios a esta acción de las
enzimas pancreáticas, como la pepsina gástrica —resis-
tente a pH ácido—, y las dipeptidasas y tripeptidasas de
la mucosa intestinal permiten que la insuficiencia pancre-
ática en la digestión de las proteínas sea menos frecuente.
Por lo general, en los países occidentales los glúcidos
constituyen entre el 40 y el 50% de las calorías ingeridas,
entre 200 y 300 g/día. Son consumidas principalmente en
forma de polisacáridos —almidón—, y además como di-
sacáridos —lactosa, sacarosa— o monosacáridos —glu-
cosa, fructosa—. Su digestión se produce inicialmente
por la α-amilasa salival, sobre todo parotídea, que al lle-
gar al estómago es progresivamente inactivada por el pH
ácido, y posteriormente en el duodeno por la secreción
pancreática de α-amilasa, enzima que escinde las uniones
α-1-4 glucosídicas, completando la digestión las disacari-
dasas y la α-dextrinasa del borde en cepillo de la mucosa
intestinal.
La digestión y absorción de los principios inmediatos es
normalmente muy eficiente y casi completa en el yeyuno;
las cantidades anómalamente altas en el íleon tienen un
efecto inhibidor de la secreción pancreática, como ya se
ha señalado anteriormente.
Aunque hay ciertas evidencias de la adaptación de la se-
creción pancreática a la dieta en función de su composi-
ción en principios inmediatos, existen controversias entre
los resultados obtenidos en animales y en humanos. En
animales de experimentación, el incremento de la ingesta
Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
Gastroenterol Hepatol. 2005;28(Supl 2):3-9 9
SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA
de un nutriente induce un aumento de las enzimas que lo
hidrolizan, con disminución del resto de las enzimas di-
gestivas22
. En humanos se ha observado que aumentando
la proporción calórica de lípidos y proteínas de la dieta
durante 2 semanas se induce un aumento global del volu-
men de secreción de las enzimas pancreáticas. Sin embar-
go, cuando este incremento de la proporción calórica es
efectuado con glúcidos, con reducción de lípidos y proteí-
nas, disminuye subsiguientemente la secreción pancreáti-
ca —incluida la amilasa— tanto del período posprandial
como del interdigestivo23
.
BIBLIOGRAFÍA
1. Klein AS, Lillemoe KD, Yeo ChJ, Pitt HA. Liver, biliary tract
and pancreas. En: O’Leary JP, editor. The physiologic basis of
surgery. 2nd ed. Blatimore: Williams & Wilkins; 1996. p. 441-
78.
2. Bockman DE. Histology and fine structure of the pancreas. En:
Beger HG, Warshaw AL, Büchler MW, Carr-Locke DL, Neop-
tolemos JP, Russell Ch, et al, editors. The pancreas. Oxford:
Blackwell Science Ltd; 1998. p. 19-26.
3. Gardner JD, Jensen RT. Receptors for secretagogues on pancre-
atic acinar cells. En: Go VL, Gardner JD, DiMagno EP, Levent-
hal E, Reber H, Scheele GA, editors. The exocrine pancreas:
biology, pathobiology and disease. 2nd ed. New York: Raven;
1993. p. 151-66.
4. Sánchez-Bernal C, San Román García JI, López Rodríguez
MA, Calvo Andrés JJ. Fisiología y bioquímica del páncreas.
En: Navarro S, Pérez-Mateo M, Guarner L, editores. Tratado de
páncreas exocrino. Barcelona: J&C Ediciones Médicas; 2002.
p. 11-34.
5. Orejas B, Ruiz de Aguiar A. Fisiología del páncreas exocrino.
En: Tresguerres J.A.F., editor. Fisiología humana. Madrid: Mc-
Graw-Hill-Interamericana; 1993. p. 792-803
6. Pandol SJ. Pancreatic physiology and secretory testing. En:
Feldman M, Scharschmidt BF, Sleisenger MH, editors. Sleisen-
ger & Fordtran’s gastrointestinal and liver disease. 6th ed. Phi-
ladelphia: WB Saunders Company; 1998. p. 771-82.
7. Carter DC. Physiology of the pancreas. En: Trede M, Carter
DC, editors. Surgery of the pancreas. 2nd ed. New York: Chur-
chill Livingstone; 1997. p. 29-48.
8. Ribet A, Vaysse N, Clemente F. Fisiología del páncreas exocri-
no. En: Meyer, editor. Fisiología humana. Barcelona: Salvat;
1985. p. 273-308.
9. Marino CR, Jeanes V, Boron WF, Schmitt BM. Expression and
–
distribution of the Na+
-HCO3 cotransporter in human pancreas.
Am J Physiol. 1999;40:G487-94.
10. Ishiguro H, Naruse S, San Romá, JI, Case M, Steward MC.
Pancreatic ductal bicarbonate secretion: past, present and futu-
re. JOP. J. Pancreas. 2001;2 Suppl 4:192-7.
11. MacDonald RJ, Swift GA. Transgenic analysis of pancreatic se-
cretion and development. En: Go VLW, Gardner JD, DiMagno
EP, Leventhal E, Reber H, Scheele GA, editors. The exocrine
pancreas: biology, pathobiology and disease. 2nd ed. New
York: Raven; 1993. p. 87-101.
12. Metzger A, DiMagno EP. Enzymes and digestion. En: Beger
HG, Warshaw AL, Büchler MW, Carr-Locke DL, Neoptolemos
JP, Russell Ch, et al, editors. The pancreas. Oxford: Blackwell
Science Ltd; 1998. p. 147-60.
13. Keane IB, DiMagno EP, Malagelada JR. Duodenogastric reflux
in humans: its relationship to fasting antroduodenal motility and
gastric, pancreatic, and biliary secretion. Gastroenterology.
1981;81:726-31.
14. Owyang C, Logsdon CD. New insights into neurohormonal re-
gulation of pancreatic secretion. Gastroenterology. 2004;127:
957-69.
15. Williams JA. Intracellular signaling mechanisms activated by
cholecystokinin-regulating synthesis and secretion of digestive
enzymes in pancreatic acinar cells. Annu Rev Physiol. 2001;63:
77-97.
16. Li Y, Owyang C. Mechanism underlying pancreatic adaptation
following vagotomy: mediation by recruitment of CCK-sensiti-
ve intrapancreatic neurons [abstract]. Gastroenterology. 1993;
104:A318.
17. Liddle RA. Regulation of cholecystokinin secretion by intralu-
minal releasing factors. Am J Physiol. 1995;269:G319.
18. Li P, Chang TM, Chey WY. Neuronal regulation of the release
and action of secretin-releasing peptide and secretion. Am J
Physiol. 1995;69:G305.
19. Koop I, Koop H, Gerhardt C, Schafmayer A, Arnold R. Do bile
acids exert a negative feed-back control of cholecystokinin rele-
ase? Scand J Gastroenterol. 1989;24:315-20.
20. Jain NK, Boivin M, Zinsmeister AR, DiMagno EP. The ileum
and carbohydrate mediated feedback regulation of postprandial
pancreaticobiliary secretion in normal humans. Pancreas. 1991;
6:495-505.
21. DiMagno EP, Go VLW, Summerskill WHJ. Relation between
pancreatic enzyme outputs and malabsorption in severe pancre-
atic insufficiency. N Engl J Med. 1973;288:813-5.
22. Brannon PM. Adaptation of the exocrine pancreas to diet. Ann
Rev Nutr. 1990;10:85-105.
23. Boivin M, Lanspa SJ, Zinsmesiter AR, Go VLW, DiMagno EP.
Are diets associated with different rates of human interdigestive
and postprandial pancreactic enzyme secretion? Gastroentero-
logy. 1990;99:1763-71.
Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.

