SlideShare une entreprise Scribd logo
1  sur  9
Télécharger pour lire hors ligne
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4975
SMART WASTE MONITORING SYSTEM
Prof .Mayur Tiwari, Aboli Deshmukh, Kshitija Boke, Netra Deshmukh, Ashwini Dhurve
1Prof. Dept. of Electronics and Telecommunication, Prof. Ram Meghe Institute of Technology and Research, Badnera,
Amravati, Maharashtra, India
2,3,4,5Student, Dept. of Electronics and Telecommunication, Prof. Ram Meghe Institute of Technology and Research,
Badnera, Amravati, Maharashtra, India
---------------------------------------------------------------------------***---------------------------------------------------------------------------
Abstract: Environment is essential for everyone and present everywhere, that supply all natural needs in an abundant
manner but also we have some responsibilities towards our environment India is the developing country with a huge
population .This ever increasing population degrades the cleanliness of sustainable environment. To maintain splendor,
the Indian government launched the campaigned of Swachha Bharat mission popularly known as clean India mission.
Once these smart bins are implemented on a large scale, by replacing our traditional bins present today, waste can be
managed efficiently as it avoids unnecessary lumping of wastes on roadside. Foul smell from these rotten wastes that
remain untreated for a long time, due to negligence of authorities and carelessness of public may lead to long term
problems. Breeding of insects and mosquitoes can create nuisance around promoting unclean environment. This may
even cause dreadful diseases. People are more interested to use such technologies which can reduce their time and effort
in efficient manner. Automation is the most demandable feature now a day. For this purpose smart dustbins are the much
suitable approach. It will be helpful to develop green and smart city.
1. INTRODUCTION
Nowadays, there are tons of flats and apartments which have been built in the rapid urbanization area. This is due to high
hous- ing demands which have been drastically raised as a result of migration from villages to cities to find works. In order to
ac- commodate the growing population in the urban area, the gov- ernment has built flats, apartments or condominiums, to
provide shelter for them, there are several issues faced by the inhabitants of the flats. One of them is the issue of the domestic
solid waste disposal, which cause pollutions. Unlike landed houses, the flats’ waste disposal bins are shared among all residents
which live in the same building, and thus, the bins tend to be filled very quick- ly. Thus, an unsystematic and inefficient disposal
waste man- agement may cause the bins to be always full with of garbage, and further littering from the residents will cause
the garbage piles to be scattered outside the bins. The waste collection pro- cess is a critical aspect for the service providers.
The traditional way of manually monitoring the wastes in waste bins is complex, cumbersome process and utilizes more
human effort, time and cost which is not compatible with the present day technologies. Irregular management of waste typical-
ly domestic waste, industrial waste and environmental waste is a root cause for many of the human problems such as pollution,
diseases and has adverse effects on the hygiene of living beings. In order to overcome all these problems, we are proposing the
idea of smart waste management system which helps in auto- management of waste without human interaction in order to
maintain a clean environment. At various locations it is observed that the garbage remains in the dumpster for number of days
and it spreads nearby dumpster container. In today’s garbage collecting system, there is no record of garbage collection. The
Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different systems, while
providing data for millions of people to use and capitalize. Building a general architecture for the IoT is hence a very complex
task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such
a system. One of the main concerns with our environment has been solid waste management which impacts the health and
environment of our society. The detection, monitoring and management of wastes is one of the primary problems of the
present era. The traditional way of manually monitoring the wastes in waste bins is a cumbersome process and utilizes more
human effort, time and cost which can easily be avoided with our present technologies. This is our solution, a method in which
waste management is automat- ed. This is our IoT Garbage Monitoring system, an innovative way that will help to keep the
cities clean andhealthy.
2. LITERATURE SURVEY
Several solutions for waste management equipped with IoT fa- ciliates have been proposed and invented in the literature to
help solid waste management authorities improve the quality of ser- vice delivery. Designed a smart bin system uses a wifi
based mi- crocontroller .This web developed application, a tool for local authority is used to monitor garbage status to ensure
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4976
Smart
Bin
Text mes-
sage
Cloud
server
Wifi microcon-
troller
Ultrasonic
sensor
waste collection services is deliver per contract by the service provider. The proposed system attempts to provide solution of
problems like proper allocation and relocation of waste bin, check for un- suitability and proximity convenience to the users
and future suggestions. Another work by provides a Smart Garbage Moni- toring System specifically to apartment,
condominium or flat type residency that has trash. The concept system uses ultrasonic sensor to measure the waste level
using wifi microcontroller. Ultrasonic sensor will continuously measure the waste level and notify the residence and garbage
collector regarding the waste status. This system sends notification through SMS to collector whenever waste bin is almost or
