SlideShare une entreprise Scribd logo
1  sur  30
DETERMINANTES Definição :  Determinante é um número associado a uma matriz quadrada de ordem  n x n. Matriz quadrada de ordem 1 Se A é uma matriz quadrada de ordem 1, isto é A = ( a 11  ), o seu determinante será o próprio elemento a 11 . det A = a 11   = a 11   Exemplo.: A = ( 120 )   det A = 120 B = (– 29 )   det A = – 29
Matriz quadrada de ordem 2  det A =  =  a 11     a 22  – a 12     a 21    Produto dos elementos da diagonal principal menos o produto da diagonal secundária. det A =  =  (–3)    (–5) – (2)    (1) det A =  15 – 2 = 13 det A =  13 A =  a 11   a 12   a 21   a 22   a 11   a 12   a 21   a 22   A =  – 3  2 1  –5  – 3  2 1  –5
Matriz quadrada de ordem 3 Regra de Sarrus : Repete-se as duas primeiras linhas abaixo da terceira linha ou repete-se as duas primeiras colunas após a terceira coluna. Em seguida, calcula-se a soma do produto da diagonal principal com o produto das diagonais paralelas a ela (SDP). Faz-se o mesmo com a diagonal secundária e suas paralelas (SDS). Em seguida, faz-se a diferença desses valores obtidos com as diagonais. (det A = SDP – SDS)
a 11   a 12   a 13   a 21   a 22   a 23 a 31   a 32   a 33 a 11   a 12   a 13   a 21   a 22   a 23 det A = SDP – SDI  a 11   a 12   a 13  a 11   a 12 a 21   a 22   a 23   a 21   a 22 a 31   a 32   a 33   a 31   a 32 ou SDP =  ( a 11  a 22  a 33  +  a 21  a 32  a 13  +  a 31  a 12  a 23  ) SDS =  ( a 13  a 22  a 31  +  a 23  a 32  a 11  +  a 33  a 12  a 21  )
Propriedades dos determinantes 1.  Um determinante será nulo quando possuir uma fila formada só por zeros ou duas filas paralelas iguais ou proporcionais det A =  =  (0)    (5) – (0)    (3) 0 – 0 =  =  0 det A =  –  det A = 0   0  0  3  5  1  3  5  3  0  –5 1  3  5 det A =  ( 0 +  45  –  15 ) ( 0 +  45  –  15 )
2.  Se trocarmos entre si a posição de duas filas paralelas, o determinante mudará o sinal. det A =  –  det A = –28  det A =  –  =  –  det A = 28  –  1  3  5  3  0  –5 2  1  2 det A =  ( 0 +  15  –  30 ) ( 0 –  5 +  18 ) (– 15 ) ( 13 ) 2  1  2  3  0  –5 1  3  5 det A =  ( 0 +  18  –  5 ) ( 0 –  30 +  15 ) ( 13 ) ( –15 )
3.  Se multiplicarmos umas das filas de uma matriz quadrada por um número  k , o seu determinante ficará multiplicado por  k . det A =  =  (10) – (12) = –2  det B =  =  (30) – (36) = –6 k  = 3 det B =  k  det A det B = 3  (–2) = –6 2  4  3  5  6  12  3  5
4.  Da propriedade 3, decorre que: det (  k  A n  ) =  k n  det A n .  3  A 2  =  det ( 3  A 2 ) =  =  (90) – (108) = –18 det ( 3  A 2  ) = 3 2  det A 2  = 9  (–2) = –18  k  = 3 A 2  =  2  4  3  5  6  12 9  15  6  12 9  15
5.  det A = det A T  . det A =  –  det A = –28  det A =  –  det A T  =  –  det A T  = –28  det A T  =  –  1  3  5  3  0  –5 2  1  2 det A =  ( 0 +  15  –  30 ) ( 0 –  5 +  18 ) (– 15 ) ( 13 ) 1  3  2  3  0  1 5  –5  2 det A T  =  ( 0 –  30 + 15 ) ( 0 –  5 +  18 ) (– 15 ) ( 13 )
6.  det ( A n     B n  ) = det A    det B B 2  =  ; =  det ( A n     B n  ) = 400 – 392 = 8 det A    det B = (–2)    (–4) = 8  A 2  =  2  4  3  5  3  10 1  2  A 2     B 2  =  2  4  3  5  3  10 1  2   10  28 14  40
7.  det I n   =  1 det I 3  = 1  8.  O determinante de matrizes triangulares e de matrizes diagonais se resume ao produto dos elementos da diagonal principal. det A = 5    (–2)    3 = –30  1  0  0  0  1  0 0  0  1 det I 3  =  5  3  2  0  –2  1 0  0  3 det A =
Matriz inversa Seja A uma matriz quadrada de ordem n. Essa matriz possuirá inversa (A –1 ) se, e somente se, seu determinante for diferente de zero.   A –1   A = A    A –1  = I    det A    0.   3. Se A possuir inversa, essa será única. 1. Se A 2x2  = a  b c  d , então : A –1  =  d  –b  – c  a  det A det A det A det A 2. det  A –1  = 1  det A , det A    0
01. (Fuvest – SP) Se a é uma matriz 2x2 iversível que satisfaz A 2  = 2A, então o determinante de A será: ,[object Object],[object Object],[object Object],[object Object],[object Object],det A    det A = 2 2     det A  det A = 4 det A 2  = det (2A)  E
x  x  1  2  x  –x 1  x  1 P(x) =  x  x  1  2  x  –x P(x) = x 2  + 2x – x 2  – x + x 3  – 2x  P(x) = x 3  – x  Grau 3 ,[object Object],[object Object],[object Object],[object Object],[object Object],02. (Udesc) O grau do polinômio que expressa o determinante da matriz A =  x  x  1  2  x  –x 1  x  1 A