Contenu connexe

Tendances

72905961 cuestionario-fisiologia-hepatica
72905961 cuestionario-fisiologia-hepatica72905961 cuestionario-fisiologia-hepatica
72905961 cuestionario-fisiologia-hepaticaEDWINOMARMARTINEZ2
 
Metabolismo y nutrición ´´ informacion basica para estudiantes de medicina, q...
Metabolismo y nutrición ´´ informacion basica para estudiantes de medicina, q...Metabolismo y nutrición ´´ informacion basica para estudiantes de medicina, q...
Metabolismo y nutrición ´´ informacion basica para estudiantes de medicina, q...Jorge Luis Estrada Gonzalez
 
FISIOLOGIA DE LOS ERITROCITOS - JOSE MOJICA
FISIOLOGIA DE LOS ERITROCITOS - JOSE MOJICAFISIOLOGIA DE LOS ERITROCITOS - JOSE MOJICA
FISIOLOGIA DE LOS ERITROCITOS - JOSE MOJICAguest2891d6f
 
Formación de orina 2
Formación de orina 2Formación de orina 2
Formación de orina 2Yanin Ancona
 
DESCRIPCION DEL FUNCIONAMIENTO HEPATICO.
DESCRIPCION DEL FUNCIONAMIENTO HEPATICO.DESCRIPCION DEL FUNCIONAMIENTO HEPATICO.
DESCRIPCION DEL FUNCIONAMIENTO HEPATICO.lqc_miguel
 
Filtrado glomerular y reabsorción de sodio y agua
Filtrado glomerular y reabsorción de sodio y aguaFiltrado glomerular y reabsorción de sodio y agua
Filtrado glomerular y reabsorción de sodio y aguaChristian Barzola
 
33 metab hígado medicina
33 metab hígado medicina33 metab hígado medicina
33 metab hígado medicinaLeticia KN
 
Fisiología ii mód.ii función renal upet primavera 2021
Fisiología ii mód.ii  función renal upet primavera 2021Fisiología ii mód.ii  función renal upet primavera 2021
Fisiología ii mód.ii función renal upet primavera 2021PerlaRamos17
 
Fisiologia del tubulo proximal
Fisiologia del tubulo proximalFisiologia del tubulo proximal
Fisiologia del tubulo proximalluis rodriguez
 
FisiologíA De La SecrecióN GáStrica
FisiologíA De La SecrecióN GáStricaFisiologíA De La SecrecióN GáStrica
FisiologíA De La SecrecióN GáStricaHector Castro
 
Clase de higado web 6 2010
Clase de higado web 6 2010Clase de higado web 6 2010
Clase de higado web 6 2010Chechi Mansilla
 

Tendances (20)

72905961 cuestionario-fisiologia-hepatica
72905961 cuestionario-fisiologia-hepatica72905961 cuestionario-fisiologia-hepatica
72905961 cuestionario-fisiologia-hepatica
 
Metabolismo y nutrición ´´ informacion basica para estudiantes de medicina, q...
Metabolismo y nutrición ´´ informacion basica para estudiantes de medicina, q...Metabolismo y nutrición ´´ informacion basica para estudiantes de medicina, q...
Metabolismo y nutrición ´´ informacion basica para estudiantes de medicina, q...
 
Renal I
Renal IRenal I
Renal I
 
Fisiologia 2014 Dra Piñango
Fisiologia 2014 Dra PiñangoFisiologia 2014 Dra Piñango
Fisiologia 2014 Dra Piñango
 
FISIOLOGIA DE LOS ERITROCITOS - JOSE MOJICA
FISIOLOGIA DE LOS ERITROCITOS - JOSE MOJICAFISIOLOGIA DE LOS ERITROCITOS - JOSE MOJICA
FISIOLOGIA DE LOS ERITROCITOS - JOSE MOJICA
 
Formación de orina 2
Formación de orina 2Formación de orina 2
Formación de orina 2
 
Fisiologia hepática
Fisiologia hepáticaFisiologia hepática
Fisiologia hepática
 
DESCRIPCION DEL FUNCIONAMIENTO HEPATICO.
DESCRIPCION DEL FUNCIONAMIENTO HEPATICO.DESCRIPCION DEL FUNCIONAMIENTO HEPATICO.
DESCRIPCION DEL FUNCIONAMIENTO HEPATICO.
 
Filtrado glomerular y reabsorción de sodio y agua
Filtrado glomerular y reabsorción de sodio y aguaFiltrado glomerular y reabsorción de sodio y agua
Filtrado glomerular y reabsorción de sodio y agua
 
33 metab hígado medicina
33 metab hígado medicina33 metab hígado medicina
33 metab hígado medicina
 
Biología
BiologíaBiología
Biología
 
Fisiología ii mód.ii función renal upet primavera 2021
Fisiología ii mód.ii  función renal upet primavera 2021Fisiología ii mód.ii  función renal upet primavera 2021
Fisiología ii mód.ii función renal upet primavera 2021
 
Fisiorenal
Fisiorenal Fisiorenal
Fisiorenal
 
49.fisiologia del higado
49.fisiologia del higado49.fisiologia del higado
49.fisiologia del higado
 
Bomba de calcio
Bomba de calcioBomba de calcio
Bomba de calcio
 
Hepat Pancrea
Hepat PancreaHepat Pancrea
Hepat Pancrea
 
Tubulo contorneado proximal
Tubulo contorneado proximalTubulo contorneado proximal
Tubulo contorneado proximal
 
Fisiologia del tubulo proximal
Fisiologia del tubulo proximalFisiologia del tubulo proximal
Fisiologia del tubulo proximal
 
FisiologíA De La SecrecióN GáStrica
FisiologíA De La SecrecióN GáStricaFisiologíA De La SecrecióN GáStrica
FisiologíA De La SecrecióN GáStrica
 
Clase de higado web 6 2010
Clase de higado web 6 2010Clase de higado web 6 2010
Clase de higado web 6 2010
 

Similaire à Lipasa

regulaciondelpotasiomediointerno2024nefrologia
regulaciondelpotasiomediointerno2024nefrologiaregulaciondelpotasiomediointerno2024nefrologia
regulaciondelpotasiomediointerno2024nefrologiaMargarethPealozaaria
 
Diapositivas de Sistema Digestivo II.pptx
Diapositivas de Sistema Digestivo II.pptxDiapositivas de Sistema Digestivo II.pptx
Diapositivas de Sistema Digestivo II.pptxJosselyn Reina
 
2010 tema 04 cirrosis hepática word
2010 tema 04 cirrosis hepática word2010 tema 04 cirrosis hepática word
2010 tema 04 cirrosis hepática wordArianna Crachiolo
 
Clase 11 sistema renal: estructura y función del nefrón
Clase 11 sistema renal: estructura y función del nefrónClase 11 sistema renal: estructura y función del nefrón
Clase 11 sistema renal: estructura y función del nefróncami941986
 
funcion hepatica
funcion hepaticafuncion hepatica
funcion hepaticaQUIRON
 
Pncreasexocrinoyglndulassalivales 101017230641-phpapp01
Pncreasexocrinoyglndulassalivales 101017230641-phpapp01Pncreasexocrinoyglndulassalivales 101017230641-phpapp01
Pncreasexocrinoyglndulassalivales 101017230641-phpapp01ROSS DARK
 
Úlcera Péptica- Fisiopatología
Úlcera Péptica- FisiopatologíaÚlcera Péptica- Fisiopatología
Úlcera Péptica- Fisiopatologíazavala_andrea
 
Fenomenos que ocurren a nivel del tubulo contorneado proximal
Fenomenos que ocurren a nivel del tubulo contorneado proximalFenomenos que ocurren a nivel del tubulo contorneado proximal
Fenomenos que ocurren a nivel del tubulo contorneado proximalluis rodriguez
 
Insuficiencia Renal. Definición y características
Insuficiencia Renal. Definición y característicasInsuficiencia Renal. Definición y características
Insuficiencia Renal. Definición y característicasjulieta99c
 
ESTÓMAGO-PÁNCREAS. estomago pancreas, estomago
ESTÓMAGO-PÁNCREAS. estomago pancreas, estomagoESTÓMAGO-PÁNCREAS. estomago pancreas, estomago
ESTÓMAGO-PÁNCREAS. estomago pancreas, estomagodavidmartinruiz123
 

Similaire à Lipasa (20)

Fisiologia de la secrecion pancreatica
Fisiologia de la secrecion pancreaticaFisiologia de la secrecion pancreatica
Fisiologia de la secrecion pancreatica
 
regulaciondelpotasiomediointerno2024nefrologia
regulaciondelpotasiomediointerno2024nefrologiaregulaciondelpotasiomediointerno2024nefrologia
regulaciondelpotasiomediointerno2024nefrologia
 