already full. Indicator can be put at each level of the resident to alert the residencies to minimize or stop dispose waste. We
built an efficient garbage monitoring sys- tem which can be used to monitor the level of garbage in the dump. This data can be
further used to plan garbage collection trips more efficiently, ultimately reducing overflowing bins and helping have better
public sanitation.
3. DESIGN OF SMART BIN
Node MCU provides a way to connect different sensors to their controllers wirelessly via wifi. Since, it is an improved version
of the ESP8266 it has better and easier programming, with better voltage stability and more reliability. It get information
from sen- sor and process on it. It compares the received data with the threshold level set and accordingly output is
generated.
The HC-SR04 Ultrasonic (US) sensor is a 4 pin module, whose pin names are VCC, Trigger, Echo and Ground respectively. This
sensor is a very popular sensor used in many applications where measuring distance or sensing objects are required. The
module has two eyes like projects in the front which forms the Ultrasonic transmitter and Receiver. The sensor works with the
simple high school formula that
Distance = Speed × Time
Power the Sensor using a regulated +5V through the Vcc ad Ground pins of the sensor. The current consumed by the sensor is
less than 15mA and hence can be directly powered by the on board 5V pins (If available). The Trigger and the Echo pins are
both I/O pins and hence they can be connected to I/O pins of the microcontroller. To start the measurement, the trigger pin
has to be made high for 10uS and then turned off. This action will trig- ger an ultrasonic wave at frequency of 40Hz from the
transmitter and the receiver will wait for the wave to return. Once the wave is returned after it getting reflected by any object
the Echo pin goes high for a particular amount of time which will be equal to the time taken for the wave to return back to the
sensor.
The amount of time during which the Echo pin stays high is measured by the MCU/MPU as it gives the information about the
time taken for the wave to return back to the Sensor. Using this information the distance is measured as explained in the
above heading. The time between the transmission and reception of the signal allows us to know the distance to an object.
This is possi- ble because we know the sound’s velocity in the air. Since we are using the Ultrasonic wave we know the
universal speed of US wave at room conditions which is 330m/s. The Ultrasonic Sensor sends out a high-frequency sound
pulse and then times how long it takes for the echo of the sound to reflect back. The sensor has 2 openings on its front. The
circuitry inbuilt on the module will calculate the time taken for the US wave to come back and turns on the echo pin high for
that same particular amount of time, this way we can also know the time taken. Now simply calculate the distance using a
microcontroller or microprocessor.
Fig 3.1: Block Diagram of Smart Bin
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4977
HC-SR04
GND
WeMos NodeMCU
ECHO
GND
D6TRIGGER
D5VCC
VCC
5 volt from USB cable
In this section we design structure of the system before imple- mentation of circuit. We use advanced microcontroller called
WeMOS. In this project we put the ultrasonic sensor on top of the garbage bin. The output of the ultrasonic sensor is processed
by the microcontroller and the output is then sent to the cloud server which sends a text message to the concerned person.
We have a threshold value of 10cm which means that if the distance of the sensor from the top of the garbage is less than
10cm, the output will come with a message that the basket is full. We have created our web developed application which will
continuously monitor the graphical status of smart bin. Connections of the ultrasonic sensor with the WeMOS are very simple.
Connect the VCC and the ground of the ultrasonic sensor to the 5V and the ground of the WeMOS. Then connect the TRIG and
ECHO pin of ultrason- ic sensor to the pin D5 and D6 of the WeMOSrespectively.
Fig3.2: Connection between WeMos and HC-SR04
Mathematical Analysis
 Total dustbin length=30 cm
 The sensing distance of UVsensor=10cm
Calculation
Time taken by pulse is actually for to and from travel ofultrason- ic signals, while we need only half of this. Therefore time is
tak- en as time/2.
Distance = Speed * Time/2
Speed of sound at sea level = 343 m/s or 34300 cm/s
Thus, Distance = 17150 * Time (unit cm)
Analysis of the accuracy of determination of the intensity E of UV radiation for a specified wavelength λ was made on the basis of the
uncertainty theory. The inaccuracy of intensity measurement, charac- terizing the scatter of the values attributed to the quantity
being measured, is described by a complex uncertainty:
U(E)=kuC(E)
where: k – the coverage factor (k=2 for confidence level 0.95); uC(E) – the combined standard uncertainty of estimate E.
The equation from which the estimate E of the true value of UV radiation intensity is calculated.
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4978
To calculate the range through the time interval between sending trigger signal and receiving echo signal. Formula: uS / 58 =
cen- timeters or uS / 148 =inch; or: the range = high level time * ve- locity (340M/S) / 2; we suggest to use over 60ms
measurement cycle, in order to prevent trigger signal to the echo signal.
Fig.3.3:Radiated and Received signal
Fig.3.4: Waveform of UV sensor
Distance Measurement formula is expressed as: L = C X T
In the formula, L is the measured distance, and C is the ultrason- ic spreading velocity in air, also, T represents time (T is half
the time value from transmitting to receiving).
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4979
YES
NO
4. FLOWCHART OF SMART BIN
Fig4: Flowchart of Smart Bin
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072
6. RESULT
This section preset a real time plot of the fill percentage of the bi ad the real time plot inside the bin this is the graphical