03. (UFSC) Assinale a(s) proposição(ões)  correta(s) . (01) Se K = (k ij ) é uma matriz quadrada de ordem 2 dada por k ij  = 2 2i + j  para i < j e k ij  = i 2  + 1 para i  >  j, então k é uma matriz inversível. k 11  = 1 2  + 1 = 2 k 12  = 2 2(1) + 2  = 2 4  = 16 k 21  = 2 2  + 1 = 5 k 22  = 2 2  + 1 = 5 Det K = 10 – 80 = –70    0     é inversível (01) - correta K =  k 11   k 12   k 21   k 22   K =  2  16 5  5
(02) Se A e B são matrizes tais que A    B é uma matriz nula, então A é uma matriz nula ou B é uma matriz nula. A    B = 0 não implica em A = 0 ou B = 0. (02) - incorreta (04) Sejam as matrizes M e P, respectivamente de tipos 5x7 e 7x5. Se R = MP, então a matriz R 2  tem 625 elementos. M 5x7     P 7x5  = R 5x5   (A matriz R possui 25 elementos) Logo, a matriz R 2  tem 25 elementos. c.e.p Ordem n (04) - incorreta
(08) Chamamos de “traço de L” e anotamos Tr(L) a soma do elementos da diagonal principal de uma matriz quadrada L; então Tr(L) = Tr(L T ). A transposta de uma matriz não altera sua diagonal principal. (08) - correta GABARITO QUESTÃO 03 : 01 + 08 = 09
SISTEMAS LINEARES Equação Linear é uma equação de forma: a 1  x 1  + a 2  x 2  + a 3  x 3  + ... + a n  x n   = b Portanto, um sistema será linear quando for composto de equações lineares. linear não-linear 2x + 3y = 5 x – y = 2 2x 2  + 3y = 5 x – y = 2 2x + 3y – z  = 5 x – y  + z = 2 – 5x – 3y + 4z = 10 2xy + 3y = 5 x – y = 2
Observações:  1. Forma matricial Forma matricial completa 2. A matriz constituída apenas pelos coeficientes é denominanda  matriz principal . 3x + 2y + z  = 1 x – y  + 3z = 2 5x + 2y + z = 7 3  2  1  1  –1  3  5  2  1  x y z 1 2 7 = . 3  2  1  1  1  –1  3  2  5  2  1  7
3. Se o número de equações é igual ao número de variáveis e o determinante da matriz principal  (  ) for diferente de zero,o sistema recebe o nome de  normal . 4. Se todos os termos independentes são nulos (0), o sistem é chamado de  homogêneo . 2x + 3y = 0 x – y = 0
Método de Cramer a 11  x 1  + a 12  x 2  + a 13  x 3  + ... + a 1n  x n   = b 1 a 21  x 1  + a 22  x 2  + a 23  x 3  + ... + a 2n  x n   = b 2 a n1  x 1  + a n2  x 2  + a n3  x 3  + ... + a nn  x n   = b n . . . a 11  a 12   a 13   ...  a 1n a 21  a 22   a 23   ...  a 2n . . . . . . a n1  a n2   a n3   ...  a nn    =
b 1  a 12   a 13   ...  a 1n b 2  a 22   a 23   ...  a 2n . . . . . . b n  a n2   a n3   ...  a nn  x 1  =  a 11  b 1   a 13   ...  a 1n a 21  b 2   a 23   ...  a 2n . . . . . . a n1  b n   a n3   ...  a nn  x 2  =  a 11  a 12   b 1   ...  a 1n a 21  a 22   b 2   ...  a 2n . . . . . . a n1  a n2   b n   ...  a nn  x 3  =  . . .
Se       0 temos: a 11  a 12   a 13   ...  b 1 a 21  a 22   a 23   ...  b 2 . . . . . . a n1  a n2   a n3   ...  b n  x n  =  . . .  x 1   x 1  =    x 2   x 2  =    x 3   x 3  =    x n   x n  =   , , , ... ,
S = {(x, y)} S = {(2, 1)} Exemplo:    =  3  2 1  -1 = – 3 – 2 = – 5   x  =  8  2 1  -1 = – 8 – 2 = – 10   y  =  3  8 1  1 = 3 – 8 = – 5 3x + 2y = 8 x – y = 1 x =   x    =  – 10 – 5 = 2  y =   y    =  – 5 – 5 = 1
DISCUSSÃO DE SISTEMAS Solução única       0 Infinitas soluções     =   x =   y =   z = 0 Infinitas soluções    = 0 e   x    0 ou   y    0 ou   z    0. Sistema linear Possível Impossível (sem solução) determinado indeterminado
Se o sistema linear for homogêneo: Possível e determinado (       0 , S = {(0, 0, 0, ..., 0)} ) Solução trivial Possível e indeterminado (    = 0 ) (Além da trivial, admitirá soluções próprias)
04. Três amigos sobem em uma balança de dois em dois. Antônio e Beatriz somam 30 kg e Beatriz e Caio, 28 kg. Sabe-se que Antônio e Caio pesam juntos 34 kg. Quanto pesa Beatriz? (–) 2B = 24 B = 12 Beatriz tem 12 kg. A + B  = 30 B + C = 28 A  + C = 34 A + B = 30 -A + B = –6 +
05. (UFSM – RS) Considere o sistema  .  Então, pode-se afirmar que o sistema é:  ,[object Object],[object Object],[object Object],[object Object],[object Object],x + y + z = 1 2x + 2y + 2z = m 3x + 3y + 3z = 4
   (2)    (3) Impossível para qualquer valor de m. x + y + z = 1 2x + 2y + 2z = m 3x + 3y + 3z = 4 x + y + z = 1 x + y + z =  4 3  x + y + z = m 2 x + y + z = 1 x + y + z =  4 3  B
Acesse as nossas páginas e confira uma infinidade de simulados de Matemática e de outras matérias! www.vestibular1.com.br Vestibular1 – O Número 1 em vestibulares! A melhor ajuda ao vestibulando na Internet e em todo o Brasil. O Portal que mais aprova! Confira! Apoio total aos vestibulandos! Autor desta Aula: ANALBERTO SCHOT - professor BELL. Criciúma - SC