Diapositivas de Sistema Digestivo II.pptx
Diapositivas de Sistema Digestivo II.pptxDiapositivas de Sistema Digestivo II.pptx
Diapositivas de Sistema Digestivo II.pptx
 
Sindrome nefritico
Sindrome nefriticoSindrome nefritico
Sindrome nefritico
 
2010 tema 04 cirrosis hepática word
2010 tema 04 cirrosis hepática word2010 tema 04 cirrosis hepática word
2010 tema 04 cirrosis hepática word
 
Clase 11 sistema renal: estructura y función del nefrón
Clase 11 sistema renal: estructura y función del nefrónClase 11 sistema renal: estructura y función del nefrón
Clase 11 sistema renal: estructura y función del nefrón
 
funcion hepatica
funcion hepaticafuncion hepatica
funcion hepatica
 
Histología hepática
Histología hepáticaHistología hepática
Histología hepática
 
Pncreasexocrinoyglndulassalivales 101017230641-phpapp01
Pncreasexocrinoyglndulassalivales 101017230641-phpapp01Pncreasexocrinoyglndulassalivales 101017230641-phpapp01
Pncreasexocrinoyglndulassalivales 101017230641-phpapp01
 
Histologia
HistologiaHistologia
Histologia
 
Úlcera Péptica- Fisiopatología
Úlcera Péptica- FisiopatologíaÚlcera Péptica- Fisiopatología
Úlcera Péptica- Fisiopatología
 
Histologia parte 2
Histologia parte 2Histologia parte 2
Histologia parte 2
 
Fenomenos que ocurren a nivel del tubulo contorneado proximal
Fenomenos que ocurren a nivel del tubulo contorneado proximalFenomenos que ocurren a nivel del tubulo contorneado proximal
Fenomenos que ocurren a nivel del tubulo contorneado proximal
 
Potasio expooo
Potasio expoooPotasio expooo
Potasio expooo
 
Insuficiencia Renal. Definición y características
Insuficiencia Renal. Definición y característicasInsuficiencia Renal. Definición y características
Insuficiencia Renal. Definición y características
 
Sistema excretor
Sistema excretorSistema excretor
Sistema excretor
 
nefronas
nefronasnefronas
nefronas
 
electrocardiograma
electrocardiograma electrocardiograma
electrocardiograma
 
Fisiologia renal
Fisiologia renalFisiologia renal
Fisiologia renal
 
ESTÓMAGO-PÁNCREAS. estomago pancreas, estomago
ESTÓMAGO-PÁNCREAS. estomago pancreas, estomagoESTÓMAGO-PÁNCREAS. estomago pancreas, estomago
ESTÓMAGO-PÁNCREAS. estomago pancreas, estomago
 

Dernier

Patologías de los eritrocitos-Histologia
Patologías de los eritrocitos-HistologiaPatologías de los eritrocitos-Histologia
Patologías de los eritrocitos-Histologia Estefa RM9
 
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICACONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICAmjaicocr
 
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfClase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfgarrotamara01
 
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)UDMAFyC SECTOR ZARAGOZA II
 
Relacion final de ingresantes 23.11.2020 (2).pdf
Relacion final de ingresantes 23.11.2020 (2).pdfRelacion final de ingresantes 23.11.2020 (2).pdf
Relacion final de ingresantes 23.11.2020 (2).pdfAlvaroLeiva18
 
Historia Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaHistoria Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaJorge Enrique Manrique-Chávez
 
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)UDMAFyC SECTOR ZARAGOZA II
 
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.sczearielalejandroce
 
ANÁLISIS ORGANOLÉPTICOS EXPOSICION (2).pptx
ANÁLISIS ORGANOLÉPTICOS EXPOSICION (2).pptxANÁLISIS ORGANOLÉPTICOS EXPOSICION (2).pptx
ANÁLISIS ORGANOLÉPTICOS EXPOSICION (2).pptxRazorzen
 
Clase 14 Articulacion del Codo y Muñeca 2024.pdf
Clase 14 Articulacion del Codo y Muñeca 2024.pdfClase 14 Articulacion del Codo y Muñeca 2024.pdf
Clase 14 Articulacion del Codo y Muñeca 2024.pdfgarrotamara01
 
Radiologia_de_Urgencias_y_Emergencias_3deg_Ed.pdf
Radiologia_de_Urgencias_y_Emergencias_3deg_Ed.pdfRadiologia_de_Urgencias_y_Emergencias_3deg_Ed.pdf
Radiologia_de_Urgencias_y_Emergencias_3deg_Ed.pdfAntonioRicardoOrrego
 
Revista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdfRevista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdfleechiorosalia
 
PLANTAS MEDICINALES EN HONDURAS EN UN HUERTO CASERO
PLANTAS MEDICINALES EN HONDURAS  EN UN HUERTO CASEROPLANTAS MEDICINALES EN HONDURAS  EN UN HUERTO CASERO
PLANTAS MEDICINALES EN HONDURAS EN UN HUERTO CASEROSeoanySanders
 
Sistema Nervioso Periférico (1).pdf
Sistema Nervioso Periférico      (1).pdfSistema Nervioso Periférico      (1).pdf
Sistema Nervioso Periférico (1).pdfNjeraMatas
 
AGENTES FÍSICOS EN FISIOTERAPIA (CFF OPHYSIO)
AGENTES FÍSICOS EN FISIOTERAPIA (CFF OPHYSIO)AGENTES FÍSICOS EN FISIOTERAPIA (CFF OPHYSIO)
AGENTES FÍSICOS EN FISIOTERAPIA (CFF OPHYSIO)FidoPereira
 
Cuidados de enfermeria en RN con bajo peso y prematuro.pdf
Cuidados de enfermeria en RN con bajo peso y prematuro.pdfCuidados de enfermeria en RN con bajo peso y prematuro.pdf
Cuidados de enfermeria en RN con bajo peso y prematuro.pdfHelenReyes29
 
PRIMEROS AUXILIOS BOMBEROS 2024 actualizado
PRIMEROS AUXILIOS BOMBEROS 2024 actualizadoPRIMEROS AUXILIOS BOMBEROS 2024 actualizado
PRIMEROS AUXILIOS BOMBEROS 2024 actualizadoNestorCardona13
 
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
SEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptxSEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptx
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptxArian753404
 
HEMORROIDES, presentación completa. pptx
HEMORROIDES, presentación completa. pptxHEMORROIDES, presentación completa. pptx
HEMORROIDES, presentación completa. pptxbv3087012023
 
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptxSangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptxCarlos Quiroz
 

Dernier (20)

Patologías de los eritrocitos-Histologia
Patologías de los eritrocitos-HistologiaPatologías de los eritrocitos-Histologia
Patologías de los eritrocitos-Histologia
 
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICACONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
CONTROL DE CALIDAD EN LA INDUSTRIA FARMACEUTICA
 
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdfClase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
Clase 15 Artrologia mmii 1 de 3 (Cintura Pelvica y Cadera) 2024.pdf
 
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
(2024-04-30). ACTUALIZACIÓN EN PREP FRENTE A VIH (PPT)
 
Relacion final de ingresantes 23.11.2020 (2).pdf
Relacion final de ingresantes 23.11.2020 (2).pdfRelacion final de ingresantes 23.11.2020 (2).pdf
Relacion final de ingresantes 23.11.2020 (2).pdf
 
Historia Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en OdontologíaHistoria Clínica y Consentimiento Informado en Odontología
Historia Clínica y Consentimiento Informado en Odontología
 
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
(2024-04-29)Actualización en profilaxis PrEP frente a VIH. (DOC)
 
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
Flashcard Anatomía del Craneo: Neurocráneo y Vicerocráneo.
 