representa- tion of design of smart bin. The test cases for the smart bin are as follows,
1) Dustbin when empty - 0 % (At first level UV Sensor gives output)
2) Dustbin full – 90% (At last level UV sensors gives output)
Fig 6.1: Design of Smart bin
Fig 6.2: Garbage level at 0%
Fig 6.3: Garbage level at 25%
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4980
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072
Fig 6.4: Garbage level at 50%
Fig 6.5: Garbage level at 75%
Fig 6.6: Graphical representation of level of garbage.
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4981
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072
Fig 6.3: Message received from server
7. CONCLUSION
One of the utility of our system is that the Govt. can use the gar- bage generations statistics for policy and program design. If the
system is implemented properly it will really make the cities cleaner and greener and makes the smart city. The real-time mon-
itoring of the garbage level with the help of sensors and wireless communication will reduce the total number of trips required
and thus, will reduce the total expenditure associated with the garbage collection. Thus, the dustbins will be cleared as and
when filled, giving way to cleaner city, better infrastructure and increased hygiene. The proposed idea can be implemented for
smart cities where the residents would be busy enough with their hectic schedule and wouldn’t have enough time for
managing waste. The bins can be implemented in a city if desired where there would be a large bin that can have the capacity
to accumulate the waste of solid type for a single apartment. The cost could be dis- tributed among the residents leading to
cheaperprovision.
ACKNOWLEDGMENT
We would like to thanks M. V. Tiwari, PRMITR Badnera for his continuous support and motivation which has help us in
success- fully designing the system.
REFERECES
[1]. Ghose, M.K., Dikshit, A.K., Sharma, S.K. A GIS based transportation model for solid waste disposal – A case study on
Asansol municipality. Journal of Waste Management‖.
[2] Guerrero, L.A., Maas, G., Hogland, W.: Solid waste man- agement challenges for cities in developing countries. Journal of
Waste Management.
[3] Alexey Medvedev, PetrFedchenkov, ArkadyZaslavsky, Theodoros, Anagnostopoulos Sergey Khoruzhnikov,‖Waste
Management -Enabled Service in Smart Cities‖.
[4]. Meghana K C, Dr. K R Nataraj, GSM Based Intelligent Bin for Smart Cities‖.
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4982
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072
[5]. Monika K A, NikithaRao, Prapulla S B, Shobha G, Smart Dustbin-An Efficient Garbage Monitoring System.
[6] Michael Batty , Kay Axhausen, et al., “Smart Cities of the Future,”UCL centre for advanced spatial analysis on working
paper series, ISSN 1467-1298, Paper 188 - Oct 12.
[7]. S.S. Navghane, M.S. Killedar, Dr.V.M. Rohokale,‖ IoT Based Garbage and Waste Collection Bin‖, May2016.
[8]. P. Sukholthaman, K. Shirahada, Proceedings of PICMET '14 Conference: Portland International Center for Management of
Engineering and Technology; Infrastructure and Service Integra- tion, (2014)
[9]. C. K.M. Lee, T. Wu, International Conference on Industrial Engineering and Engineering Management, 798 (2014)
[10]. A.F. Thompson, A.H. Afolayan, E.O. Ibidunmoye, Infor- mation Science, Computing and Telecommunications, 206 (2013)
[11] Daniel V., Puglia P.A., and M. Puglia (2007). “RFID-A Guide to Radio Frequency Identification”, Technology Research
Corporation.
[12] Flora, A. (2009). “Towards a clean environment: A proposal on sustainable and integrated solid waste management
system for university Kebangsaan Malaysia”. Report from AlamFlora.
[13] Gogoi.L (2012). “Solid Waste Disposal and its Health Im- plications in Guwahati City: A Study in Medical Geography",
Lambert Academic Publishing, Germany, ISBN 978-3-8454- 0149-2.
[14] Hannan, M., A., Arebey, M., Basri, H.(2010). “Intelligent Solid Waste Bin monitoring and Management System”, Australi- an
Journal of Basic and Applied Sciences, 4(10): 5314-5319, 2010, ISSN 1991-8178.
[15] Md. Liakot Ali, Mahbubul Alam, Md. Abu Nayeem Red- wanur Rahaman, (2012). “RFID based E-monitoring System for
Municipal Solid Waste Management”, International Conference on Electrical and Computer Engineering, Pg 474-477.
[16] Rahman, H., Al-Muyeed, A. (2010). “Solid and Hazardous Waste Management”, ITN-BUET, Center for Water Supply and
Waste Management
[17] Twinkle Sinha, K.Mugesh Kumar, P.Saisharan, (2015). “SMART DUSTBIN”, International Journal of Industrial Elec-
tronics and Electrical Engineering, ISSN: 2347-6982, Volume-3, Issue-5.
[18] Visvanathan, C., Ulrich, G., (2006). “Domestic Solid Waste Management in South Asian Countries – A Comparative Analy-
sis”, 3 R South Asia Expert Workshop, Kathmandu, Nepal. (all reference are very old New latest reference may be added after
year 2014) 1034
[19]P.Suresh1J. Vijay Daniel2, Dr.V.Parthasarathy4” A state of the art review on the Internet of Things (IoT)” International Co
ference on Science, Engineering and Management Research (ICSEMR 2014)
[20] Arkady Zaslavsky, Dimitrios Georgakopoulos” Internet of Things: Challenges and State-of-the-art solutions in Internet-
scale Sensor Information Management and Mobile Analytics” 2015 16th IEEE International Conference on Mobile Data
Managment
[21]Theodoros.Anagnostopoulos1,Arkady.Zaslavsky2,1, Alexey Medvedev1, Sergei Khoruzhnicov1” Top–k Query based
Dynam- ic Scheduling for IoT-enabled Smart City Waste Collection” 2015 16th IEEE International Conference on Mobile Data
Man- agement.
[22] “City Garbage collection indicator using RF (Zigbee) and GSM technology”
[23] Vikrant Bhor, Pankaj Morajkar, Maheshwar Gurav, Dishant Pandya4 “Smart Garbage Management System” International
Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 IJERTV4IS031175 Vol. 4 Issue 03, March-2015
© 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4983