Contenu connexe

Tendances

Mat equacoes do 1 grau 004
Mat equacoes do 1 grau  004Mat equacoes do 1 grau  004
Mat equacoes do 1 grau 004
trigono_metria
 
Sistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasSistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitas
rosilenedalmolin
 
Apostila bastante completa de matematica
Apostila bastante completa de matematicaApostila bastante completa de matematica
Apostila bastante completa de matematica
Roberio Figueiredo
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
aldaalves
 
Sistema de equações
Sistema de equaçõesSistema de equações
Sistema de equações
jtturmina
 

Tendances (17)

Mat equacoes do 1 grau 004
Mat equacoes do 1 grau  004Mat equacoes do 1 grau  004
Mat equacoes do 1 grau 004
 
Lista de exercícios 3
Lista de exercícios 3Lista de exercícios 3
Lista de exercícios 3
 
Sistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasSistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitas
 
6 – 2014 equação do 1 grau
6 – 2014 equação do 1 grau6 – 2014 equação do 1 grau
6 – 2014 equação do 1 grau
 
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 
Apostila bastante completa de matematica
Apostila bastante completa de matematicaApostila bastante completa de matematica
Apostila bastante completa de matematica
 
Mapa mental todas as materias
Mapa mental todas as materiasMapa mental todas as materias
Mapa mental todas as materias
 
Lista de exercícios 2 - Mat Elem
Lista de exercícios 2 - Mat ElemLista de exercícios 2 - Mat Elem
Lista de exercícios 2 - Mat Elem
 
Inequações do 1º e 2º grau
Inequações do 1º e 2º grauInequações do 1º e 2º grau
Inequações do 1º e 2º grau
 
Equação do 1º grau
Equação do 1º grauEquação do 1º grau
Equação do 1º grau
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
 
