SlideShare une entreprise Scribd logo
1  sur  78
Biostatistics
Khushbu Mishra
CONTENTS
• Introduction
• Definition
• Common statistical terms
• Sources and collection of Data
• Presentation of Data
• Analysis and interpretation
 Statistical averages
 Measures of Dispersion
Sampling and sampling methods
Sampling errors
Tests of significance
Correlation and regression
limitations
Introduction
• We, medical and dental students during period of our study,
learn best methods of diagnosis and therapy.
• After graduation, we go through research papers presented at
conferences and in current journals to know
new methods of therapy,
improvement in diagnosis and surgical techniques.
• It must be admitted that essence of papers contributed to
medical journals is largely statistical.
Training in statistics has been recognized as “indispensible” for
students of medical science.
for eg.
if we want to establish cause and effect relationship, we need
statistics.
if we want to measure state of health and also burden of
disease in community, we need statistics.
• statistics are widely used in epidemiology,
clinical trial of drug vaccine
program planning
community medicine
health management
health information system etc..
• The knowledge of medical statistics enables one to develop a
self- confidence & this will enable us to become a good
clinician, good medical research worker, knowledgable in
statistical thinking.
• Everything in medicine, be it research, diagnosis or treatment
depends on counting or measurment.
• According to Lord Kelvin,
when you can measure what you are speaking about and
express it in numbers, you know something about it but when
you can not measure, when you can not express it in numbers,
your knowledge is of meagre and unsatisfactory kind.
Bio-Statistics in Various areas
Health Statistics
Medical Statistics
Vital Statistics
• In Public Health or Community Health, it is called Health
Statistics.
• In Medicine, it is called Medical Statistics. In this we study the
defect, injury, disease, efficacy of drug, Serum and Line of
treatment, etc.,
• In population related study it is called Vital Statistics. e.g.
study of vital events like births, marriages and deaths.
• Application and uses of Biostatistics as a science..
in Physiology,
a.
to define what is normal/healthy in a population
b.
to find limits of normality
c.
to find difference between means and proportions of
normal at two places or in different periods.
d.
to find the correlation between two variables X and Y such
as in height or weight..
for eg. Weight increases or decreases proportionately with
height and if so by how much has to be found.
•
a.
b.
c.
•
a.
b.
c.

In Pharmacology,
To find action of drug
To compare action of two different drugs
To find relative potency of a new drug with respect to a
standard drug.
In Medicine,
To compare efficacy of particular drug, operation or line of
treatment.
To find association between two attributes eg. Oral cancer and
smoking
To identify signs and symptoms of disease/ syndrome.
Common statistical terms
• Variable:- A characteristic that takes on different values in
different persons, places/ things.
• Constant:- Quantities that donot vary such as π = 3.141
e = 2.718
these donot require statistical study.
In Biostatistics, mean, standard deviation, standard error,
correlation coefficient and proportion of a particular
population are considered constant.
• Observation:- An event and its measurment.
for eg.. BP and its measurment..
• Observational unit:- the “sources” that gives observation for
eg. Object, person etc.
in medical statistics:- terms like individuals, subjects etc are
used more often.
• Data :- A set of values recorded on one or more observational
units.
• Population:- It is an entire group of people or study elementspersons, things or measurments for which we
have an intrest at particular time.
• Sampling unit:- Each member of a population.
• Sample:- It may be defined as a part of a population.
• Parameter:- It is summary value or constant of a variable, that
describes the sample such as its mean,
standard deviation
standard error
correlation coefficient etc..
• Parametric tests:- It is one in which population constants
such as described above are used :- mean,
variances etc..
data tend to follow one assumed or established distribution
such as normal, binomial, poisson etc..
• Non- parametric tests:- Tests such as CHI- SQUARE test, in
which no constant of population is used.
Data donot follow any specific distribution and no assumptions
are made in non- parametric tests.eg ..good, better and best..
DEFINITION
American Heritage Dictionary® defines statistics as: "The
mathematics of the collection, organization, and interpretation of
numerical data, especially the analysis of population
characteristics by inference from sampling.”

The Merriam-Webster’s Collegiate Dictionary® definition is:
"A branch of mathematics dealing with the collection, analysis,
interpretation, and presentation of masses of numerical data."
A Simple but Concise definition by Croxton
and Cowden:
“Statistics is defined as the Collection, Presentation,
Analysis and Interpretation of numerical data.”
In the line of the definition of Croxton and Cowden, a
comprehensive definition of Statistics can be:

“Statistics defined as the science of
Collection,
Organisation,
presentation,
analysis and
interpretation of numerical data.”
• STATISTIC/ DATUM:- measured/ counted fact or piece of
information
such as height of person,
birth weight of baby…
• STATISTICS/ DATA:- plural of the same
such as height of 2 persons,
birth weight of 5 babies
plaque score of 3 persons…
• BIOSTATISTICS:- term used when tools of statistics are
applied to the data that is derived from biological sciences
such as medicine.
Types of Data

Qualitative Data

Nominal

Ordinal

Quantitative Data

Discrete

Continuous

Interval

Ratio
COLLECTION OF DATA

Data can be collected through
Primary sources:- here data is obtained by the investigator
himself. This is first hand information.
Secondary sources:- The data already recorded is utilized to
serve the purpose of the objective of study eg. records of OPD
of dental clinics.
• Main sources for collection of medical statistics:1. Experiments
2. Surveys
3. Records.
• Experiments and surveys are applied to generate data needed
for specific purposes.
• While Records provide ready- made data for routine and
continuous information.
Methods of collection of data
• Method of direct observation:- clinical signs and symptoms
and prognosis are collected by direct observation.
• Method of house to house visit:- vital statistics and morbidity
statistics are usually collected by visiting house to house.
• Method of mailed questionnaire:- this method is followed in
community where literacy status of people is very high.
Prepaid postage stamp is to be attached with questionnaire.
Presentation of data
• to sort and classify data into groups or classification.
• Objective :- to make data simple,
concise,
meaningful,
intresting,
helpful for further analysis.
• 2 main methods are
i. Tabulations
ii. Charts and diagrams
• Tabulation :• Devices for presenting data simply from masses of statistical
data.
• A table can be simple or complex, depending upon the number
or measurment of a single set or multiple set of items.
• 3 types:
a. Master table:- contains all the data obtained from a survey.
b. Simple table:- oneway table which supply answers to
questions about one characteristics only.
c. Frequency distribution table:- data is first split up into
convenient groups and the number of items which occur in
each group is shown in adjacent columns.
Table 1
states

population 1st march 2011

Andhra pradesh

8,46,65,533

Madhya pradesh

7,25,97,565

Uttar pradesh

19,95,81,477

Karnataka

7,14,83,435

Rajasthan

18,23,45,998

kerela

6,43,35,772
Frequency distribution table
• The following figures are the ages of patients admitted to a
hospital with poliomyelitis..
8, 24, 18, 5, 6, 12, 14, 3, 23, 9, 18, 16, 1, 2, 3, 5, 11, 13, 15, 9,
11, 11, 7, 106, 9, 5, 16, 20, 4, 3, 3, 3, 10, 3, 2, 1, 6, 9, 3, 7, 14,
8, 1, 4, 6, 4, 15, 22, 2, 1, 4, 6, 4, 15, 22, 2, 1, 4, 7, 1, 12, 3, 23,
4, 19, 6, 2, 2, 4, 14, 2, 2, 21, 3, 2, 1, 7, 19.
Age