Contenu connexe

Tendances

An Efficient Smart Garbage Disposal System - A Review
An Efficient Smart Garbage Disposal System - A ReviewAn Efficient Smart Garbage Disposal System - A Review
An Efficient Smart Garbage Disposal System - A Review
ijtsrd
 

Tendances (20)

Project report on Iot Based Garbage Monitoring System
Project report on Iot Based Garbage Monitoring System  Project report on Iot Based Garbage Monitoring System
Project report on Iot Based Garbage Monitoring System
 
IRJET- Trash Clearance Management System
IRJET-  	  Trash Clearance Management SystemIRJET-  	  Trash Clearance Management System
IRJET- Trash Clearance Management System
 
IRJET- Smart Garbage Monitoring System using Internet Of Things
IRJET-  	  Smart Garbage Monitoring System using Internet Of ThingsIRJET-  	  Smart Garbage Monitoring System using Internet Of Things
IRJET- Smart Garbage Monitoring System using Internet Of Things
 
IRJET- Segregation of Waste - A Survey
IRJET- Segregation of Waste - A SurveyIRJET- Segregation of Waste - A Survey
IRJET- Segregation of Waste - A Survey
 
IRJET- Smart City to Phiysical Things
IRJET- Smart City to Phiysical ThingsIRJET- Smart City to Phiysical Things
IRJET- Smart City to Phiysical Things
 
IRJET- Design and Implementation of Smart Dustbin using IoT Notifications
IRJET- Design and Implementation of Smart Dustbin using IoT NotificationsIRJET- Design and Implementation of Smart Dustbin using IoT Notifications
IRJET- Design and Implementation of Smart Dustbin using IoT Notifications
 
IRJET - Effective Garbage Management System based on IoT
IRJET -  	  Effective Garbage Management System based on IoTIRJET -  	  Effective Garbage Management System based on IoT
IRJET - Effective Garbage Management System based on IoT
 
IRJET - Garbage Management System for Smart City using LORA Technology
IRJET -  	  Garbage Management System for Smart City using LORA TechnologyIRJET -  	  Garbage Management System for Smart City using LORA Technology
IRJET - Garbage Management System for Smart City using LORA Technology
 
IRJET- Smart Dustbin using GPS Tracking
IRJET- Smart Dustbin using GPS TrackingIRJET- Smart Dustbin using GPS Tracking
IRJET- Smart Dustbin using GPS Tracking
 
Cloud Based Forest Fire Alert System using IoT
Cloud Based Forest Fire Alert System using IoTCloud Based Forest Fire Alert System using IoT
Cloud Based Forest Fire Alert System using IoT
 
IVRS Based System for Traffic Density Measurement
IVRS Based System for Traffic Density MeasurementIVRS Based System for Traffic Density Measurement
IVRS Based System for Traffic Density Measurement
 
IRJET - Smart Gadget Bin for E-Waste Management
IRJET -  	  Smart Gadget Bin for E-Waste ManagementIRJET -  	  Smart Gadget Bin for E-Waste Management
IRJET - Smart Gadget Bin for E-Waste Management
 
IRJET - An Automatic Forest Fire Detection using Lora Wireless Mesh Topology
IRJET - An Automatic Forest Fire Detection using Lora Wireless Mesh TopologyIRJET - An Automatic Forest Fire Detection using Lora Wireless Mesh Topology
IRJET - An Automatic Forest Fire Detection using Lora Wireless Mesh Topology
 
IRJET- Forest Fire Detection and Alerting System
IRJET- Forest Fire Detection and Alerting SystemIRJET- Forest Fire Detection and Alerting System
IRJET- Forest Fire Detection and Alerting System
 
IRJET- RFID based Smart Dustbin for Smart Cities
IRJET- RFID based Smart Dustbin for Smart CitiesIRJET- RFID based Smart Dustbin for Smart Cities
IRJET- RFID based Smart Dustbin for Smart Cities
 
IRJET - Smart Village: Betterment Planning and Innovative Strategy using IoT
IRJET - Smart Village: Betterment Planning and Innovative Strategy using IoTIRJET - Smart Village: Betterment Planning and Innovative Strategy using IoT
IRJET - Smart Village: Betterment Planning and Innovative Strategy using IoT
 
IRJET- Smart City using IoT
IRJET- Smart City using IoTIRJET- Smart City using IoT
IRJET- Smart City using IoT
 
IRJET- Iot Based Wireless Sensor Network for Earlier Detection and Prevention...
IRJET- Iot Based Wireless Sensor Network for Earlier Detection and Prevention...IRJET- Iot Based Wireless Sensor Network for Earlier Detection and Prevention...
IRJET- Iot Based Wireless Sensor Network for Earlier Detection and Prevention...
 