Resumo Matemática 3º Ciclo
Resumo Matemática 3º CicloResumo Matemática 3º Ciclo
Resumo Matemática 3º Ciclo
 
Matematica
MatematicaMatematica
Matematica
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Equações do 2° grau
Equações do 2° grauEquações do 2° grau
Equações do 2° grau
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Sistema de equações
Sistema de equaçõesSistema de equações
Sistema de equações
 

En vedette

Guia de criação de layout de lojas EZ Commerce
Guia de criação de layout de lojas EZ CommerceGuia de criação de layout de lojas EZ Commerce
Guia de criação de layout de lojas EZ Commerce
Rafael Berto
 
Trabajo De La Esc.Cont.A E I O U
Trabajo De La Esc.Cont.A E I O UTrabajo De La Esc.Cont.A E I O U
Trabajo De La Esc.Cont.A E I O U
guest6905bdb
 
BLOG DE JAMILDO - Indicadores Industriais Dez09
BLOG DE JAMILDO - Indicadores Industriais Dez09BLOG DE JAMILDO - Indicadores Industriais Dez09
BLOG DE JAMILDO - Indicadores Industriais Dez09
guest0739d3c
 
Palestra sobre Marketing Jurídico proferida por Rodrigo Bertozzi - Fenalaw Su...
Palestra sobre Marketing Jurídico proferida por Rodrigo Bertozzi - Fenalaw Su...Palestra sobre Marketing Jurídico proferida por Rodrigo Bertozzi - Fenalaw Su...
Palestra sobre Marketing Jurídico proferida por Rodrigo Bertozzi - Fenalaw Su...
guest0e489c
 
Vinoterio2
Vinoterio2Vinoterio2
Vinoterio2
UADE
 
BLOG DE JAMILDO - Prisão de Neguinho Teixeira
BLOG DE JAMILDO - Prisão de Neguinho TeixeiraBLOG DE JAMILDO - Prisão de Neguinho Teixeira
BLOG DE JAMILDO - Prisão de Neguinho Teixeira
guest0739d3c
 
A propaganda nos diversos setores da economia
A propaganda nos diversos setores da economiaA propaganda nos diversos setores da economia
A propaganda nos diversos setores da economia
Paulo Marquêz
 

En vedette (20)

Guia de criação de layout de lojas EZ Commerce
Guia de criação de layout de lojas EZ CommerceGuia de criação de layout de lojas EZ Commerce
Guia de criação de layout de lojas EZ Commerce
 
Machen Sie Ihre Arbeit bekannt
Machen Sie Ihre Arbeit bekanntMachen Sie Ihre Arbeit bekannt
Machen Sie Ihre Arbeit bekannt
 
AristóTeles
AristóTelesAristóTeles
AristóTeles
 
Rene Descartes
Rene DescartesRene Descartes
Rene Descartes
 
8 Dposters
8 Dposters8 Dposters
8 Dposters
 
Zona sur
Zona surZona sur
Zona sur
 
Trabajo De La Esc.Cont.A E I O U
Trabajo De La Esc.Cont.A E I O UTrabajo De La Esc.Cont.A E I O U
Trabajo De La Esc.Cont.A E I O U
 
Dos años de gestión
Dos años de gestiónDos años de gestión
Dos años de gestión
 
Dr Java Virtual Machine
Dr Java Virtual MachineDr Java Virtual Machine
Dr Java Virtual Machine
 
Bloque 0 MetodologíA Pacie
Bloque 0 MetodologíA PacieBloque 0 MetodologíA Pacie
Bloque 0 MetodologíA Pacie
 
BLOG DE JAMILDO - Indicadores Industriais Dez09
BLOG DE JAMILDO - Indicadores Industriais Dez09BLOG DE JAMILDO - Indicadores Industriais Dez09
BLOG DE JAMILDO - Indicadores Industriais Dez09
 
Palestra sobre Marketing Jurídico proferida por Rodrigo Bertozzi - Fenalaw Su...
Palestra sobre Marketing Jurídico proferida por Rodrigo Bertozzi - Fenalaw Su...Palestra sobre Marketing Jurídico proferida por Rodrigo Bertozzi - Fenalaw Su...
Palestra sobre Marketing Jurídico proferida por Rodrigo Bertozzi - Fenalaw Su...
 