ANÁLISIS ORGANOLÉPTICOS EXPOSICION (2).pptx
ANÁLISIS ORGANOLÉPTICOS EXPOSICION (2).pptxANÁLISIS ORGANOLÉPTICOS EXPOSICION (2).pptx
ANÁLISIS ORGANOLÉPTICOS EXPOSICION (2).pptx
 
Clase 14 Articulacion del Codo y Muñeca 2024.pdf
Clase 14 Articulacion del Codo y Muñeca 2024.pdfClase 14 Articulacion del Codo y Muñeca 2024.pdf
Clase 14 Articulacion del Codo y Muñeca 2024.pdf
 
Radiologia_de_Urgencias_y_Emergencias_3deg_Ed.pdf
Radiologia_de_Urgencias_y_Emergencias_3deg_Ed.pdfRadiologia_de_Urgencias_y_Emergencias_3deg_Ed.pdf
Radiologia_de_Urgencias_y_Emergencias_3deg_Ed.pdf
 
Revista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdfRevista de psicología sobre el sistema nervioso.pdf
Revista de psicología sobre el sistema nervioso.pdf
 
PLANTAS MEDICINALES EN HONDURAS EN UN HUERTO CASERO
PLANTAS MEDICINALES EN HONDURAS  EN UN HUERTO CASEROPLANTAS MEDICINALES EN HONDURAS  EN UN HUERTO CASERO
PLANTAS MEDICINALES EN HONDURAS EN UN HUERTO CASERO
 
Sistema Nervioso Periférico (1).pdf
Sistema Nervioso Periférico      (1).pdfSistema Nervioso Periférico      (1).pdf
Sistema Nervioso Periférico (1).pdf
 
AGENTES FÍSICOS EN FISIOTERAPIA (CFF OPHYSIO)
AGENTES FÍSICOS EN FISIOTERAPIA (CFF OPHYSIO)AGENTES FÍSICOS EN FISIOTERAPIA (CFF OPHYSIO)
AGENTES FÍSICOS EN FISIOTERAPIA (CFF OPHYSIO)
 
Cuidados de enfermeria en RN con bajo peso y prematuro.pdf
Cuidados de enfermeria en RN con bajo peso y prematuro.pdfCuidados de enfermeria en RN con bajo peso y prematuro.pdf
Cuidados de enfermeria en RN con bajo peso y prematuro.pdf
 
PRIMEROS AUXILIOS BOMBEROS 2024 actualizado
PRIMEROS AUXILIOS BOMBEROS 2024 actualizadoPRIMEROS AUXILIOS BOMBEROS 2024 actualizado
PRIMEROS AUXILIOS BOMBEROS 2024 actualizado
 
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
SEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptxSEGUNDA  Y  TERCERA  SEMANA  DEL  DESARROLLO  EMBRIONARIO.pptx
SEGUNDA Y TERCERA SEMANA DEL DESARROLLO EMBRIONARIO.pptx
 
HEMORROIDES, presentación completa. pptx
HEMORROIDES, presentación completa. pptxHEMORROIDES, presentación completa. pptx
HEMORROIDES, presentación completa. pptx
 
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptxSangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
Sangrado Uterino Anormal. Dr Carlos Quiroz_052747.pptx
 