IRJET - Home Monitoring System for Sids
 IRJET - Home Monitoring System for Sids IRJET - Home Monitoring System for Sids
IRJET - Home Monitoring System for Sids
 
An Efficient Smart Garbage Disposal System - A Review
An Efficient Smart Garbage Disposal System - A ReviewAn Efficient Smart Garbage Disposal System - A Review
An Efficient Smart Garbage Disposal System - A Review
 

Similaire à IRJET- Smart Waste Monitoring System

Similaire à IRJET- Smart Waste Monitoring System (20)

IRJET - Smart Garbage Monitoring System using NodeMCU
IRJET - Smart Garbage Monitoring System using NodeMCUIRJET - Smart Garbage Monitoring System using NodeMCU
IRJET - Smart Garbage Monitoring System using NodeMCU
 
IRJET- Arduino based Garbage Monitoring System using IoT
IRJET- Arduino based Garbage Monitoring System using IoTIRJET- Arduino based Garbage Monitoring System using IoT
IRJET- Arduino based Garbage Monitoring System using IoT
 
IRJET- IoT based Connected Dustbins for Waste Management in Commercial Places
IRJET- IoT based Connected Dustbins for Waste Management in Commercial PlacesIRJET- IoT based Connected Dustbins for Waste Management in Commercial Places
IRJET- IoT based Connected Dustbins for Waste Management in Commercial Places
 
IRJET- Smart Dustbin
IRJET-  	  Smart DustbinIRJET-  	  Smart Dustbin
IRJET- Smart Dustbin
 
IRJET- Waste Management System with Thingspeak
IRJET- Waste Management System with ThingspeakIRJET- Waste Management System with Thingspeak
IRJET- Waste Management System with Thingspeak
 
IRJET- Smart Bin
IRJET- Smart BinIRJET- Smart Bin
IRJET- Smart Bin
 
IRJET- Trash can Monitoring System
IRJET-  	  Trash can Monitoring SystemIRJET-  	  Trash can Monitoring System
IRJET- Trash can Monitoring System
 
IRJET- Trash can Monitoring System
IRJET- Trash can Monitoring SystemIRJET- Trash can Monitoring System
IRJET- Trash can Monitoring System
 
IRJET- Smart Waste Management System using IoT for Smart Cities
IRJET-  	  Smart Waste Management System using IoT for Smart CitiesIRJET-  	  Smart Waste Management System using IoT for Smart Cities
IRJET- Smart Waste Management System using IoT for Smart Cities
 
IRJET- Efficient IoT based Smart Dustbin for Clean Environment
IRJET- Efficient IoT based Smart Dustbin for Clean EnvironmentIRJET- Efficient IoT based Smart Dustbin for Clean Environment
IRJET- Efficient IoT based Smart Dustbin for Clean Environment
 
IRJET- IOT Based Air and Sound Pollution Monitoring System
IRJET-  	  IOT Based Air and Sound Pollution Monitoring SystemIRJET-  	  IOT Based Air and Sound Pollution Monitoring System
IRJET- IOT Based Air and Sound Pollution Monitoring System
 
IRJET- Waste Management System based on IoT
IRJET- Waste Management System based on IoTIRJET- Waste Management System based on IoT
IRJET- Waste Management System based on IoT
 
IoT Based Smart Trash Bins – A Step Toward Smart City
IoT Based Smart Trash Bins – A Step Toward Smart CityIoT Based Smart Trash Bins – A Step Toward Smart City
IoT Based Smart Trash Bins – A Step Toward Smart City
 
IRJET - Literature Survey on Smart Bin that Segregates and Measures the W...
IRJET -  	  Literature Survey on Smart Bin that Segregates and Measures the W...IRJET -  	  Literature Survey on Smart Bin that Segregates and Measures the W...
IRJET - Literature Survey on Smart Bin that Segregates and Measures the W...
 
IRJET - Solid Waste Monitoring using IoT
IRJET - Solid Waste Monitoring using IoTIRJET - Solid Waste Monitoring using IoT
IRJET - Solid Waste Monitoring using IoT
 
Smart Waste Management System
Smart Waste Management SystemSmart Waste Management System
Smart Waste Management System
 
Iot Enabled waste management system.pptx
Iot Enabled waste management system.pptxIot Enabled waste management system.pptx
Iot Enabled waste management system.pptx
 
IRJET- Smart Waste Segregator and Monitoring System
IRJET- Smart Waste Segregator and Monitoring SystemIRJET- Smart Waste Segregator and Monitoring System
IRJET- Smart Waste Segregator and Monitoring System
 
IRJET- Smart Dustbin for Smart City
IRJET- Smart Dustbin for Smart CityIRJET- Smart Dustbin for Smart City
IRJET- Smart Dustbin for Smart City
 
IOT BASED TOOL GARBAGE MONITORING SYSTEM
IOT BASED TOOL GARBAGE MONITORING SYSTEMIOT BASED TOOL GARBAGE MONITORING SYSTEM
IOT BASED TOOL GARBAGE MONITORING SYSTEM
 

Plus de IRJET Journal

Plus de IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Dernier

DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
Health
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 

Dernier (20)

DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
+97470301568>> buy weed in qatar,buy thc oil qatar,buy weed and vape oil in d...
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Air Compressor reciprocating single stage
Air Compressor reciprocating single stageAir Compressor reciprocating single stage
Air Compressor reciprocating single stage
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 