Number of patients

0-4

35

5-9

18

10-14

11

15-19

8

20-24

6
Charts and diagrams
Quantitative
data
1. Histogram
2. Frequency polygon
3. Frequency curve
4. Line chart or graph
5.Cumulative frequency
diagram
6. Scatter diagram

Qualitative
data
1.Bar diagram
2. Pie or sector
diagram
3.Pictogram
4.Map diagram
Histogram
Frequency polygon
Frequency polygon
Frequency curve
Line chart or graph
Cumulative frequency diagram or
Ogive
Scatter or dot or correlation diagrams
Bar diagrams
Pie diagram
Pictogram or picture diagram
Map diagram or spot maps
&

INTERPRETATION
Measures of central tendency/ statistical averages
• The word “average” implies a value in the distribution, around
which other values are distributed.
• It gives a mental picture of the central value.
• Commonly used methods to measure central tendency..
a. The Arithmetic Mean
b. Median
c. Mode.
• Mean = sum of all values
total no. of values
• Median = middle value (when the data are arranged
in order.
• Mode = most common value
• For eg..
the income of 7 people per day in rupees are as follows.
5, 5, 5, 7, 10, 20, 102= (total 154)
• Mean = 154/7 = 22
• Median= 7
• Median, therefore, is a better indicator of central tendency
when more of the lowest or the highest observations are wide
apart .
• Mode is rarely used as series can have no modes, 1 mode or
multiple modes.
Measures of Dispersion
•
a.
b.
c.

Widely known measures of dispersion are ..
The Range
The Mean or Average Deviation
The Standard Deviation.

a. Range : simplest
difference between highest and lowest figures
for eg.. Diastolic BP – 83, 75, 81, 79, 71, 90, 75, 95, 77, 94
so, the range is expressed as 71 to 95
or by actual difference of 24
• Merit :- simplest.
• Demerit :not of much practical importance.
indicates nothing about the dispersion of values
between two extreme values.
• Mean deviation:average of deviation from arithmetic mean.
M.D. = Ʃ(X – X )
ɳ
• Standard Deviation :- most frequently used
“ Root Mean Square Deviation”
denoted by greek letter σ or by initials
S.D. = Square root of Ʃ(X-X )2
ɳ

•
•
•

if sample size is less than 30 in denominator, (ɳ-1)
S.D. gives us idea of the spread of dispersion .
Larger the standard deviation, greater the dispersion of values
about the mean
Normal distribution
• large number of observations of any variable characteristics.
• A frequency distribution table is prepared with narrow class
intervals.
• Some observations are below the mean and some are above the
mean.
• If they are arranged in order, deviating towards the extremes
from the mean, on plus or minus side, maximum number of
frequencies will be seen in the middle around the mean and
fewer at extremes, decreasing smoothly on both the sides.
• Normally, almost half the observations lie above and half
below the mean and all observations are symmetrically
distributed on each of the mean.
• A distribution of this nature or shape is called normal or
gaussian distribution.
standardized normal curve
• Devised to estimate easily
the area under normal curve
between any two ordinates.
•Smooth
•Bell shaped
•Perfectly symmetrical curve
•Total area of curve is 1
mean=0
standard deviation= 1
Mean, Median and Mode all
coincide.
•Probability of occurrence of
any variable can be
calculated.
Estimation of probability (example)
• The pulse of a group of normal healthy males was 72, with a
standard deviation of 2. what is the probability that a male
chosen at random would be found to have a pulse of 80 or
higher?
• The relative deviate (z) = (x-x )
σ
= 80 – 72 = 4
2
The area of normal curve corresponding to a deviate 4=
0.49997, so, probability = 0.5- .49997 = 0.00003 i.e. 3 out of
1,00,000 individuals.
Areas of the standard normal curve with mean 0 and
standard deviation 1
Relative deviate (z)= (x-x)
σ
0.00

Proportion of area from middle
of the curve of designated
deviation.
.0000

0.50

.1915

1.00

.3413

1.50

.4332

2.00

.4772

4.00

. 4999998
Sampling
• When a large proportions of individuals or units have to be
studied, we take a sample.
• It is easier
• More economical
• Important to ensure that group of people or items included in
sample are representative of whole population to be studied.
• Sampling frame: once universe has been defined
a sampling frame must be prepared.
Listing of the members of the universe from which sample is
to be drawn.
• Accuracy
&
completeness

influences quality of sample drawn from it.

• Sampling methods
i. Simple random sampling
ii. Systematic random sampling
iii. Stratified random sampling
Sampling errors
• Repeated samples from same population
• Results obtained will differ from sample to sample.
• This type of variation from one sample to another is called
sampling error.
• Factors influencing sample error are:a. Size of sample
b. Natural variability of individual readings.
• As sample sample size increases, sampling error will
decrease.
Non – sampling errors
• Errors may occur due to
i. Inadequately caliberated instruments
ii. Observer‟s variation
iii. Incomplete coverage achieved in examining the subjects.
iv. Selected and conceptual errors
Standard error
• If we take random sample (ɳ) from the population,
and similar samples over and over again we will find that
every sample will have different mean.(X).
• Make frequency distribution of all sample means.
• Distribution of mean is nearly a normal distribution.
• Mean of sample means is practically same as population
means.
• The standard deviation of the means is a measure of sample
error and given by the formula
standard error = S.D(σ)/ √n
• Since distribution of means follows the pattern of a normal
distribution, it is not difficult to visualize that 95% of sample
means follows within limits of two standard error.

• Therefore, standard error is a measure which enables us to
judge whether mean of a given sample is within the set
confidence limits.
Tests of significance
• Standard error indicates how reliable an estimate of the mean
is likely to be.
• Standard error is applied with appropriate formulae to all
statistics, i.e, mean, standard deviation.etc..

i.
ii.
iii.
iv.