Lipasa

  • 1. Gastroenterol Hepatol. 2005;28(Supl 2):3-9 3 INSUFICIENCIA PANCREÁTICA EXOCRINA. ¿CÓMO SE PRODUCE? ¿CUÁNDO Y CÓMO DIAGNOSTICARLA? ¿CÓMO TRATARLA? Fisiología de la secreción pancreática J. Sastrea , L. Sabaterb y L. Aparisic a Departamento de Fisiología. Universitat de València. Valencia. b Servicio de Cirugía General. Hospital Clínico. Valencia. c Servicio de Aparato Digestivo. Hospital Clínico. Valencia. España. 99.646 ESTRUCTURA DEL PÁNCREAS EXOCRINO El páncreas es una glándula mixta compuesta por 2 tipos de tejido, endocrino y exocrino, que se agrupan formando lóbulos macroscópicamente visibles y separados entre sí por septos de tejido conjuntivo que contienen vasos san- guíneos, linfáticos y nervios. En humanos, aproximada- mente un 80-85% del volumen pancreático está compues- to por la porción principal de tejido que es de naturaleza exocrina, un 10-15% corresponde a la matriz extracelular y los vasos, mientras que la porción endocrina constituye alrededor del 2%1 . Las células endocrinas se sitúan en el espesor del tejido exocrino formando acumulaciones que se denominan islotes de Langerhans, de los que hay alre- dedor de un millón, distribuidos por toda la glándula y rodeados por una rica red capilar donde realizan su secre- ción. El páncreas exocrino está formado por los ácinos y el sis- tema ductal2 . Cada unidad funcional básica está formada por células secretoras acinares, células centroacinares y células ductales, dispuestas en grupos redondeados o tu- bulares (fig. 1A). Las células acinares tienen morfología poligonal o piramidal, con el vértice dirigido hacia la luz central del ácino. El núcleo se localiza en situación basal y el citoplasma contiene abundante retículo endoplásmico rugoso que le confiere una intensa basofilia. Las células acinares tienen además un aparato de Golgi grande, ro- deado de numerosos gránulos acidófilos o gránulos de zimógeno, que están provistos de membrana, y que con- tienen en su interior las enzimas constituyentes de la se- creción pancreática (fig. 1B). En la membrana basolateral de las células acinares hay receptores para las hormonas y los neurotransmisores que regulan su secreción3 . Las cé- lulas ductales y centroacinares tienen características simi- lares: son cuboideas, con citoplasma claro, núcleo ovala- do, aparato de Golgi y retículo endoplasmático poco Correspondencia: Dr. L. Aparisi. Servicio de Aparato Digestivo. Hospital Clínico. Avda. Blasco Ibáñez, 17. 46010 Valencia. España. Correo electrónico: aparisi_lui@gva.es desarrollados y sin gránulos. La diferencia entre ambos ti- pos celulares reside en su localización con respecto a las células acinares. Las centroacinares se localizan hacia la luz del ácino al inicio de los conductos intercalares, mien- tras que las ductales forman estos conductos intercalares. Los conductos intercalares concurren para formar los con- ductos intralobulares, que a su vez van confluyendo para formar los interlobulares. Finalmente, éstos irán conver- giendo hasta formar los conductos pancreáticos principa- les, el de Wirsung y el de Santorini. SECRECIONES DEL PÁNCREAS EXOCRINO Características del jugo pancreático El jugo pancreático es un líquido incoloro, acuoso, de densidad entre 1.007 y 1.035 según la concentración de proteínas, con pH alcalino, que contiene 2 tipos de secre- ciones: la enzimática y la hidroelectrolítica. La enzimáti- ca es la causante de la hidrólisis de las sustancias nutriti- vas de los alimentos, mientras que la hidroelectrolítica actúa como vehículo de la enzimática y proporciona un medio alcalino, necesario para la actuación de las enzi- mas. Para ello se precisa la neutralización del quimo ácido procedente del estómago que entra en el duodeno, gracias a la alta concentración de bicarbonato tan caracte- rística de esta secreción4 . El volumen de secreción de jugo pancreático oscila entre 0,2-0,3 ml/min en condiciones basales y 5 ml/min cuando se estimula de forma adecuada; el volumen total diario oscila entre 1 y 4 l1,5-7 . Secreción hidroelectrolítica Las células centroacinares y las ductales son las encarga- das de la secreción hidroelectrolítica del páncreas exocri- no. Esta secreción está constituida principalmente por agua, en un 98%, y es muy rica en sodio y bicarbonato. Los cationes se encuentran en concentraciones relativa- Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
  • 2. 4 Gastroenterol Hepatol. 2005;28(Supl 2):3-9 SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA A B Gránulos de zimógeno Célula acinar Células paracinares Células ductales Basolateral SecretinaCO2 Na+ HCO3– + CO2 H2O AC H+ + HCO3– + HCO3– + CI– Luminal CI– + CFTR Fig. 2. Mecanismo de secreción de bicarbonato en las células ductales del páncreas. Efecto de la secretina. AC: anhidrasa carbónica; CFTR: regulador de la conductancia transmembrana de la fibrosis quística. mente constantes similares a las del plasma; los principa- les son sodio (154 ± 7 mEq/l), potasio (4,8 ± 0,9 mEq/l), calcio (1,7 ± 0,3 mEq/l) y magnesio (0,27 ± 0,08 mEq/l)8 . En cuanto a los aniones, son fundamentalmente el cloro y el bicarbonato. Este último procedente tanto de la hidrata- ción del CO2 catalizada por la anhidrasa carbónica (espe- cialmente la isoenzima II), presente en las células ducta- les y centroacinares, como por cotransporte con Na+ a través de la membrana basolateral9,10 . El cloro y el bicar- bonato se encuentran en concentraciones variables; con el flujo de secreción aumenta la de bicarbonato, y disminu- ye proporcionalmente la de cloro para mantener su suma constante (154 ± 10 mEq/l)7 . Figs. 1A y B. Esquema de la estructu- ra microscópica del ácino pancreático y de la célula acinar. La secreción hidroelectrolítica es estimulada principal- mente por la secretina, que controla, por tanto, el volu- men de jugo pancreático. Esta hormona provoca el aumento de secreción de bicarbonato por las células ductales y centroacinares al activar la adenilciclasa y au- mentar el adenosín monofosfato cíclico (AMPc)6 . El mecanismo por el cual el AMPc aumenta la secreción de bicarbonato implica principalmente la activación de un tipo de canal de cloro en la membrana luminal, identifi- cado como el regulador de la conductancia transmem- brana de la fibrosis quística, cuya alteración está rela- cionada con esta emfermedad. La activación de este canal de cloro aumenta la secreción de este anión en la luz ductal, y como este incremento está acoplado a un – intercambiador de Cl– /HCO3 de la membrana luminal, se produce la sustitución de cloro por bicarbonato; el re- sultado final es el aumento de bicarbonato en la luz duc- tal6 . La secretina, además de activar al intercambiador – de Cl– /HCO3 en la membrana luminal, estimula al co- – transportador de Na+ -HCO3 en la membrana basolate- – ral. Ambos efectos favorecen la secreción de HCO3 ha- cia la luz ductal (fig. 2). Finalmente, se ha propuesto la existencia de un gradiente electroquímico que a su vez – favorecería la secreción de HCO3 a través de canales de conductancia a aniones10 . Secreción enzimática El páncreas posee una gran capacidad de síntesis de pro- teínas, y de hecho se considera que es el órgano que ma- yor cantidad de proteínas produce por gramo de tejido. Las células acinares son las encargadas de la síntesis y la secreción de las enzimas y proenzimas, que según la fun- Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
  • 3. Gastroenterol Hepatol. 2005;28(Supl 2):3-9 5 SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA TABLA I. Enzimas del jugo pancreático Enzima Zimógeno Activador Función-acción Tripsina Tripsinógeno Enteroquinasa Rompe enlaces peptídicos Quimotripsina Quimotripsinógeno Tripsina Rompe enlaces peptídicos Elastasa Proelastasa Tripsina Rompe enlaces peptídicos Carboxipeptidasa A Procarboxipeptidasa A Tripsina Escinde restos de Fen, Tir y Trp del extremo carboxiterminal de un polipéptido Carboxipeptidasa B Procarboxipeptidasa B Tripsina Escinde restos de Arg y Lis del extremo carboxiterminal de un polipéptido Fosfolipasa A2 Profosfolipasa A2 Tripsina Escinde AG de los fosfolípidos (p. ej., lecitina) Amilasa – – Digiere el almidón a pequeños polímeros de Glu, maltosa y Glu Lipasa – – Escinde AG del glicerol Carboxilesterasa – – Hidroliza ésteres de colesterol Ribonucleasa – – Escinde ARN para formar cadenas cortas Desoxirribonucleasa – – Escinde ADN para formar cadenas cortas AG: ácido graso; Arg: arginina; Fen: fenilalanina; Glu: glucosa; Lis: lisina; Tir: tirosina, Trp: triptófano. ción que desarrollan se clasifican en 4 grupos: proteolíti- cas, lipolíticas, glucolíticas y nucleolíticas (tabla I). La síntesis de las enzimas digestivas tiene lugar en el re- tículo endoplásmico rugoso, desde donde son transpor- tadas al aparato de Golgi. Allí experimentan diversas modificaciones postraduccionales, especialmente glicosi- lación, se concentran y, posteriormente, son transportadas a los gránulos de zimógeno. La secreción de las enzimas digestivas tiene lugar mediante exocitosis, que incluye el desplazamiento de los gránulos secretores hacia la mem- brana apical, y el reconocimiento de un lugar de la mem- brana plasmática para