IRJET- Smart Waste Monitoring System

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4975 SMART WASTE MONITORING SYSTEM Prof .Mayur Tiwari, Aboli Deshmukh, Kshitija Boke, Netra Deshmukh, Ashwini Dhurve 1Prof. Dept. of Electronics and Telecommunication, Prof. Ram Meghe Institute of Technology and Research, Badnera, Amravati, Maharashtra, India 2,3,4,5Student, Dept. of Electronics and Telecommunication, Prof. Ram Meghe Institute of Technology and Research, Badnera, Amravati, Maharashtra, India ---------------------------------------------------------------------------***--------------------------------------------------------------------------- Abstract: Environment is essential for everyone and present everywhere, that supply all natural needs in an abundant manner but also we have some responsibilities towards our environment India is the developing country with a huge population .This ever increasing population degrades the cleanliness of sustainable environment. To maintain splendor, the Indian government launched the campaigned of Swachha Bharat mission popularly known as clean India mission. Once these smart bins are implemented on a large scale, by replacing our traditional bins present today, waste can be managed efficiently as it avoids unnecessary lumping of wastes on roadside. Foul smell from these rotten wastes that remain untreated for a long time, due to negligence of authorities and carelessness of public may lead to long term problems. Breeding of insects and mosquitoes can create nuisance around promoting unclean environment. This may even cause dreadful diseases. People are more interested to use such technologies which can reduce their time and effort in efficient manner. Automation is the most demandable feature now a day. For this purpose smart dustbins are the much suitable approach. It will be helpful to develop green and smart city. 1. INTRODUCTION Nowadays, there are tons of flats and apartments which have been built in the rapid urbanization area. This is due to high hous- ing demands which have been drastically raised as a result of migration from villages to cities to find works. In order to ac- commodate the growing population in the urban area, the gov- ernment has built flats, apartments or condominiums, to provide shelter for them, there are several issues faced by the inhabitants of the flats. One of them is the issue of the domestic solid waste disposal, which cause pollutions. Unlike landed houses, the flats’ waste disposal bins are shared among all residents which live in the same building, and thus, the bins tend to be filled very quick- ly. Thus, an unsystematic and inefficient disposal waste man- agement may cause the bins to be always full with of garbage, and further littering from the residents will cause the garbage piles to be scattered outside the bins. The waste collection pro- cess is a critical aspect for the service providers. The traditional way of manually monitoring the wastes in waste bins is complex, cumbersome process and utilizes more human effort, time and cost which is not compatible with the present day technologies. Irregular management of waste typical- ly domestic waste, industrial waste and environmental waste is a root cause for many of the human problems such as pollution, diseases and has adverse effects on the hygiene of living beings. In order to overcome all these problems, we are proposing the idea of smart waste management system which helps in auto- management of waste without human interaction in order to maintain a clean environment. At various locations it is observed that the garbage remains in the dumpster for number of days and it spreads nearby dumpster container. In today’s garbage collecting system, there is no record of garbage collection. The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different systems, while providing data for millions of people to use and capitalize. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. One of the main concerns with our environment has been solid waste management which impacts the health and environment of our society. The detection, monitoring and management of wastes is one of the primary problems of the present era. The traditional way of manually monitoring the wastes in waste bins is a cumbersome process and utilizes more human effort, time and cost which can easily be avoided with our present technologies. This is our solution, a method in which waste management is automat- ed. This is our IoT Garbage Monitoring system, an innovative way that will help to keep the cities clean andhealthy. 2. LITERATURE SURVEY Several solutions for waste management equipped with IoT fa- ciliates have been proposed and invented in the literature to help solid waste management authorities improve the quality of ser- vice delivery. Designed a smart bin system uses a wifi based mi- crocontroller .This web developed application, a tool for local authority is used to monitor garbage status to ensure
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4976 Smart Bin Text mes- sage Cloud server Wifi microcon- troller Ultrasonic sensor waste collection services is deliver per contract by the service provider. The proposed system attempts to provide solution of problems like proper allocation and relocation of waste bin, check for un- suitability and proximity convenience to the users and future suggestions. Another work by provides a Smart Garbage Moni- toring System specifically to apartment, condominium or flat type residency that has trash. The concept system uses ultrasonic sensor to measure the waste level using wifi microcontroller. Ultrasonic sensor will continuously measure the waste level and notify the residence and garbage collector regarding the waste status. This system sends notification through SMS to collector whenever waste bin is almost or already full. Indicator can be put at each level of the resident to alert the residencies to minimize or stop dispose waste. We built an efficient garbage monitoring sys- tem which can be used to monitor the level of garbage in the dump. This data can be further used to plan garbage collection trips more efficiently, ultimately reducing overflowing bins and helping have better public sanitation. 