Red Local
Red LocalRed Local
Red Local
 
Red Local
Red LocalRed Local
Red Local
 
Vinoterio2
Vinoterio2Vinoterio2
Vinoterio2
 
Matéria
MatériaMatéria
Matéria
 
BLOG DE JAMILDO - Prisão de Neguinho Teixeira
BLOG DE JAMILDO - Prisão de Neguinho TeixeiraBLOG DE JAMILDO - Prisão de Neguinho Teixeira
BLOG DE JAMILDO - Prisão de Neguinho Teixeira
 
A propaganda nos diversos setores da economia
A propaganda nos diversos setores da economiaA propaganda nos diversos setores da economia
A propaganda nos diversos setores da economia
 
Nuestros Sentidos
Nuestros SentidosNuestros Sentidos
Nuestros Sentidos
 
Apple I Pad
Apple I PadApple I Pad
Apple I Pad
 

Similaire à Determinantes sistemas lineares

Matrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesMatrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslineares
slidericardinho
 
Ita2008 3dia
Ita2008 3diaIta2008 3dia
Ita2008 3dia
cavip
 
Ita2011 3dia
Ita2011 3diaIta2011 3dia
Ita2011 3dia
cavip
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes res
Isabella Silva
 
Exercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoExercícios matrizes ii gabarito
Exercícios matrizes ii gabarito
Otávio Sales
 

Similaire à Determinantes sistemas lineares (20)

Determinantes
DeterminantesDeterminantes
Determinantes
 
Determinantes - 2º B
Determinantes - 2º BDeterminantes - 2º B
Determinantes - 2º B
 
Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]
 
Matrizes determinantes
Matrizes determinantesMatrizes determinantes
Matrizes determinantes
 
www.aulasapoio.com - Matemática - Determinantes
www.aulasapoio.com  - Matemática -  Determinanteswww.aulasapoio.com  - Matemática -  Determinantes
www.aulasapoio.com - Matemática - Determinantes
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 
www.professoraparticularapoio.com.br -Matemática - Determinantes
www.professoraparticularapoio.com.br -Matemática -  Determinanteswww.professoraparticularapoio.com.br -Matemática -  Determinantes
www.professoraparticularapoio.com.br -Matemática - Determinantes
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - Determinante
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
 
Matrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesMatrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslineares
 
Aula 03 determinantes
Aula 03   determinantesAula 03   determinantes
Aula 03 determinantes
 
Matrizes
MatrizesMatrizes
Matrizes
 
2 ano matrizes 2010
2 ano   matrizes 20102 ano   matrizes 2010
2 ano matrizes 2010
 
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
Apostila de matrizes (9 páginas, 40 questões, com gabarito)Apostila de matrizes (9 páginas, 40 questões, com gabarito)
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
 
Ita2008 3dia
Ita2008 3diaIta2008 3dia
Ita2008 3dia
 
Ita2011 3dia
Ita2011 3diaIta2011 3dia
Ita2011 3dia
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes res
 
Aulaomit
AulaomitAulaomit
Aulaomit
 
Exercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoExercícios matrizes ii gabarito
Exercícios matrizes ii gabarito
 
Ita02m
Ita02mIta02m
Ita02m
 

Plus de ISJ

Jogos lavras
Jogos lavrasJogos lavras
Jogos lavras
ISJ
 
Convite
ConviteConvite
Convite
ISJ
 
Convite
ConviteConvite
Convite
ISJ
 
Convite
ConviteConvite
Convite
ISJ
 
7º ano cap 23 mamíferos
7º ano cap 23  mamíferos7º ano cap 23  mamíferos
7º ano cap 23 mamíferos
ISJ
 
7º ano cap 22 as aves
7º ano cap 22 as aves7º ano cap 22 as aves
7º ano cap 22 as aves
ISJ
 
Will e going to 1º ano -4º bimestre
Will e going to   1º ano -4º bimestreWill e going to   1º ano -4º bimestre
Will e going to 1º ano -4º bimestre
ISJ
 
Relative pronouns 8ª série - 4º bimestre
Relative pronouns   8ª série - 4º bimestreRelative pronouns   8ª série - 4º bimestre
Relative pronouns 8ª série - 4º bimestre
ISJ
 
8ª série make -let - be allowed
8ª série   make -let - be allowed8ª série   make -let - be allowed
8ª série make -let - be allowed
ISJ
 
4º bimestre 3º ano had better
4º bimestre   3º ano had better4º bimestre   3º ano had better
4º bimestre 3º ano had better
ISJ
 
7º ano cap 17 artrópodes
7º ano cap 17  artrópodes7º ano cap 17  artrópodes
7º ano cap 17 artrópodes
ISJ
 
7º ano cap 16 moluscos
7º ano cap 16   moluscos7º ano cap 16   moluscos
7º ano cap 16 moluscos
ISJ
 
7º ano cap 16 anelideos
7º ano cap 16   anelideos7º ano cap 16   anelideos
7º ano cap 16 anelideos
ISJ
 