la fusión. La especificidad de la expresión de las enzimas digestivas en los ácinos se debe a la presencia del PCE (pancreas consensus element) en los promotores de los genes, el cual regula la transcripción de sus ARN mensajeros (ARNm)11 . El factor transcripcional PTF-1 es esencial para la expre- sión de las enzimas digestivas y está presente de forma se- lectiva en el páncreas exocrino donde se une al PCE. La mayoría de las enzimas pancreáticas se secretan en for- ma de zimógenos o proenzimas inactivas, para evitar la au- todigestión y la consiguiente lesión del propio páncreas. Junto con estas proenzimas, el páncreas secreta el péptido inhibidor de tripsina, que evita su activación antes de llegar al duodeno. A este nivel el tripsinógeno se convierte en trip- sina por acción de la enterocinasa o enteropeptidasa de la mucosa duodenal, y esta tripsina produce la activación en cascada del resto de las proenzimas pancreáticas. En la acti- vación del tripsinógeno a tripsina se liberan pequeños pépti- dos denominados péptidos de activación del tripsinógeno. Las enzimas proteolíticas activas procedentes del jugo pan- creático pueden ser de 2 tipos: endopeptidasas —mayorita- riamente serinproteasas— y exopeptidasas. Las endopepti- dasas hidrolizan enlaces peptídicos en lugares específicos de las cadenas polipeptídicas, y en este caso son la tripsina, la quimotripsina y la elastasa. La tripsina escinde enlaces peptídicos de los que forma parte el grupo carboxílico de un aminoácido básico, como la lisina o la arginina4 . La qui- motripsina hidroliza enlaces peptídicos en los que intervie- nen grupos carbonilo de aminoácidos aromáticos. La elas- tasa humana presenta 2 isoformas: la elastasa 1 o proteasa E y la elastasa 2. La proteasa E actúa específicamente en enlaces en los que participan la alanina, la isoleucina, la valina y los hidroxiaminoácidos. En cambio, la elastasa 2 actúa en la proteína elastina hidrolizando preferentemente enlaces peptídicos de los que forma parte un aminoácido neutro con radical alifático4 . Las exopeptidasas del jugo pancreático son la carboxipeptidasa A y B. La primera hi- droliza enlaces peptídicos en el extremo carboxiterminal, liberando cualquier tipo de aminoácido excepto arginina, lisina y prolina. La carboxipeptidasa B también hidroliza enlaces peptídicos carboxiterminales, pero sólo cuando el aminoácido carboxiterminal es arginina o lisina. En cuanto a las enzimas glucolíticas, la amilasa es una α-1,4-glucosidasa que participa en la digestión de los po- lisacáridos hidrolizando enlaces α-1-4. Por lo que respec- ta a las enzimas lipolíticas, la lipasa pancreática actúa so- bre los triacilglicéridos para dar ácidos grasos libres y monoacilglicéridos. Para que la lipasa sea plenamente ac- tiva requiere de la denominada activación de interfase con la colipasa, formando un complejo de anclaje en la interfase hidrófoba/hidrofílica, en presencia de sales bilia- res. La colipasa es una glucoproteína hidrófoba formada a partir de la procolipasa de la secreción pancreática por ac- ción de la tripsina. La fosfolipasa A2 hidroliza el enlace éster en posición 2 de los fosfolípidos para liberar ácidos grasos y lisofosfolípidos. Esta enzima tiene una gran im- portancia en la patogenia de las enfermedades pancreáti- cas por su capacidad para destruir las membranas fosfoli- pídicas y para dar lugar a la lisolecitina, con efecto citotóxico por su marcado efecto detergente5 . La activi- dad de la carboxilesterasa está muy aumentada en presen- cia de sales biliares y actúa principalmente hidrolizando ésteres de colesterol y de retinol4 . La secreción enzimáti- ca también incluye ribonucleasas y desoxirribonucleasas, que son fosfodiesterasas capaces de hidrolizar los enlaces fosfodiésteres de los ácidos nucleicos. Por tanto, las enzimas digestivas pancreáticas participan en la hidrólisis tanto de proteínas como de glúcidos, lípi- dos y ácidos nucleicos, y desempeñan un papel clave en la digestión de los principios inmediatos. REGULACIÓN DE LA SECRECIÓN DEL PÁNCREAS EXOCRINO Fases de la secreción del páncreas exocrino En la secreción del páncreas exocrino se distinguen 2 pe- ríodos, el interdigestivo y el digestivo-posprandial12 . En el período interdigestivo la secreción pancreática es esca- Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
  • 4. 6 Gastroenterol Hepatol. 2005;28(Supl 2):3-9 SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA sa, cíclica y está relacionada con las 4 fases interdigesti- vas de la motilidad gastrointestinal, y es máxima en la fase III13 . La duración y la tasa de secreción durante estas fases varían considerablemente incluso en los mismos in- dividuos, y dependen de la hora del día, el estado de con- ciencia y el tiempo de ayuno. Se considera que este perío- do interdigestivo está bajo el control de mecanismos nerviosos y hormonales. La regulación nerviosa se realiza mediante control principalmente parasimpático, con co- nexiones enteropancreáticas. El sistema nervioso simpáti- co influye inhibiendo la secreción y la motilidad interdi- gestiva. Las hormonas con un mayor papel en este período son la motilina y el polipéptido pancreático, que estimulan e inhiben, respectivamente, la secreción. Se considera que esta regulación interdigestiva es importante para desalojar o limpiar el tracto gastrointestinal superior de partículas alimentarias, descamación celular y flora in- testinal. Así, cuando sucede una alteración en la regula- ción hay frecuentemente un sobrecrecimiento bacteriano. En el período digestivo se produce la mayor secreción exocrina del páncreas, inducida por los estímulos hormo- nales y nerviosos provocados por los alimentos. Clásica- mente se reconocen en este período 3 fases: cefálica, gás- trica e intestinal. La fase cefálica es desencadenada por vía vagal mediante un estímulo psíquico, la vista, el olfato y, especialmente, la masticación. La fase gástrica está mediada por un me- canismo colinérgico, tras la distensión gástrica, además de que la llegada del bolo alimenticio al estómago libera gastrina, estímulo, aunque débil, de la secreción pancreá- tica. El ritmo de vaciamiento de los alimentos desde el es- tómago modula la siguiente fase o fase intestinal, que constituye el período en que se produce el mayor flujo de secreción pancreática exocrina. La cuantía de la secreción pancreática en esta fase depende de los principios inme- diatos que llegan al duodeno (tipo, cantidad, propiedades físicas), de la concentración de sales biliares, de la secre- ción ácida que llega del estómago y de la concentración de las propias enzimas pancreáticas en la luz intestinal. La secreción pancreática está mayoritariamente regulada por el área duodenal. En ella, la liberación de colecisto- quinina (CCK) causa más de la mitad de la secreción en- zimática posprandial, actuando indirectamente mediante un mecanismo reflejo colinérgico duodenopancreático14 . Regulación neurohormonal Las secreciones del páncreas exocrino están reguladas principalmente por 2 hormonas intestinales: la secretina, que estimula la secreción hidroelectrolítica, y la CCK, que estimula la secreción rica en enzimas. La secretina se libe- ra hacia la sangre por la mucosa del intestino delgado como respuesta a los productos de digestión de los lípidos y, sobre todo, al ácido, mientras que la CCK se libera por el intestino delgado como respuesta a los productos de di- gestión de los lípidos y de las proteínas. Otras hormonas con efecto en la secreción pancreática exocrina son la in- sulina, que la estimula, y el glucagón, la somatostatina y el polipéptido pancreático (PP), que la inhiben. La regula- ción nerviosa corre a cargo del sistema nervioso parasim- pático, que estimula la secreción a través de vías vagales colinérgicas, y el simpático, que inhibe la secreción. La acetilcolina es el neurotransmisor más importante en la re- gulación de la secreción pancreática exocrina. No obstan- te, no podemos olvidar el papel de los neuropéptidos, que también son liberados por la importante inervación del páncreas4,5 . El polipéptido intestinal vasoactivo (PIV) es el neuropéptido que desempeña el papel más importante en la regulación, y su acción es estimular la secreción hidro- electrolítica. El polipéptido liberador de gastrina (PLG) estimula la secreción enzimática, mientras que el neuro- péptido Y inhibe la secreción exocrina, principalmente por su potente acción vasoconstrictora. En cualquier caso, la regulación hormonal no se puede separar de la nerviosa ya que están íntimamente relacionadas. De hecho, tal y como se comenta más adelante, la CCK ejerce sus acciones indi- rectamente actuando sobre las aferencias vagales. El estudio reciente más profundo de los receptores de CCK en células acinares ha permitido demostrar la exis- tencia de una relación muy estrecha entre la regulación hormonal y el control nervioso de la secreción pancreá- tica exocrina en condiciones fisiológicas. Así, se ha ob- servado que la CCK actúa a través de las vías vagales colinérgicas para estimular la secreción pancreática exo- crina14 . Se han encontrado 2 tipos de receptores de CCK en los ácinos pancreáticos: receptores CCK-A o de tipo 1, y receptores CCK-B o de tipo 2. Los receptores CCK-A son específicos de la CCK, mientras que tanto la gastrina como la CCK se unen a los CCK-B con alta afinidad15 . Los receptores CCK-A son mayoritarios en ácinos pan- creáticos de roedores y en nervios aferentes del vago, pero los ácinos humanos carecen de receptores CCK-A funcionales y sólo expresan los receptores CCK-B. Los ácinos humanos muestran una intensa respuesta a la acti- vación de receptores colinérgicos muscarínicos, pero no responden a concentraciones fisiológicas de CCK y sólo lo hacen a muy altas concentraciones de esta hormona. Aunque los receptores de la CCK son diferentes en roe- dores y en humanos, el mecanismo productor de las ac- ciones fisiológicas de esta hormona es similar en ambas especies. La atropina inhibe completamente la secreción pancreática de enzimas inducida por dosis fisiológicas de CCK, que originan concentraciones hormonales similares a las posprandiales, tanto en ratas como en humanos14 . La vagotomía tiene el mismo efecto en ratas16 . Estos resulta- dos indican que la estimulación de la secreción pancreáti- ca por la CCK tiene lugar de forma indirecta por vías co- linérgicas vagales. Además, se ha demostrado que estas vías vagales aferentes tienen su origen en la mucosa gas- troduodenal16 . Anteriormente ya se conocía que la CCK actúa por medio de las vías vagales aferentes para produ- cir saciedad y disminuir el vaciado gástrico. Los receptores CCK-A pueden presentar un estado de alta afinidad y otro de baja afinidad. El efecto de la CCK en la secreción pancreática está mediado por los receptores CCK-A vagales de alta afinidad, mientras que su efecto en la saciedad está mediado por los receptores CCK-A Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
  • 5. Gastroenterol Hepatol. 2005;28(Supl 2):3-9 7 SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA Vías vagales eferentes Vías vagales aferentes LSO Secreción enzimática CCK CE CMD **** ** * **** ******** * * * * * Péptidos Aminoácidos Ácidos grasos Glúcidos CCK Serotonina Ach PIV PLGFig. 3. Regulación neurohormonal de la fase intestinal de la secreción enzi- mática del páncreas. Ach: acetilcolina; CE: célula enterocromafín; CMD: cé- lula de la mucosa duodenal; CCK: co- lecistocinina; PIV: polipéptido inhibi- dor vasoactivo; PLG: polipéptido liberador de gastrina. vagales de baja afinidad14 . Estos efectos de la CCK se atribuyen a la hormona liberada endógenamente en el or- ganismo, que es heterogénea ya que está formada por di- versos polipéptidos, de los que destacan las formas CCK- 58, CCK-33 y CCK-8. Por otro lado, la secreción pancreática posprandial rica en enzimas está controlada principalmente tanto por la CCK de las células de la mucosa duodenal como por la seroto- nina liberada por las células enterocromafines de la mu- cosa intestinal, que estimula el reflejo vagovagal y activa las neuronas posganglionares colinérgicas del páncreas14 . La serotonina es liberada por las células cromafines ante estímulos osmóticos, mecánicos o por la presencia de glú- cidos —especialmente disacáridos—, y actúa de forma paracrina activando las terminales vagales aferentes de la mucosa intestinal (fig. 3). La interacción sinérgica entre la CCK y la serotonina en las vías aferentes vagales ex- plicaría la intensa secreción pancreática posprandial que tiene lugar con un pequeño incremento de la CCK plas- mática en el período posprandial14 . Regulación por retroalimentación La secreción pancreática exocrina también está regulada por retroalimentación negativa por las enzimas pancreáti- cas en el duodeno, particularmente por la tripsina. De he- cho, cuando se deriva la secreción fuera del duodeno se incrementa la secreción pancreática, y la administración intraluminal de tripsina puede inhibir tanto esta secreción como el incremento de la CCK. Por tanto, después de las comidas la tripsina que queda libre inhibe la secreción de CCK y la secreción pancreática. Dos péptidos intralu- minales, uno de ellos denominado péptido liberador de CCK, parecen mediar el efecto de la tripsina en la secre- ción enzimática17 . Ambos péptidos estimulan la secreción de CCK y son inactivados por la tripsina. También se ha descrito un péptido liberador de secretina intraluminal que participaría en el efecto de la tripsina en la secreción hidroelectrolítica. Este péptido activa la secreción de se- cretina y es inactivado por la tripsina18 . Por otro lado, existe un mecanismo de retroalimentación negativa que implica al páncreas endocrino. La estimula- Vasos sanguíneos ción vagal colinérgica que se produce en el período pos- prandial no solamente estimula a los ácinos pancreáticos, sino que también actúa en los islotes de Langerhans para que secreten el PP. Esta hormona actúa de forma presi- náptica en las vías vagales reduciendo la liberación de acetilcolina y, por tanto, inhibe la secreción hidroelectro- lítica y enzimática del páncreas exocrino6 . Inhibición por nutrientes y sales biliares Se han descrito efectos inhibidores de la secreción pan- creática exocrina por parte de nutrientes, sales biliares y algunas hormonas gastrointestinales. Los aminoácidos y la glucosa disminuyen la secreción pancreática. Así, un aumento de los valores sanguíneos de aminoácidos o la hiperglucemia producen inhibición de la secreción pan- creática inducida por la ingesta o por estimulación con CCK. El glucagón y la somatostatina parecen mediar la inhibición por aminoácidos y glucosa, mientras que el péptido YY causaría un efecto inhibidor de los ácidos grasos. La concentración de sales biliares en el duodeno también afecta a la secreción pancreática. Así, un aumen- to de su concentración en el duodeno provoca una dismi- nución en la tasa de secreción enzimática del páncreas y, por el contrario, su disminución produce un aumento de la liberación de CCK y de la secreción enzimática19 . Finalmente, la infusión intracolónica de ácido oleico tam- bién inhibe la secreción pancreática exocrina, al igual que la perfusión de hidratos de carbono o grasas en el íleon a suficiente concentración. No obstante, cuando se perfun- den hidratos de carbono a concentraciones fisiológicas en el íleon en la fase posprandial, se observa un incremento selectivo de la amilasa con una disminución global del resto de la secreción enzimática20 . Vías de señalización intracelular en la regulación y la secreción de las células acinares Los mecanismos de señalización intracelular implicados en la estimulación neurohormonal de las células acinares se han demostrado con el uso de preparaciones in vitro de Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
  • 6. 8 Gastroenterol Hepatol. 2005;28(Supl 2):3-9 SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA células acinares de animales de experimentación. Me- diante el uso de ligandos marcados radiactivamente y de antagonistas específicos, se han caracterizado los recepto- res de la CCK, la secretina, la acetilcolina, la neuromedi- na C (PLG o equivalente de bombesina en mamíferos), la sustancia P y el PIV6,15 . Estos receptores están situados en la membrana plasmática basolateral de las células acina- res y están acoplados a proteínas G. Se dividen en 2 cate- gorías: en una de ellas están los receptores de secretina y PIV, y en la otra los receptores de la CCK, la acetilcolina, la bombesina y la sustancia P6 . La unión de la secretina o del PIV a su receptor da lugar a la activación de la adeni- latociclasa, con el consiguiente incremento del AMPc in- tracelular y activación de las proteincinasas dependientes de AMPc. En la segunda categoría de receptores, la unión del ligando específico estimula el metabolismo de los fos- foinositoles de membrana, lo que conduce a un incremen- to del Ca2 ++ citoplasmático. Concretamente, se produce la hidrólisis del fosfatidilinositol 4,5-difosfato mediante la fosfolipasa C, liberando 1,2-diacilglicerol e inositol 1,4,5-trifosfato. Este último induce la liberación intrace- lular de calcio desde depósitos no mitocondriales, dando lugar a la activación de proteinquinasas dependientes del calcio y de la calcineurina (o proteinfosfatasa 2B)15 . Por otro lado, el diacilglicerol activa la proteinquinasa C. To- dos estos mecanismos mencionados participan en la se- creción enzimática de las células acinares. Además, existe un efecto sinérgico en la secreción cuan- do actúan simultáneamente agonistas que actúan vía AMPc junto con agonistas que lo hacen vía Ca2 ++6 . Por ello, la combinación de pequeños aumentos de ambos ti- pos de hormonas puede producir un incremento significa- tivo de la secreción en condiciones fisiológicas. INTEGRACIÓN DE LA FUNCIÓN EXOCRINA PANCREÁTICA EN LOS PROCESOS DIGESTIVOS. RESERVA FUNCIONAL La perfusión en el duodeno de lípidos, proteínas y glúci- dos produce diferentes respuestas secretorias. Las grasas producen una intensa y duradera respuesta secretora; las proteínas también producen estímulo de la secreción aun- que de menor cuantía; los glúcidos son los que menos du- ración e intensidad secretoria producen. Los lípidos constituyen, generalmente, una de las mayo- res fuentes calóricas