3. DESIGN OF SMART BIN Node MCU provides a way to connect different sensors to their controllers wirelessly via wifi. Since, it is an improved version of the ESP8266 it has better and easier programming, with better voltage stability and more reliability. It get information from sen- sor and process on it. It compares the received data with the threshold level set and accordingly output is generated. The HC-SR04 Ultrasonic (US) sensor is a 4 pin module, whose pin names are VCC, Trigger, Echo and Ground respectively. This sensor is a very popular sensor used in many applications where measuring distance or sensing objects are required. The module has two eyes like projects in the front which forms the Ultrasonic transmitter and Receiver. The sensor works with the simple high school formula that Distance = Speed × Time Power the Sensor using a regulated +5V through the Vcc ad Ground pins of the sensor. The current consumed by the sensor is less than 15mA and hence can be directly powered by the on board 5V pins (If available). The Trigger and the Echo pins are both I/O pins and hence they can be connected to I/O pins of the microcontroller. To start the measurement, the trigger pin has to be made high for 10uS and then turned off. This action will trig- ger an ultrasonic wave at frequency of 40Hz from the transmitter and the receiver will wait for the wave to return. Once the wave is returned after it getting reflected by any object the Echo pin goes high for a particular amount of time which will be equal to the time taken for the wave to return back to the sensor. The amount of time during which the Echo pin stays high is measured by the MCU/MPU as it gives the information about the time taken for the wave to return back to the Sensor. Using this information the distance is measured as explained in the above heading. The time between the transmission and reception of the signal allows us to know the distance to an object. This is possi- ble because we know the sound’s velocity in the air. Since we are using the Ultrasonic wave we know the universal speed of US wave at room conditions which is 330m/s. The Ultrasonic Sensor sends out a high-frequency sound pulse and then times how long it takes for the echo of the sound to reflect back. The sensor has 2 openings on its front. The circuitry inbuilt on the module will calculate the time taken for the US wave to come back and turns on the echo pin high for that same particular amount of time, this way we can also know the time taken. Now simply calculate the distance using a microcontroller or microprocessor. Fig 3.1: Block Diagram of Smart Bin
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4977 HC-SR04 GND WeMos NodeMCU ECHO GND D6TRIGGER D5VCC VCC 5 volt from USB cable In this section we design structure of the system before imple- mentation of circuit. We use advanced microcontroller called WeMOS. In this project we put the ultrasonic sensor on top of the garbage bin. The output of the ultrasonic sensor is processed by the microcontroller and the output is then sent to the cloud server which sends a text message to the concerned person. We have a threshold value of 10cm which means that if the distance of the sensor from the top of the garbage is less than 10cm, the output will come with a message that the basket is full. We have created our web developed application which will continuously monitor the graphical status of smart bin. Connections of the ultrasonic sensor with the WeMOS are very simple. Connect the VCC and the ground of the ultrasonic sensor to the 5V and the ground of the WeMOS. Then connect the TRIG and ECHO pin of ultrason- ic sensor to the pin D5 and D6 of the WeMOSrespectively. Fig3.2: Connection between WeMos and HC-SR04 Mathematical Analysis  Total dustbin length=30 cm  The sensing distance of UVsensor=10cm Calculation Time taken by pulse is actually for to and from travel ofultrason- ic signals, while we need only half of this. Therefore time is tak- en as time/2. Distance = Speed * Time/2 Speed of sound at sea level = 343 m/s or 34300 cm/s Thus, Distance = 17150 * Time (unit cm) Analysis of the accuracy of determination of the intensity E of UV radiation for a specified wavelength λ was made on the basis of the uncertainty theory. The inaccuracy of intensity measurement, charac- terizing the scatter of the values attributed to the quantity being measured, is described by a complex uncertainty: U(E)=kuC(E) where: k – the coverage factor (k=2 for confidence level 0.95); uC(E) – the combined standard uncertainty of estimate E. The equation from which the estimate E of the true value of UV radiation intensity is calculated.
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4978 To calculate the range through the time interval between sending trigger signal and receiving echo signal. Formula: uS / 58 = cen- timeters or uS / 148 =inch; or: the range = high level time * ve- locity (340M/S) / 2; we suggest to use over 60ms measurement cycle, in order to prevent trigger signal to the echo signal. Fig.3.3:Radiated and Received signal Fig.3.4: Waveform of UV sensor Distance Measurement formula is expressed as: L = C X T In the formula, L is the measured distance, and C is the ultrason- ic spreading velocity in air, also, T represents time (T is half the time value from transmitting to receiving).
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4979 YES NO 4. FLOWCHART OF SMART BIN Fig4: Flowchart of Smart Bin