Standard error of Mean
Standard error of Proportion
Standard error of difference between means
Standard error of difference between proportions
Standard error of Mean
• we take only one sample from universe, calculate Mean and
standard deviation.
• But, how accurate is mean of our sample?
• What can be said about true mean of universe.
• In order to answer these questions,
we calculate standard error of Mean and set up confidence
limits
within which the mean(μ), of the population (of which we
have only one sample) is likely to lie.
let us suppose, we obtained a random
sample of 25 males, age 20-24 years
whose mean temperature was 98.14
deg.F with a standard deviation of
0.6. what can we say of the true mean
of the universe from which the
sample was drawn?

Confidence limits on the basis of
normal curve distribution- 95%
confidence limits= 98.14+ (2 0.12)
Range= 97.90 to 98.38degree F

25

0.6

0.6

√25
0.12
Standard error of proportion
• Standard error of proportion= √pq/n

standard error of difference between two Mean
S.E. (d)
= square root of
σ 21 + σ 2 2
Between the means
n1
n2
• The actual difference between the two means should be more than
twice the standard error of difference between two means.
• Parametric Statistical Tests:
EX: Z test
t test
F test

• Non Parametric Statistical Tests:
EX: Chi- square test
sign test
Types of problems
I

Comparison of sample mean with population mean

II Comparison of two sample means
III Comparison of sample proportion with the population
proportion
IV Comparison of two sample proportions
Steps
• Finding out the type of problem and the question to
be answered.
• Stating the Null Hypothesis (Ho)
• Calculating the standard error
• Calculating the critical ratio
difference between statistics / standard error
• Comparing the value observed in the experiment with
that at the predetermined significant level given by
the table
• Making inferences. P<0.05 significant reject the Ho
P =0.05 and P>0.05 accept the Ho
Z Test
Prerequisites to apply Z-test
• The sample or the samples must be randomly selected.
• The data must be quantitative.
• The variable is assumed to follow normal distribution in
the population.
• The sample size must be larger than 30
Two types:
• one tailed Z test
• Two tailed Z test
• The z- test has 2 applications:
i. To test the significance of difference between a sample mean
and a known value of population mean.
Z = Mean – Population mean
S.E. of sample mean
ii. To test the significance of difference between 2 sample
means or between experiment sample mean and a control
sample mean.
Z = Observed difference between 2 sample means
SE of difference between 2 sample means
t - Test
Criteria for applying t-test
• Random samples
• Quantitative data
• Variable normally distributed
• Sample size less than 30

•

Unpaired t-test: applied on unpaired data of
independent observations made on individuals of
two different or separate groups or samples drawn
from two populations

• Paired t-test: applied to paired data of independent
observations from one sample only
• It was designed by WS Gosseett whose pen name was
„student‟.
• The formula used is

t = observed difference between two means of small samples
SE of difference in the same
F-test (Analysis of variance test)
• Used for comparing more than two samples mean
drawn from corresponding normal populations.
Ex: to find out whether occupation plays any part in
causation of BP. systolic BP values of 4 occupations
are given. Determine if there is significant difference in
mean BP of 4 groups in order to assess the role of
occupation in causation of BP.
F = Mean square between samples / Mean square
within the samples
Chi-square Test
Application :
1. Proportion:
a) compare the values of two binomial samples
even if <30.Ex: Incidence of diabetes in 20 obese
and 20 non obese.
b) compare the frequencies of two multinomial
samples ex: no of diabetics and non diabetics in
groups weighing 40-50, 50-60 and >60 kg
2.Association: It measures the probability of
association between two discrete attributes. It has
an added advantage that it can be applied to find
association or relationship between two discrete
attributes when there are more than two classes
or groups.
Ex:- Trial of 2 whooping cough vaccines results of
the field trial were as below
Vaccine

Attacked Not
Total
attacked

Attack
rate

A
B

22
14

68
72

90
86

24.4%
16.2%

Total

36

140

176

-
• Null hypothesis ( Ho):- there was no difference
between the effect of two vaccines.
• Calculation of the expected number (E) in each group
of the sample or the cell of table
E=(column or vertical total x Row or horizontal total) /
sample total

Vaccine
A

B

Attacked
O=22
E=36x90 / 176
=18.4
O=14
E=17.54

Not Attacked
O=68
E=71.55
O=72
E=68.37
• Applying the χ² test.
χ²= ∑(O-E)² / E
= 0.72+0.17+0.71+0.19
= 1.79
• Finding the degree of freedom.
d.f. = (c-1) (r-1) = 1.

• Probability tables.
5% level = 3.84 P >0.05 Accept the Ho
• Inference:- The vaccine B is not superior to vaccine A
Restrictions in application of χ² test:
• Will not give reliable result with one degree of freedom if
the expected value in any cell is less than 5. Apply Yates
correction
χ² = ∑ ( | O – E | - ½ ) / E
• Yates correction cannot be applied in tables larger than 2x2
• Tells the presence or absence of association but does measure
strength of association.

• Statistical finding of relationship, does not indicate the cause
and effect.
Correlation and Regression
• To find whether there is significant association or not between
two variables, we calculate co- efficient of correlation, which
is represented by symbol “r”.
• r = Ʃ (x - x ) (y - y )
√ Ʃ( x-x)2 Ʃ(y-y)2
• The correlation coefficient r tends to lie between – 1.0 and
+1.0.
Types of correlation :Perfect positive correlation:
• The correlation co-efficient(r) = +1 i.e. both variables rise or
fall in the same proportion.
Perfect negative correlation:
• The correlation co-efficient(r) = -1 i.e. variables are inversely
proportional to each other, when one rises, the other falls in the
same proportions.
Moderately positive correlation:
• Correlation co-efficient value lie between 0< r< 1
Moderately negative correlation:
• Correlation coefficient value lies between -1< r< 0
Absolutely no correlation:
• r = 0, indicating that no linear relationship exits between the 2
variables.
conclusion
• Statistics is central to most medical research .
• Basic principles of statistical methods or techniques equip
medical and dental students to the extent that they may be able
to appreciate the utility and usefulness of statistics in medical
and other biosciences.
• Certain essential bits of methods in biostatistics, must be learnt
to understand their application in diagnosis, prognosis,
prescription and management of diseases in individuals and
community.
References

• PARK‟S textbook of preventive and social medicine- 22nd
edition.
• Methods in Biostatistics- 7th edition by BK Mahajan.
Thank you

Contenu connexe

Tendances

Introduction to biostatistics
Introduction to biostatisticsIntroduction to biostatistics
Introduction to biostatisticsshivamdixit57
 