7º ano cap 18 equinodermos
7º ano  cap 18 equinodermos7º ano  cap 18 equinodermos
7º ano cap 18 equinodermos
ISJ
 
Relative pronouns 3º ano - 3º bimestre
Relative pronouns   3º ano - 3º bimestreRelative pronouns   3º ano - 3º bimestre
Relative pronouns 3º ano - 3º bimestre
ISJ
 
7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos
ISJ
 
7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados
ISJ
 
7º ano cap 14 cnidários 2012
7º ano  cap 14 cnidários 20127º ano  cap 14 cnidários 2012
7º ano cap 14 cnidários 2012
ISJ
 
6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água
ISJ
 
6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial
ISJ
 

Plus de ISJ (20)

Jogos lavras
Jogos lavrasJogos lavras
Jogos lavras
 
Convite
ConviteConvite
Convite
 
Convite
ConviteConvite
Convite
 
Convite
ConviteConvite
Convite
 
7º ano cap 23 mamíferos
7º ano cap 23  mamíferos7º ano cap 23  mamíferos
7º ano cap 23 mamíferos
 
7º ano cap 22 as aves
7º ano cap 22 as aves7º ano cap 22 as aves
7º ano cap 22 as aves
 
Will e going to 1º ano -4º bimestre
Will e going to   1º ano -4º bimestreWill e going to   1º ano -4º bimestre
Will e going to 1º ano -4º bimestre
 
Relative pronouns 8ª série - 4º bimestre
Relative pronouns   8ª série - 4º bimestreRelative pronouns   8ª série - 4º bimestre
Relative pronouns 8ª série - 4º bimestre
 
8ª série make -let - be allowed
8ª série   make -let - be allowed8ª série   make -let - be allowed
8ª série make -let - be allowed
 
4º bimestre 3º ano had better
4º bimestre   3º ano had better4º bimestre   3º ano had better
4º bimestre 3º ano had better
 
7º ano cap 17 artrópodes
7º ano cap 17  artrópodes7º ano cap 17  artrópodes
7º ano cap 17 artrópodes
 
7º ano cap 16 moluscos
7º ano cap 16   moluscos7º ano cap 16   moluscos
7º ano cap 16 moluscos
 
7º ano cap 16 anelideos
7º ano cap 16   anelideos7º ano cap 16   anelideos
7º ano cap 16 anelideos
 
7º ano cap 18 equinodermos
7º ano  cap 18 equinodermos7º ano  cap 18 equinodermos
7º ano cap 18 equinodermos
 
Relative pronouns 3º ano - 3º bimestre
Relative pronouns   3º ano - 3º bimestreRelative pronouns   3º ano - 3º bimestre
Relative pronouns 3º ano - 3º bimestre
 
7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos
 
7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados
 
7º ano cap 14 cnidários 2012
7º ano  cap 14 cnidários 20127º ano  cap 14 cnidários 2012
7º ano cap 14 cnidários 2012
 