  • 6. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 6. RESULT This section preset a real time plot of the fill percentage of the bi ad the real time plot inside the bin this is the graphical representa- tion of design of smart bin. The test cases for the smart bin are as follows, 1) Dustbin when empty - 0 % (At first level UV Sensor gives output) 2) Dustbin full – 90% (At last level UV sensors gives output) Fig 6.1: Design of Smart bin Fig 6.2: Garbage level at 0% Fig 6.3: Garbage level at 25% © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4980
  • 7. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 Fig 6.4: Garbage level at 50% Fig 6.5: Garbage level at 75% Fig 6.6: Graphical representation of level of garbage. © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4981
  • 8. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 Fig 6.3: Message received from server 7. CONCLUSION One of the utility of our system is that the Govt. can use the gar- bage generations statistics for policy and program design. If the system is implemented properly it will really make the cities cleaner and greener and makes the smart city. The real-time mon- itoring of the garbage level with the help of sensors and wireless communication will reduce the total number of trips required and thus, will reduce the total expenditure associated with the garbage collection. Thus, the dustbins will be cleared as and when filled, giving way to cleaner city, better infrastructure and increased hygiene. The proposed idea can be implemented for smart cities where the residents would be busy enough with their hectic schedule and wouldn’t have enough time for managing waste. The bins can be implemented in a city if desired where there would be a large bin that can have the capacity to accumulate the waste of solid type for a single apartment. The cost could be dis- tributed among the residents leading to cheaperprovision. ACKNOWLEDGMENT We would like to thanks M. V. Tiwari, PRMITR Badnera for his continuous support and motivation which has help us in success- fully designing the system. REFERECES [1]. Ghose, M.K., Dikshit, A.K., Sharma, S.K. A GIS based transportation model for solid waste disposal – A case study on Asansol municipality. Journal of Waste Management‖. [2] Guerrero, L.A., Maas, G., Hogland, W.: Solid waste man- agement challenges for cities in developing countries. Journal of Waste Management. [3] Alexey Medvedev, PetrFedchenkov, ArkadyZaslavsky, Theodoros, Anagnostopoulos Sergey Khoruzhnikov,‖Waste Management -Enabled Service in Smart Cities‖. [4]. Meghana K C, Dr. K R Nataraj, GSM Based Intelligent Bin for Smart Cities‖. © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4982
  • 9. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 04 | Apr 2019 www.irjet.net p-ISSN: 2395-0072 [5]. Monika K A, NikithaRao, Prapulla S B, Shobha G, Smart Dustbin-An Efficient Garbage Monitoring System. [6] Michael Batty , Kay Axhausen, et al., “Smart Cities of the Future,”UCL centre for advanced spatial analysis on working paper series, ISSN 1467-1298, Paper 188 - Oct 12. [7]. S.S. Navghane, M.S. Killedar, Dr.V.M. Rohokale,‖ IoT Based Garbage and Waste Collection Bin‖, May2016. [8]. P. Sukholthaman, K. Shirahada, Proceedings of PICMET '14 Conference: Portland International Center for Management of Engineering and Technology; Infrastructure and Service Integra- tion, (2014) [9]. C. K.M. Lee, T. Wu, International Conference on Industrial Engineering and Engineering Management, 798 (2014) [10]. A.F. Thompson, A.H. Afolayan, E.O. Ibidunmoye, Infor- mation Science, Computing and Telecommunications, 206 (2013) [11] Daniel V., Puglia P.A., and M. Puglia (2007). “RFID-A Guide to Radio Frequency Identification”, Technology Research Corporation. [12] Flora, A. (2009). “Towards a clean environment: A proposal on sustainable and integrated solid waste management system for university Kebangsaan Malaysia”. Report from AlamFlora. [13] Gogoi.L (2012). “Solid Waste Disposal and its Health Im- plications in Guwahati City: A Study in Medical Geography", Lambert Academic Publishing, Germany, ISBN 978-3-8454- 0149-2. [14] Hannan, M., A., Arebey, M., Basri, H.(2010). “Intelligent Solid Waste Bin monitoring and Management System”, Australi- an Journal of Basic and Applied Sciences, 4(10): 5314-5319, 2010, ISSN 1991-8178. [15] Md. Liakot Ali, Mahbubul Alam, Md. Abu Nayeem Red- wanur Rahaman, (2012). “RFID based E-monitoring System for Municipal Solid Waste Management”, International Conference on Electrical and Computer Engineering, Pg 474-477. [16] Rahman, H., Al-Muyeed, A. (2010). “Solid and Hazardous Waste Management”, ITN-BUET, Center for Water Supply and Waste Management [17] Twinkle Sinha, K.Mugesh Kumar, P.Saisharan, (2015). “SMART DUSTBIN”, International Journal of Industrial Elec- tronics and Electrical Engineering, ISSN: 2347-6982, Volume-3, Issue-5. [18] Visvanathan, C., Ulrich, G., (2006). “Domestic Solid Waste Management in South Asian Countries – A Comparative Analy- sis”, 3 R South Asia Expert Workshop, Kathmandu, Nepal. (all reference are very old New latest reference may be added after year 2014) 1034 [19]P.Suresh1J. Vijay Daniel2, Dr.V.Parthasarathy4” A state of the art review on the Internet of Things (IoT)” International Co ference on Science, Engineering and Management Research (ICSEMR 2014) [20] Arkady Zaslavsky, Dimitrios Georgakopoulos” Internet of Things: Challenges and State-of-the-art solutions in Internet- scale Sensor Information Management and Mobile Analytics” 2015 16th IEEE International Conference on Mobile Data Managment [21]Theodoros.Anagnostopoulos1,Arkady.Zaslavsky2,1, Alexey Medvedev1, Sergei Khoruzhnicov1” Top–k Query based Dynam- ic Scheduling for IoT-enabled Smart City Waste Collection” 2015 16th IEEE International Conference on Mobile Data Man- agement. [22] “City Garbage collection indicator using RF (Zigbee) and GSM technology” [23] Vikrant Bhor, Pankaj Morajkar, Maheshwar Gurav, Dishant Pandya4 “Smart Garbage Management System” International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 IJERTV4IS031175 Vol. 4 Issue 03, March-2015 © 2019, IRJET | Impact Factor value: 7.211 | ISO 9001:2008 Certified Journal | Page 4983