Biostatistics
BiostatisticsBiostatistics
BiostatisticsPRIYAG63
 
Introduction to biostatistics by Niraj Kumar Yadav
Introduction to biostatistics by Niraj Kumar YadavIntroduction to biostatistics by Niraj Kumar Yadav
Introduction to biostatistics by Niraj Kumar YadavNiraj Kumar Yadav
 
biostatstics :Type and presentation of data
biostatstics :Type and presentation of databiostatstics :Type and presentation of data
biostatstics :Type and presentation of datanaresh gill
 
Basic biostatistics dr.eezn
Basic biostatistics dr.eeznBasic biostatistics dr.eezn
Basic biostatistics dr.eeznEhealthMoHS
 
Lec. biostatistics introduction
Lec. biostatistics  introductionLec. biostatistics  introduction
Lec. biostatistics introductionRiaz101
 
Biostatistics (Basic Definitions & Concepts) | SurgicoMed.com
Biostatistics (Basic Definitions & Concepts) | SurgicoMed.comBiostatistics (Basic Definitions & Concepts) | SurgicoMed.com
Biostatistics (Basic Definitions & Concepts) | SurgicoMed.comMukhdoom BaharAli
 
Fundamentals of biostatistics
Fundamentals of biostatisticsFundamentals of biostatistics
Fundamentals of biostatisticsKingsuk Sarkar
 
scope and need of biostatics
scope and need of  biostaticsscope and need of  biostatics
scope and need of biostaticsdr_sharmajyoti01
 

Tendances (20)

INTRODUCTION TO BIO STATISTICS
INTRODUCTION TO BIO STATISTICS INTRODUCTION TO BIO STATISTICS
INTRODUCTION TO BIO STATISTICS
 
Introduction to biostatistics
Introduction to biostatisticsIntroduction to biostatistics
Introduction to biostatistics
 
Biostatistics
BiostatisticsBiostatistics
Biostatistics
 
1.introduction
1.introduction1.introduction
1.introduction
 
Biostatistics
BiostatisticsBiostatistics
Biostatistics
 
Introduction to biostatistics by Niraj Kumar Yadav
Introduction to biostatistics by Niraj Kumar YadavIntroduction to biostatistics by Niraj Kumar Yadav
Introduction to biostatistics by Niraj Kumar Yadav
 
biostatstics :Type and presentation of data
biostatstics :Type and presentation of databiostatstics :Type and presentation of data
biostatstics :Type and presentation of data
 
Biostatistics
BiostatisticsBiostatistics
Biostatistics
 
Basic biostatistics dr.eezn
Basic biostatistics dr.eeznBasic biostatistics dr.eezn
Basic biostatistics dr.eezn
 
Biostatistics
BiostatisticsBiostatistics
Biostatistics
 
Biostatistics Concept & Definition
Biostatistics Concept & DefinitionBiostatistics Concept & Definition
Biostatistics Concept & Definition
 
Biostatistics
BiostatisticsBiostatistics
Biostatistics
 
Lec. biostatistics introduction
Lec. biostatistics  introductionLec. biostatistics  introduction
Lec. biostatistics introduction
 
Biostatistics (Basic Definitions & Concepts) | SurgicoMed.com
Biostatistics (Basic Definitions & Concepts) | SurgicoMed.comBiostatistics (Basic Definitions & Concepts) | SurgicoMed.com
Biostatistics (Basic Definitions & Concepts) | SurgicoMed.com
 
Fundamentals of biostatistics
Fundamentals of biostatisticsFundamentals of biostatistics
Fundamentals of biostatistics
 
Biostatics
BiostaticsBiostatics
Biostatics
 
Standard error
Standard error Standard error
Standard error
 
biostatistics basic
biostatistics basic biostatistics basic
biostatistics basic
 
scope and need of biostatics
scope and need of  biostaticsscope and need of  biostatics
scope and need of biostatics
 
Frequency Distributions
Frequency DistributionsFrequency Distributions
Frequency Distributions
 

En vedette

Collection, classification and presentation of data
Collection, classification and presentation of dataCollection, classification and presentation of data
Collection, classification and presentation of dataNidhi
 
Methods of data collection (research methodology)
Methods of data collection  (research methodology)Methods of data collection  (research methodology)
Methods of data collection (research methodology)Muhammed Konari
 
Application of Biostatistics
Application of BiostatisticsApplication of Biostatistics
Application of BiostatisticsJippy Jack
 
Introduction to statistics
Introduction to statisticsIntroduction to statistics
Introduction to statisticsakbhanj
 
Methods of data collection
Methods of data collectionMethods of data collection
Methods of data collectionsimij
 
Methods of data collection
Methods of data collection Methods of data collection
Methods of data collection PRIYAN SAKTHI
 

En vedette (7)

Business research methods 1
Business research methods 1Business research methods 1
Business research methods 1
 
Collection, classification and presentation of data
Collection, classification and presentation of dataCollection, classification and presentation of data
Collection, classification and presentation of data
 
Methods of data collection (research methodology)
Methods of data collection  (research methodology)Methods of data collection  (research methodology)
Methods of data collection (research methodology)
 
Application of Biostatistics
Application of BiostatisticsApplication of Biostatistics
Application of Biostatistics
 
Introduction to statistics
Introduction to statisticsIntroduction to statistics
Introduction to statistics
 
Methods of data collection
Methods of data collectionMethods of data collection
Methods of data collection
 
Methods of data collection
Methods of data collection Methods of data collection
Methods of data collection
 

Similaire à Biostatistics khushbu

Biostatistics.pptxhgjfhgfthfujkolikhgjhcghd
Biostatistics.pptxhgjfhgfthfujkolikhgjhcghdBiostatistics.pptxhgjfhgfthfujkolikhgjhcghd
Biostatistics.pptxhgjfhgfthfujkolikhgjhcghdmadanshresthanepal
 
Biostatistics.school of public healthppt
Biostatistics.school of public healthpptBiostatistics.school of public healthppt
Biostatistics.school of public healthppttemesgengirma0906
 
statistics introduction.ppt
statistics introduction.pptstatistics introduction.ppt
statistics introduction.pptCHANDAN PADHAN
 
Introduction to statistics in health care
Introduction to statistics in health care Introduction to statistics in health care
Introduction to statistics in health care Dhasarathi Kumar
 
biostatfinal_(2).ppt
biostatfinal_(2).pptbiostatfinal_(2).ppt
biostatfinal_(2).pptBiswa48
 
Lect 1_Biostat.pdf
Lect 1_Biostat.pdfLect 1_Biostat.pdf
Lect 1_Biostat.pdfBirhanTesema
 
1. Introdution to Biostatistics.ppt
1. Introdution to Biostatistics.ppt1. Introdution to Biostatistics.ppt
1. Introdution to Biostatistics.pptFatima117039
 
Biostatistics-C-2-Item-2pdf.pdf
Biostatistics-C-2-Item-2pdf.pdfBiostatistics-C-2-Item-2pdf.pdf
Biostatistics-C-2-Item-2pdf.pdfArifHasan773786
 
Biostatisitics.pptx
Biostatisitics.pptxBiostatisitics.pptx
Biostatisitics.pptxFatima117039
 
Data Display and Summary
Data Display and SummaryData Display and Summary
Data Display and SummaryDrZahid Khan
 
Introduction to nursing Statistics.pptx
Introduction to nursing Statistics.pptxIntroduction to nursing Statistics.pptx
Introduction to nursing Statistics.pptxMelba Shaya Sweety
 
1 Introduction to Biostatistics.pptx
1 Introduction to Biostatistics.pptx1 Introduction to Biostatistics.pptx
1 Introduction to Biostatistics.pptxAyeleBizuneh1
 
1 Introduction to Biostatistics.pdf
1 Introduction to Biostatistics.pdf1 Introduction to Biostatistics.pdf
1 Introduction to Biostatistics.pdfbayisahrsa
 
Medical Statistics.ppt
Medical Statistics.pptMedical Statistics.ppt
Medical Statistics.pptssuserf0d95a
 
Biostatistics.pptx
Biostatistics.pptxBiostatistics.pptx
Biostatistics.pptxTawhid4
 
2021f_Cross-sectional study.pptx
2021f_Cross-sectional study.pptx2021f_Cross-sectional study.pptx
2021f_Cross-sectional study.pptxtamanielkhair
 

Similaire à Biostatistics khushbu (20)

Biostatistics.pptxhgjfhgfthfujkolikhgjhcghd
Biostatistics.pptxhgjfhgfthfujkolikhgjhcghdBiostatistics.pptxhgjfhgfthfujkolikhgjhcghd
Biostatistics.pptxhgjfhgfthfujkolikhgjhcghd
 
Biostatistics.school of public healthppt
Biostatistics.school of public healthpptBiostatistics.school of public healthppt
Biostatistics.school of public healthppt
 
statistics introduction.ppt
statistics introduction.pptstatistics introduction.ppt
statistics introduction.ppt
 
Introduction to statistics in health care
Introduction to statistics in health care Introduction to statistics in health care
Introduction to statistics in health care
 
Biostatistics
Biostatistics Biostatistics
Biostatistics
 
biostatfinal_(2).ppt
biostatfinal_(2).pptbiostatfinal_(2).ppt
biostatfinal_(2).ppt
 
Lect 1_Biostat.pdf
Lect 1_Biostat.pdfLect 1_Biostat.pdf
Lect 1_Biostat.pdf
 
1. Introdution to Biostatistics.ppt
1. Introdution to Biostatistics.ppt1. Introdution to Biostatistics.ppt
1. Introdution to Biostatistics.ppt
 
Biostatistics-C-2-Item-2pdf.pdf
Biostatistics-C-2-Item-2pdf.pdfBiostatistics-C-2-Item-2pdf.pdf
Biostatistics-C-2-Item-2pdf.pdf
 
Biostatisitics.pptx
Biostatisitics.pptxBiostatisitics.pptx
Biostatisitics.pptx
 
Data Display and Summary
Data Display and SummaryData Display and Summary
Data Display and Summary
 
introduction.pptx
introduction.pptxintroduction.pptx
introduction.pptx
 
Introduction to nursing Statistics.pptx
Introduction to nursing Statistics.pptxIntroduction to nursing Statistics.pptx
Introduction to nursing Statistics.pptx
 
1 Introduction to Biostatistics.pptx
1 Introduction to Biostatistics.pptx1 Introduction to Biostatistics.pptx
1 Introduction to Biostatistics.pptx
 
Medical Statistics.pptx
Medical Statistics.pptxMedical Statistics.pptx
Medical Statistics.pptx
 
1 Introduction to Biostatistics.pdf
1 Introduction to Biostatistics.pdf1 Introduction to Biostatistics.pdf
1 Introduction to Biostatistics.pdf
 
Medical Statistics.ppt
Medical Statistics.pptMedical Statistics.ppt
Medical Statistics.ppt
 
Biostatistics.pptx
Biostatistics.pptxBiostatistics.pptx
Biostatistics.pptx
 
2021f_Cross-sectional study.pptx
2021f_Cross-sectional study.pptx2021f_Cross-sectional study.pptx
2021f_Cross-sectional study.pptx
 
Understanding statistics in research
Understanding statistics in researchUnderstanding statistics in research
Understanding statistics in research
 

Plus de khushbu mishra

Critical issues in periodontal research khushbu
Critical issues in periodontal research khushbuCritical issues in periodontal research khushbu
Critical issues in periodontal research khushbukhushbu mishra
 
Periodontal research khushbu
Periodontal research khushbuPeriodontal research khushbu
Periodontal research khushbukhushbu mishra
 
Research methodology khushbu
Research methodology khushbuResearch methodology khushbu
Research methodology khushbukhushbu mishra
 
Syndromes affecting the periodontium khushbu13 4-08
Syndromes affecting the periodontium  khushbu13 4-08Syndromes affecting the periodontium  khushbu13 4-08
Syndromes affecting the periodontium khushbu13 4-08khushbu mishra
 
Paradigm shift in etiopathogenesis periodontitis khushbu
Paradigm shift in etiopathogenesis  periodontitis khushbuParadigm shift in etiopathogenesis  periodontitis khushbu
Paradigm shift in etiopathogenesis periodontitis khushbukhushbu mishra
 
A paradigm shift in the etiopathogenesis of periodontitis khushbu
A paradigm shift in the etiopathogenesis of periodontitis khushbuA paradigm shift in the etiopathogenesis of periodontitis khushbu
A paradigm shift in the etiopathogenesis of periodontitis khushbukhushbu mishra
 
Advanced diagnostic aids khushbu
Advanced diagnostic aids khushbuAdvanced diagnostic aids khushbu
Advanced diagnostic aids khushbukhushbu mishra
 
Junctional epithelium khushbu
Junctional epithelium khushbuJunctional epithelium khushbu
Junctional epithelium khushbukhushbu mishra
 

Plus de khushbu mishra (9)

Critical issues in periodontal research khushbu
Critical issues in periodontal research khushbuCritical issues in periodontal research khushbu
Critical issues in periodontal research khushbu
 
Periodontal research khushbu
Periodontal research khushbuPeriodontal research khushbu
Periodontal research khushbu
 
Research methodology khushbu
Research methodology khushbuResearch methodology khushbu
Research methodology khushbu
 
Syndromes affecting the periodontium khushbu13 4-08
Syndromes affecting the periodontium  khushbu13 4-08Syndromes affecting the periodontium  khushbu13 4-08
Syndromes affecting the periodontium khushbu13 4-08
 
Paradigm shift in etiopathogenesis periodontitis khushbu
Paradigm shift in etiopathogenesis  periodontitis khushbuParadigm shift in etiopathogenesis  periodontitis khushbu
Paradigm shift in etiopathogenesis periodontitis khushbu
 
A paradigm shift in the etiopathogenesis of periodontitis khushbu
A paradigm shift in the etiopathogenesis of periodontitis khushbuA paradigm shift in the etiopathogenesis of periodontitis khushbu
A paradigm shift in the etiopathogenesis of periodontitis khushbu
 
Advanced diagnostic aids khushbu
Advanced diagnostic aids khushbuAdvanced diagnostic aids khushbu
Advanced diagnostic aids khushbu
 
Junctional epithelium khushbu
Junctional epithelium khushbuJunctional epithelium khushbu
Junctional epithelium khushbu
 
Gcf khushbu
Gcf khushbu Gcf khushbu
Gcf khushbu
 

Dernier

Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 

Dernier (20)

Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 

Biostatistics khushbu

  • 2. CONTENTS • Introduction • Definition • Common statistical terms • Sources and collection of Data • Presentation of Data • Analysis and interpretation  Statistical averages  Measures of Dispersion
  • 3. Sampling and sampling methods Sampling errors Tests of significance Correlation and regression limitations
  • 4. Introduction • We, medical and dental students during period of our study, learn best methods of diagnosis and therapy. • After graduation, we go through research papers presented at conferences and in current journals to know new methods of therapy, improvement in diagnosis and surgical techniques. • It must be admitted that essence of papers contributed to medical journals is largely statistical.
  • 5. Training in statistics has been recognized as “indispensible” for students of medical science. for eg. if we want to establish cause and effect relationship, we need statistics. if we want to measure state of health and also burden of disease in community, we need statistics.
  • 6. • statistics are widely used in epidemiology, clinical trial of drug vaccine program planning community medicine health management health information system etc.. • The knowledge of medical statistics enables one to develop a self- confidence & this will enable us to become a good clinician, good medical research worker, knowledgable in statistical thinking.
  • 7. • Everything in medicine, be it research, diagnosis or treatment depends on counting or measurment. • According to Lord Kelvin, when you can measure what you are speaking about and express it in numbers, you know something about it but when you can not measure, when you can not express it in numbers, your knowledge is of meagre and unsatisfactory kind.
  • 8. Bio-Statistics in Various areas Health Statistics Medical Statistics Vital Statistics
  • 9. • In Public Health or Community Health, it is called Health Statistics. • In Medicine, it is called Medical Statistics. In this we study the defect, injury, disease, efficacy of drug, Serum and Line of treatment, etc., • In population related study it is called Vital Statistics. e.g. study of vital events like births, marriages and deaths.
  • 10. • Application and uses of Biostatistics as a science.. in Physiology, a. to define what is normal/healthy in a population b. to find limits of normality c. to find difference between means and proportions of normal at two places or in different periods. d. to find the correlation between two variables X and Y such as in height or weight.. for eg. Weight increases or decreases proportionately with height and if so by how much has to be found.
  • 11. • a. b. c. • a. b. c. In Pharmacology, To find action of drug To compare action of two different drugs To find relative potency of a new drug with respect to a standard drug. In Medicine, To compare efficacy of particular drug, operation or line of treatment. To find association between two attributes eg. Oral cancer and smoking To identify signs and symptoms of disease/ syndrome.
  • 12. Common statistical terms • Variable:- A characteristic that takes on different values in different persons, places/ things. • Constant:- Quantities that donot vary such as π = 3.141 e = 2.718 these donot require statistical study. In Biostatistics, mean, standard deviation, standard error, correlation coefficient and proportion of a particular population are considered constant. • Observation:- An event and its measurment. for eg.. BP and its measurment..
  • 13. • Observational unit:- the “sources” that gives observation for eg. Object, person etc. in medical statistics:- terms like individuals, subjects etc are used more often. • Data :- A set of values recorded on one or more observational units. • Population:- It is an entire group of people or study elementspersons, things or measurments for which we have an intrest at particular time. • Sampling unit:- Each member of a population. • Sample:- It may be defined as a part of a population.
  • 14. • Parameter:- It is summary value or constant of a variable, that describes the sample such as its mean, standard deviation standard error correlation coefficient etc.. • Parametric tests:- It is one in which population constants such as described above are used :- mean, variances etc.. data tend to follow one assumed or established distribution such as normal, binomial, poisson etc.. • Non- parametric tests:- Tests such as CHI- SQUARE test, in which no constant of population is used. Data donot follow any specific distribution and no assumptions are made in non- parametric tests.eg ..good, better and best..
  • 15. DEFINITION American Heritage Dictionary® defines statistics as: "The mathematics of the collection, organization, and interpretation of numerical data, especially the analysis of population characteristics by inference from sampling.” The Merriam-Webster’s Collegiate Dictionary® definition is: "A branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data."
  • 16. A Simple but Concise definition by Croxton and Cowden: “Statistics is defined as the Collection, Presentation, Analysis and Interpretation of numerical data.”
  • 17. In the line of the definition of Croxton and Cowden, a comprehensive definition of Statistics can be: “Statistics defined as the science of Collection, Organisation, presentation, analysis and interpretation of numerical data.”
  • 18. • STATISTIC/ DATUM:- measured/ counted fact or piece of information such as height of person, birth weight of baby… • STATISTICS/ DATA:- plural of the same such as height of 2 persons, birth weight of 5 babies plaque score of 3 persons… • BIOSTATISTICS:- term used when tools of statistics are applied to the data that is derived from biological sciences such as medicine.
  • 19. Types of Data Qualitative Data Nominal Ordinal Quantitative Data Discrete Continuous Interval Ratio
  • 20. COLLECTION OF DATA Data can be collected through Primary sources:- here data is obtained by the investigator himself. This is first hand information. Secondary sources:- The data already recorded is utilized to serve the purpose of the objective of study eg. records of OPD of dental clinics.
  • 21. • Main sources for collection of medical statistics:1. Experiments 2. Surveys 3. Records. • Experiments and surveys are applied to generate data needed for specific purposes. • While Records provide ready- made data for routine and continuous information.
  • 22. Methods of collection of data • Method of direct observation:- clinical signs and symptoms and prognosis are collected by direct observation. • Method of house to house visit:- vital statistics and morbidity statistics are usually collected by visiting house to house. • Method of mailed questionnaire:- this method is followed in community where literacy status of people is very high. Prepaid postage stamp is to be attached with questionnaire.
  • 23. Presentation of data • to sort and classify data into groups or classification. • Objective :- to make data simple, concise, meaningful, intresting, helpful for further analysis. • 2 main methods are i. Tabulations ii. Charts and diagrams
  • 24. • Tabulation :• Devices for presenting data simply from masses of statistical data. • A table can be simple or complex, depending upon the number or measurment of a single set or multiple set of items. • 3 types: a. Master table:- contains all the data obtained from a survey. b. Simple table:- oneway table which supply answers to questions about one characteristics only. c. Frequency distribution table:- data is first split up into convenient groups and the number of items which occur in each group is shown in adjacent columns.
  • 25. Table 1 states population 1st march 2011 Andhra pradesh 8,46,65,533 Madhya pradesh 7,25,97,565 Uttar pradesh 19,95,81,477 Karnataka 7,14,83,435 Rajasthan 18,23,45,998 kerela 6,43,35,772
  • 26. Frequency distribution table • The following figures are the ages of patients admitted to a hospital with poliomyelitis.. 8, 24, 18, 5, 6, 12, 14, 3, 23, 9, 18, 16, 1, 2, 3, 5, 11, 13, 15, 9, 11, 11, 7, 106, 9, 5, 16, 20, 4, 3, 3, 3, 10, 3, 2, 1, 6, 9, 3, 7, 14, 8, 1, 4, 6, 4, 15, 22, 2, 1, 4, 6, 4, 15, 22, 2, 1, 4, 7, 1, 12, 3, 23, 4, 19, 6, 2, 2, 4, 14, 2, 2, 21, 3, 2, 1, 7, 19. Age Number of patients 0-4 35 5-9 18 10-14 11 15-19 8 20-24 6
  • 27. Charts and diagrams Quantitative data 1. Histogram 2. Frequency polygon 3. Frequency curve 4. Line chart or graph 5.Cumulative frequency diagram 6. Scatter diagram Qualitative data 1.Bar diagram 2. Pie or sector diagram 3.Pictogram 4.Map diagram
  • 32. Line chart or graph
  • 34. Scatter or dot or correlation diagrams
  • 38. Map diagram or spot maps
  • 40. Measures of central tendency/ statistical averages • The word “average” implies a value in the distribution, around which other values are distributed. • It gives a mental picture of the central value. • Commonly used methods to measure central tendency.. a. The Arithmetic Mean b. Median c. Mode.
  • 41. • Mean = sum of all values total no. of values • Median = middle value (when the data are arranged in order. • Mode = most common value
  • 42. • For eg.. the income of 7 people per day in rupees are as follows. 5, 5, 5, 7, 10, 20, 102= (total 154) • Mean = 154/7 = 22 • Median= 7 • Median, therefore, is a better indicator of central tendency when more of the lowest or the highest observations are wide apart . • Mode is rarely used as series can have no modes, 1 mode or multiple modes.
  • 43. Measures of Dispersion • a. b. c. Widely known measures of dispersion are .. The Range The Mean or Average Deviation The Standard Deviation. a. Range : simplest difference between highest and lowest figures for eg.. Diastolic BP – 83, 75, 81, 79, 71, 90, 75, 95, 77, 94 so, the range is expressed as 71 to 95 or by actual difference of 24
  • 44. • Merit :- simplest. • Demerit :not of much practical importance. indicates nothing about the dispersion of values between two extreme values. • Mean deviation:average of deviation from arithmetic mean. M.D. = Ʃ(X – X ) ɳ
  • 45. • Standard Deviation :- most frequently used “ Root Mean Square Deviation” denoted by greek letter σ or by initials S.D. = Square root of Ʃ(X-X )2 ɳ • • • if sample size is less than 30 in denominator, (ɳ-1) S.D. gives us idea of the spread of dispersion . Larger the standard deviation, greater the dispersion of values about the mean
  • 46. Normal distribution • large number of observations of any variable characteristics. • A frequency distribution table is prepared with narrow class intervals. • Some observations are below the mean and some are above the mean. • If they are arranged in order, deviating towards the extremes from the mean, on plus or minus side, maximum number of frequencies will be seen in the middle around the mean and fewer at extremes, decreasing smoothly on both the sides. • Normally, almost half the observations lie above and half below the mean and all observations are symmetrically distributed on each of the mean.
  • 47. • A distribution of this nature or shape is called normal or gaussian distribution.
  • 48. standardized normal curve • Devised to estimate easily the area under normal curve between any two ordinates. •Smooth •Bell shaped •Perfectly symmetrical curve •Total area of curve is 1 mean=0 standard deviation= 1 Mean, Median and Mode all coincide. •Probability of occurrence of any variable can be calculated.
  • 49. Estimation of probability (example) • The pulse of a group of normal healthy males was 72, with a standard deviation of 2. what is the probability that a male chosen at random would be found to have a pulse of 80 or higher? • The relative deviate (z) = (x-x ) σ = 80 – 72 = 4 2 The area of normal curve corresponding to a deviate 4= 0.49997, so, probability = 0.5- .49997 = 0.00003 i.e. 3 out of 1,00,000 individuals.
  • 50. Areas of the standard normal curve with mean 0 and standard deviation 1 Relative deviate (z)= (x-x) σ 0.00 Proportion of area from middle of the curve of designated deviation. .0000 0.50 .1915 1.00 .3413 1.50 .4332 2.00 .4772 4.00 . 4999998
  • 51. Sampling • When a large proportions of individuals or units have to be studied, we take a sample. • It is easier • More economical • Important to ensure that group of people or items included in sample are representative of whole population to be studied. • Sampling frame: once universe has been defined a sampling frame must be prepared. Listing of the members of the universe from which sample is to be drawn.
  • 52. • Accuracy & completeness influences quality of sample drawn from it. • Sampling methods i. Simple random sampling ii. Systematic random sampling iii. Stratified random sampling
  • 53. Sampling errors • Repeated samples from same population • Results obtained will differ from sample to sample. • This type of variation from one sample to another is called sampling error. • Factors influencing sample error are:a. Size of sample b. Natural variability of individual readings. • As sample sample size increases, sampling error will decrease.
  • 54. Non – sampling errors • Errors may occur due to i. Inadequately caliberated instruments ii. Observer‟s variation iii. Incomplete coverage achieved in examining the subjects. iv. Selected and conceptual errors
  • 55. Standard error • If we take random sample (ɳ) from the population, and similar samples over and over again we will find that every sample will have different mean.(X). • Make frequency distribution of all sample means. • Distribution of mean is nearly a normal distribution. • Mean of sample means is practically same as population means. • The standard deviation of the means is a measure of sample error and given by the formula standard error = S.D(σ)/ √n
  • 56. • Since distribution of means follows the pattern of a normal distribution, it is not difficult to visualize that 95% of sample means follows within limits of two standard error. • Therefore, standard error is a measure which enables us to judge whether mean of a given sample is within the set confidence limits.
  • 57. Tests of significance • Standard error indicates how reliable an estimate of the mean is likely to be. • Standard error is applied with appropriate formulae to all statistics, i.e, mean, standard deviation.etc.. i. ii. iii. iv. Standard error of Mean Standard error of Proportion Standard error of difference between means Standard error of difference between proportions
  • 58. Standard error of Mean • we take only one sample from universe, calculate Mean and standard deviation. • But, how accurate is mean of our sample? • What can be said about true mean of universe. • In order to answer these questions, we calculate standard error of Mean and set up confidence limits within which the mean(μ), of the population (of which we have only one sample) is likely to lie.
  • 59. let us suppose, we obtained a random sample of 25 males, age 20-24 years whose mean temperature was 98.14 deg.F with a standard deviation of 0.6. what can we say of the true mean of the universe from which the sample was drawn? Confidence limits on the basis of normal curve distribution- 95% confidence limits= 98.14+ (2 0.12) Range= 97.90 to 98.38degree F 25 0.6 0.6 √25 0.12
  • 60. Standard error of proportion • Standard error of proportion= √pq/n standard error of difference between two Mean S.E. (d) = square root of σ 21 + σ 2 2 Between the means n1 n2 • The actual difference between the two means should be more than twice the standard error of difference between two means.
  • 61. • Parametric Statistical Tests: EX: Z test t test F test • Non Parametric Statistical Tests: EX: Chi- square test sign test
  • 62. Types of problems I Comparison of sample mean with population mean II Comparison of two sample means III Comparison of sample proportion with the population proportion IV Comparison of two sample proportions
  • 63. Steps • Finding out the type of problem and the question to be answered. • Stating the Null Hypothesis (Ho) • Calculating the standard error • Calculating the critical ratio difference between statistics / standard error • Comparing the value observed in the experiment with that at the predetermined significant level given by the table • Making inferences. P<0.05 significant reject the Ho P =0.05 and P>0.05 accept the Ho
  • 64. Z Test Prerequisites to apply Z-test • The sample or the samples must be randomly selected. • The data must be quantitative. • The variable is assumed to follow normal distribution in the population. • The sample size must be larger than 30 Two types: • one tailed Z test • Two tailed Z test
  • 65. • The z- test has 2 applications: i. To test the significance of difference between a sample mean and a known value of population mean. Z = Mean – Population mean S.E. of sample mean ii. To test the significance of difference between 2 sample means or between experiment sample mean and a control sample mean. Z = Observed difference between 2 sample means SE of difference between 2 sample means
  • 66. t - Test Criteria for applying t-test • Random samples • Quantitative data • Variable normally distributed • Sample size less than 30 • Unpaired t-test: applied on unpaired data of independent observations made on individuals of two different or separate groups or samples drawn from two populations • Paired t-test: applied to paired data of independent observations from one sample only
  • 67. • It was designed by WS Gosseett whose pen name was „student‟. • The formula used is t = observed difference between two means of small samples SE of difference in the same
  • 68. F-test (Analysis of variance test) • Used for comparing more than two samples mean drawn from corresponding normal populations. Ex: to find out whether occupation plays any part in causation of BP. systolic BP values of 4 occupations are given. Determine if there is significant difference in mean BP of 4 groups in order to assess the role of occupation in causation of BP. F = Mean square between samples / Mean square within the samples
  • 69. Chi-square Test Application : 1. Proportion: a) compare the values of two binomial samples even if <30.Ex: Incidence of diabetes in 20 obese and 20 non obese. b) compare the frequencies of two multinomial samples ex: no of diabetics and non diabetics in groups weighing 40-50, 50-60 and >60 kg 2.Association: It measures the probability of association between two discrete attributes. It has an added advantage that it can be applied to find association or relationship between two discrete attributes when there are more than two classes or groups.
  • 70. Ex:- Trial of 2 whooping cough vaccines results of the field trial were as below Vaccine Attacked Not Total attacked Attack rate A B 22 14 68 72 90 86 24.4% 16.2% Total 36 140 176 -
  • 71. • Null hypothesis ( Ho):- there was no difference between the effect of two vaccines. • Calculation of the expected number (E) in each group of the sample or the cell of table E=(column or vertical total x Row or horizontal total) / sample total Vaccine A B Attacked O=22 E=36x90 / 176 =18.4 O=14 E=17.54 Not Attacked O=68 E=71.55 O=72 E=68.37
  • 72. • Applying the χ² test. χ²= ∑(O-E)² / E = 0.72+0.17+0.71+0.19 = 1.79 • Finding the degree of freedom. d.f. = (c-1) (r-1) = 1. • Probability tables. 5% level = 3.84 P >0.05 Accept the Ho • Inference:- The vaccine B is not superior to vaccine A
  • 73. Restrictions in application of χ² test: • Will not give reliable result with one degree of freedom if the expected value in any cell is less than 5. Apply Yates correction χ² = ∑ ( | O – E | - ½ ) / E • Yates correction cannot be applied in tables larger than 2x2 • Tells the presence or absence of association but does measure strength of association. • Statistical finding of relationship, does not indicate the cause and effect.
  • 74. Correlation and Regression • To find whether there is significant association or not between two variables, we calculate co- efficient of correlation, which is represented by symbol “r”. • r = Ʃ (x - x ) (y - y ) √ Ʃ( x-x)2 Ʃ(y-y)2 • The correlation coefficient r tends to lie between – 1.0 and +1.0.
  • 75. Types of correlation :Perfect positive correlation: • The correlation co-efficient(r) = +1 i.e. both variables rise or fall in the same proportion. Perfect negative correlation: • The correlation co-efficient(r) = -1 i.e. variables are inversely proportional to each other, when one rises, the other falls in the same proportions. Moderately positive correlation: • Correlation co-efficient value lie between 0< r< 1 Moderately negative correlation: • Correlation coefficient value lies between -1< r< 0 Absolutely no correlation: • r = 0, indicating that no linear relationship exits between the 2 variables.
  • 76. conclusion • Statistics is central to most medical research . • Basic principles of statistical methods or techniques equip medical and dental students to the extent that they may be able to appreciate the utility and usefulness of statistics in medical and other biosciences. • Certain essential bits of methods in biostatistics, must be learnt to understand their application in diagnosis, prognosis, prescription and management of diseases in individuals and community.
  • 77. References • PARK‟S textbook of preventive and social medicine- 22nd edition. • Methods in Biostatistics- 7th edition by BK Mahajan.