6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água
 
6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial
 

Determinantes sistemas lineares

  • 1. DETERMINANTES Definição : Determinante é um número associado a uma matriz quadrada de ordem n x n. Matriz quadrada de ordem 1 Se A é uma matriz quadrada de ordem 1, isto é A = ( a 11 ), o seu determinante será o próprio elemento a 11 . det A = a 11 = a 11 Exemplo.: A = ( 120 )  det A = 120 B = (– 29 )  det A = – 29
  • 2. Matriz quadrada de ordem 2  det A = = a 11  a 22 – a 12  a 21  Produto dos elementos da diagonal principal menos o produto da diagonal secundária. det A = = (–3)  (–5) – (2)  (1) det A = 15 – 2 = 13 det A = 13 A = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 A = – 3 2 1 –5 – 3 2 1 –5
  • 3. Matriz quadrada de ordem 3 Regra de Sarrus : Repete-se as duas primeiras linhas abaixo da terceira linha ou repete-se as duas primeiras colunas após a terceira coluna. Em seguida, calcula-se a soma do produto da diagonal principal com o produto das diagonais paralelas a ela (SDP). Faz-se o mesmo com a diagonal secundária e suas paralelas (SDS). Em seguida, faz-se a diferença desses valores obtidos com as diagonais. (det A = SDP – SDS)
  • 4. a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 11 a 12 a 13 a 21 a 22 a 23 det A = SDP – SDI a 11 a 12 a 13 a 11 a 12 a 21 a 22 a 23 a 21 a 22 a 31 a 32 a 33 a 31 a 32 ou SDP = ( a 11  a 22  a 33 + a 21  a 32  a 13 + a 31  a 12  a 23 ) SDS = ( a 13  a 22  a 31 + a 23  a 32  a 11 + a 33  a 12  a 21 )
  • 5. Propriedades dos determinantes 1. Um determinante será nulo quando possuir uma fila formada só por zeros ou duas filas paralelas iguais ou proporcionais det A = = (0)  (5) – (0)  (3) 0 – 0 = = 0 det A = – det A = 0  0 0 3 5 1 3 5 3 0 –5 1 3 5 det A = ( 0 + 45 – 15 ) ( 0 + 45 – 15 )
  • 6. 2. Se trocarmos entre si a posição de duas filas paralelas, o determinante mudará o sinal. det A = – det A = –28  det A = – = – det A = 28  – 1 3 5 3 0 –5 2 1 2 det A = ( 0 + 15 – 30 ) ( 0 – 5 + 18 ) (– 15 ) ( 13 ) 2 1 2 3 0 –5 1 3 5 det A = ( 0 + 18 – 5 ) ( 0 – 30 + 15 ) ( 13 ) ( –15 )
  • 7. 3. Se multiplicarmos umas das filas de uma matriz quadrada por um número k , o seu determinante ficará multiplicado por k . det A = = (10) – (12) = –2 det B = = (30) – (36) = –6 k = 3 det B = k  det A det B = 3  (–2) = –6 2 4 3 5 6 12 3 5
  • 8. 4. Da propriedade 3, decorre que: det ( k  A n ) = k n  det A n .  3  A 2 = det ( 3  A 2 ) = = (90) – (108) = –18 det ( 3  A 2 ) = 3 2  det A 2 = 9  (–2) = –18 k = 3 A 2 = 2 4 3 5 6 12 9 15 6 12 9 15
  • 9. 5. det A = det A T . det A = – det A = –28  det A = – det A T = – det A T = –28  det A T = – 1 3 5 3 0 –5 2 1 2 det A = ( 0 + 15 – 30 ) ( 0 – 5 + 18 ) (– 15 ) ( 13 ) 1 3 2 3 0 1 5 –5 2 det A T = ( 0 – 30 + 15 ) ( 0 – 5 + 18 ) (– 15 ) ( 13 )
  • 10. 6. det ( A n  B n ) = det A  det B B 2 = ; = det ( A n  B n ) = 400 – 392 = 8 det A  det B = (–2)  (–4) = 8 A 2 = 2 4 3 5 3 10 1 2 A 2  B 2 = 2 4 3 5 3 10 1 2  10 28 14 40
  • 11. 7. det I n = 1 det I 3 = 1  8. O determinante de matrizes triangulares e de matrizes diagonais se resume ao produto dos elementos da diagonal principal. det A = 5  (–2)  3 = –30 1 0 0 0 1 0 0 0 1 det I 3 = 5 3 2 0 –2 1 0 0 3 det A =
  • 12. Matriz inversa Seja A uma matriz quadrada de ordem n. Essa matriz possuirá inversa (A –1 ) se, e somente se, seu determinante for diferente de zero. A –1  A = A  A –1 = I  det A  0. 3. Se A possuir inversa, essa será única. 1. Se A 2x2 = a b c d , então : A –1 = d –b – c a det A det A det A det A 2. det A –1 = 1 det A , det A  0
  • 13.
  • 14.
  • 15. 03. (UFSC) Assinale a(s) proposição(ões) correta(s) . (01) Se K = (k ij ) é uma matriz quadrada de ordem 2 dada por k ij = 2 2i + j para i < j e k ij = i 2 + 1 para i > j, então k é uma matriz inversível. k 11 = 1 2 + 1 = 2 k 12 = 2 2(1) + 2 = 2 4 = 16 k 21 = 2 2 + 1 = 5 k 22 = 2 2 + 1 = 5 Det K = 10 – 80 = –70  0  é inversível (01) - correta K = k 11 k 12 k 21 k 22 K = 2 16 5 5
  • 16. (02) Se A e B são matrizes tais que A  B é uma matriz nula, então A é uma matriz nula ou B é uma matriz nula. A  B = 0 não implica em A = 0 ou B = 0. (02) - incorreta (04) Sejam as matrizes M e P, respectivamente de tipos 5x7 e 7x5. Se R = MP, então a matriz R 2 tem 625 elementos. M 5x7  P 7x5 = R 5x5 (A matriz R possui 25 elementos) Logo, a matriz R 2 tem 25 elementos. c.e.p Ordem n (04) - incorreta
  • 17. (08) Chamamos de “traço de L” e anotamos Tr(L) a soma do elementos da diagonal principal de uma matriz quadrada L; então Tr(L) = Tr(L T ). A transposta de uma matriz não altera sua diagonal principal. (08) - correta GABARITO QUESTÃO 03 : 01 + 08 = 09
  • 18. SISTEMAS LINEARES Equação Linear é uma equação de forma: a 1  x 1 + a 2  x 2 + a 3  x 3 + ... + a n  x n = b Portanto, um sistema será linear quando for composto de equações lineares. linear não-linear 2x + 3y = 5 x – y = 2 2x 2 + 3y = 5 x – y = 2 2x + 3y – z = 5 x – y + z = 2 – 5x – 3y + 4z = 10 2xy + 3y = 5 x – y = 2
  • 19. Observações:  1. Forma matricial Forma matricial completa 2. A matriz constituída apenas pelos coeficientes é denominanda matriz principal . 3x + 2y + z = 1 x – y + 3z = 2 5x + 2y + z = 7 3 2 1 1 –1 3 5 2 1 x y z 1 2 7 = . 3 2 1 1 1 –1 3 2 5 2 1 7
  • 20. 3. Se o número de equações é igual ao número de variáveis e o determinante da matriz principal (  ) for diferente de zero,o sistema recebe o nome de normal . 4. Se todos os termos independentes são nulos (0), o sistem é chamado de homogêneo . 2x + 3y = 0 x – y = 0
  • 21. Método de Cramer a 11  x 1 + a 12  x 2 + a 13  x 3 + ... + a 1n  x n = b 1 a 21  x 1 + a 22  x 2 + a 23  x 3 + ... + a 2n  x n = b 2 a n1  x 1 + a n2  x 2 + a n3  x 3 + ... + a nn  x n = b n . . . a 11 a 12 a 13 ... a 1n a 21 a 22 a 23 ... a 2n . . . . . . a n1 a n2 a n3 ... a nn  =
  • 22. b 1 a 12 a 13 ... a 1n b 2 a 22 a 23 ... a 2n . . . . . . b n a n2 a n3 ... a nn  x 1 = a 11 b 1 a 13 ... a 1n a 21 b 2 a 23 ... a 2n . . . . . . a n1 b n a n3 ... a nn  x 2 = a 11 a 12 b 1 ... a 1n a 21 a 22 b 2 ... a 2n . . . . . . a n1 a n2 b n ... a nn  x 3 = . . .
  • 23. Se   0 temos: a 11 a 12 a 13 ... b 1 a 21 a 22 a 23 ... b 2 . . . . . . a n1 a n2 a n3 ... b n  x n = . . .  x 1 x 1 =   x 2 x 2 =   x 3 x 3 =   x n x n =  , , , ... ,
  • 24. S = {(x, y)} S = {(2, 1)} Exemplo:  = 3 2 1 -1 = – 3 – 2 = – 5  x = 8 2 1 -1 = – 8 – 2 = – 10  y = 3 8 1 1 = 3 – 8 = – 5 3x + 2y = 8 x – y = 1 x =  x  = – 10 – 5 = 2 y =  y  = – 5 – 5 = 1
  • 25. DISCUSSÃO DE SISTEMAS Solução única   0 Infinitas soluções  =  x =  y =  z = 0 Infinitas soluções  = 0 e  x  0 ou  y  0 ou  z  0. Sistema linear Possível Impossível (sem solução) determinado indeterminado
  • 26. Se o sistema linear for homogêneo: Possível e determinado (   0 , S = {(0, 0, 0, ..., 0)} ) Solução trivial Possível e indeterminado (  = 0 ) (Além da trivial, admitirá soluções próprias)
  • 27. 04. Três amigos sobem em uma balança de dois em dois. Antônio e Beatriz somam 30 kg e Beatriz e Caio, 28 kg. Sabe-se que Antônio e Caio pesam juntos 34 kg. Quanto pesa Beatriz? (–) 2B = 24 B = 12 Beatriz tem 12 kg. A + B = 30 B + C = 28 A + C = 34 A + B = 30 -A + B = –6 +
  • 28.
  • 29. (2)  (3) Impossível para qualquer valor de m. x + y + z = 1 2x + 2y + 2z = m 3x + 3y + 3z = 4 x + y + z = 1 x + y + z = 4 3 x + y + z = m 2 x + y + z = 1 x + y + z = 4 3 B
  • 30. Acesse as nossas páginas e confira uma infinidade de simulados de Matemática e de outras matérias! www.vestibular1.com.br Vestibular1 – O Número 1 em vestibulares! A melhor ajuda ao vestibulando na Internet e em todo o Brasil. O Portal que mais aprova! Confira! Apoio total aos vestibulandos! Autor desta Aula: ANALBERTO SCHOT - professor BELL. Criciúma - SC