de la ingesta. En el mundo occiden- tal la ingesta de grasas varía por término medio entre 90 y 140 g/día, a los que se añaden unos 40-50 g depositados en el intestino de carácter endógeno. La mayor parte está compuesta por triglicéridos (TG), cuya digestión y absor- ción se efectúa con una gran eficacia. La hidrólisis de los TG se inicia mediante la lipasa gástrica (resistente al pH ácido), previa emulsión del bolo alimenticio en el estóma- go, lo que supone un 20-30% de la digestión lipídica to- tal. La digestión de los lípidos se produce mayoritaria- mente en el duodeno y en el yeyuno. Para ello, se necesita el concurso simultáneo de diferentes agentes, como las sales biliares —que permiten la emulsión con formación de micelas mixtas de lípidos-sales biliares, aumentando la superficie sobre la que actúan las enzimas digestivas—, el bicarbonato —que mantiene el pH duodenal por encima de 5—, la colipasa pancreática —cofactor de activación de la lipasa—, y especialmente de la lipasa pancreática, que efectúa la hidrólisis de los triglicéridos. El páncreas dispone funcionalmente de una gran reserva secretora que rebasa hasta 10 veces las necesidades digestivas de la nu- trición normal, tanto de lípidos como de proteínas. De esta forma, cuando esta capacidad se reduce a menos del 10%, aparece esteatorrea y creatorrea, los signos caracte- rísticos de la insuficiencia pancreática21 . Adicionalmente, la fosfolipasa A2 hidroliza los fosfolípidos y la carboxi- lesterasa contribuye a la absorción de las vitaminas lipo- solubles. En general, la digestión de las grasas no tiene mecanismos complementarios en la mucosa intestinal, por lo que un fallo significativo de la reserva funcional exocrina del páncreas producirá su deficiente digestión, en contra de lo que ocurre con las proteínas y los hidratos de carbono, donde existen mecanismos compensatorios en la pared intestinal. Las proteínas de la dieta suponen en el mundo occidental, por término medio, unos 70-100 g/día, a lo que se añaden unos 30-50 g de proteína endógena (secreciones, desca- mación celular, moco, etc.). Su digestión se produce por la secreción gástrica, pancreática y de la mucosa intesti- nal. Las diferentes proteasas que proceden de la secreción pancreática —tripsina, quimotripsina, elastasa, carboxi- peptidasas— normalmente hidrolizan mayoritariamente las proteínas de la ingesta. Al igual que con la lipasa, para que se realice la acción hidrolítica de estas enzimas es ne- cesario un pH superior a 5 en la luz intestinal. La existen- cia de mecanismos compensatorios a esta acción de las enzimas pancreáticas, como la pepsina gástrica —resis- tente a pH ácido—, y las dipeptidasas y tripeptidasas de la mucosa intestinal permiten que la insuficiencia pancre- ática en la digestión de las proteínas sea menos frecuente. Por lo general, en los países occidentales los glúcidos constituyen entre el 40 y el 50% de las calorías ingeridas, entre 200 y 300 g/día. Son consumidas principalmente en forma de polisacáridos —almidón—, y además como di- sacáridos —lactosa, sacarosa— o monosacáridos —glu- cosa, fructosa—. Su digestión se produce inicialmente por la α-amilasa salival, sobre todo parotídea, que al lle- gar al estómago es progresivamente inactivada por el pH ácido, y posteriormente en el duodeno por la secreción pancreática de α-amilasa, enzima que escinde las uniones α-1-4 glucosídicas, completando la digestión las disacari- dasas y la α-dextrinasa del borde en cepillo de la mucosa intestinal. La digestión y absorción de los principios inmediatos es normalmente muy eficiente y casi completa en el yeyuno; las cantidades anómalamente altas en el íleon tienen un efecto inhibidor de la secreción pancreática, como ya se ha señalado anteriormente. Aunque hay ciertas evidencias de la adaptación de la se- creción pancreática a la dieta en función de su composi- ción en principios inmediatos, existen controversias entre los resultados obtenidos en animales y en humanos. En animales de experimentación, el incremento de la ingesta Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.
  • 7. Gastroenterol Hepatol. 2005;28(Supl 2):3-9 9 SASTRE J, ET AL. FISIOLOGÍA DE LA SECRECIÓN PANCREÁTICA de un nutriente induce un aumento de las enzimas que lo hidrolizan, con disminución del resto de las enzimas di- gestivas22 . En humanos se ha observado que aumentando la proporción calórica de lípidos y proteínas de la dieta durante 2 semanas se induce un aumento global del volu- men de secreción de las enzimas pancreáticas. Sin embar- go, cuando este incremento de la proporción calórica es efectuado con glúcidos, con reducción de lípidos y proteí- nas, disminuye subsiguientemente la secreción pancreáti- ca —incluida la amilasa— tanto del período posprandial como del interdigestivo23 . BIBLIOGRAFÍA 1. Klein AS, Lillemoe KD, Yeo ChJ, Pitt HA. Liver, biliary tract and pancreas. En: O’Leary JP, editor. The physiologic basis of surgery. 2nd ed. Blatimore: Williams & Wilkins; 1996. p. 441- 78. 2. Bockman DE. Histology and fine structure of the pancreas. En: Beger HG, Warshaw AL, Büchler MW, Carr-Locke DL, Neop- tolemos JP, Russell Ch, et al, editors. The pancreas. Oxford: Blackwell Science Ltd; 1998. p. 19-26. 3. Gardner JD, Jensen RT. Receptors for secretagogues on pancre- atic acinar cells. En: Go VL, Gardner JD, DiMagno EP, Levent- hal E, Reber H, Scheele GA, editors. The exocrine pancreas: biology, pathobiology and disease. 2nd ed. New York: Raven; 1993. p. 151-66. 4. Sánchez-Bernal C, San Román García JI, López Rodríguez MA, Calvo Andrés JJ. Fisiología y bioquímica del páncreas. En: Navarro S, Pérez-Mateo M, Guarner L, editores. Tratado de páncreas exocrino. Barcelona: J&C Ediciones Médicas; 2002. p. 11-34. 5. Orejas B, Ruiz de Aguiar A. Fisiología del páncreas exocrino. En: Tresguerres J.A.F., editor. Fisiología humana. Madrid: Mc- Graw-Hill-Interamericana; 1993. p. 792-803 6. Pandol SJ. Pancreatic physiology and secretory testing. En: Feldman M, Scharschmidt BF, Sleisenger MH, editors. Sleisen- ger & Fordtran’s gastrointestinal and liver disease. 6th ed. Phi- ladelphia: WB Saunders Company; 1998. p. 771-82. 7. Carter DC. Physiology of the pancreas. En: Trede M, Carter DC, editors. Surgery of the pancreas. 2nd ed. New York: Chur- chill Livingstone; 1997. p. 29-48. 8. Ribet A, Vaysse N, Clemente F. Fisiología del páncreas exocri- no. En: Meyer, editor. Fisiología humana. Barcelona: Salvat; 1985. p. 273-308. 9. Marino CR, Jeanes V, Boron WF, Schmitt BM. Expression and – distribution of the Na+ -HCO3 cotransporter in human pancreas. Am J Physiol. 1999;40:G487-94. 10. Ishiguro H, Naruse S, San Romá, JI, Case M, Steward MC. Pancreatic ductal bicarbonate secretion: past, present and futu- re. JOP. J. Pancreas. 2001;2 Suppl 4:192-7. 11. MacDonald RJ, Swift GA. Transgenic analysis of pancreatic se- cretion and development. En: Go VLW, Gardner JD, DiMagno EP, Leventhal E, Reber H, Scheele GA, editors. The exocrine pancreas: biology, pathobiology and disease. 2nd ed. New York: Raven; 1993. p. 87-101. 12. Metzger A, DiMagno EP. Enzymes and digestion. En: Beger HG, Warshaw AL, Büchler MW, Carr-Locke DL, Neoptolemos JP, Russell Ch, et al, editors. The pancreas. Oxford: Blackwell Science Ltd; 1998. p. 147-60. 13. Keane IB, DiMagno EP, Malagelada JR. Duodenogastric reflux in humans: its relationship to fasting antroduodenal motility and gastric, pancreatic, and biliary secretion. Gastroenterology. 1981;81:726-31. 14. Owyang C, Logsdon CD. New insights into neurohormonal re- gulation of pancreatic secretion. Gastroenterology. 2004;127: 957-69. 15. Williams JA. Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol. 2001;63: 77-97. 16. Li Y, Owyang C. Mechanism underlying pancreatic adaptation following vagotomy: mediation by recruitment of CCK-sensiti- ve intrapancreatic neurons [abstract]. Gastroenterology. 1993; 104:A318. 17. Liddle RA. Regulation of cholecystokinin secretion by intralu- minal releasing factors. Am J Physiol. 1995;269:G319. 18. Li P, Chang TM, Chey WY. Neuronal regulation of the release and action of secretin-releasing peptide and secretion. Am J Physiol. 1995;69:G305. 19. Koop I, Koop H, Gerhardt C, Schafmayer A, Arnold R. Do bile acids exert a negative feed-back control of cholecystokinin rele- ase? Scand J Gastroenterol. 1989;24:315-20. 20. Jain NK, Boivin M, Zinsmeister AR, DiMagno EP. The ileum and carbohydrate mediated feedback regulation of postprandial pancreaticobiliary secretion in normal humans. Pancreas. 1991; 6:495-505. 21. DiMagno EP, Go VLW, Summerskill WHJ. Relation between pancreatic enzyme outputs and malabsorption in severe pancre- atic insufficiency. N Engl J Med. 1973;288:813-5. 22. Brannon PM. Adaptation of the exocrine pancreas to diet. Ann Rev Nutr. 1990;10:85-105. 23. Boivin M, Lanspa SJ, Zinsmesiter AR, Go VLW, DiMagno EP. Are diets associated with different rates of human interdigestive and postprandial pancreactic enzyme secretion? Gastroentero- logy. 1990;99:1763-71. Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.Document downloaded from http://www.elsevier.es, day 29/09/2018. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited.