SlideShare une entreprise Scribd logo
1  sur  37
Télécharger pour lire hors ligne
"Energi &
Hukum I Termodinamika"
Bagian - 2
Hukum Dalam Termodinamika
 Hukum Pertama
Tulus B.S. - Teknik Mesin USU2
 Terkait dengan kekekalan energi.
 Bermakna “energi tidak dapat diciptakan
dan dimusnahkan namun dapat dikonversi
dari suatu bentuk ke bentuk yang lain.“
 “Perubahan energi dalam dari suatu sistem
termodinamika tertutup sama dengan total
dari jumlah energi kalor yang disuplai ke
dalam sistem dan kerja yang dilakukan
terhadap sistem”.
Hukum Termodinamika - 1
• The net heat put into a system is equal to the change in
internal energy of the system plus the work done BY the
system.
• The net heat put into a system is equal to the change in
internal energy of the system plus the work done BY the
system.
Q = U + W final - initial)
• Conversely, the work done ON a system is equal to the
change in internal energy plus the heat lost in the process.
Tulus B.S. - Teknik Mesin USU3
SIGN CONVENTIONS FOR FIRST LAW
• Heat Q input is positive
Q = U + W final - initial)
• Heat Q out is negative
• Work BY a gas is positive
• Work ON a gas is negative
+Qin
+Wout
U
-Win
-Qout
U
Hukum Termodinamika - 1
Tulus B.S. - Teknik Mesin USU
4
Proses Dalam Termodinamika
 Proses Isovolume : V = 0 & W = 0



 Proses Isovolume : V = 0 & W = 0
 Proses Isobar : P = 0
 Proses Isothermal : T = 0 & U = 0
 Proses Adiabatik : Q = 0
Dari Hukum Pertama : Q = U + W
Tulus B.S. - Teknik Mesin USU5
Proses Isovolume Dikenal juga dengan proses
isometrik atau isokorik
 Pada proses isovolume :
V = 0 & W = 0
 Kemudian :
Q = U + W so that
Q = U
0
+U -U
QIN QOUT
HEAT IN = INCREASE IN INTERNAL ENERGY
HEAT OUT = DECREASE IN INTERNAL ENERGY
No Work
Done
Tulus B.S. - Teknik Mesin USU6
Proses Isobar  Pada proses isobar : P = 0
 Kemudian :
 Q = U + W dan
W = P V
-U
QIN QOUT
Work Out Work In
+U
HEAT IN = Wout + INCREASE IN
INTERNAL ENERGY
HEAT OUT = Wout + DECREASE IN
INTERNAL ENERGY
Tulus B.S. - Teknik Mesin USU7
Proses Isotermal
 Pada proses isothermal
T = 0 & U = 0
 Q = U + W &
Q = W
 NET HEAT INPUT = WORK
OUTPUT
 WORK INPUT = NET
HEAT OUT
U = 0
Work Out
QIN
U = 0
QOUT
Work In
Tulus B.S. - Teknik Mesin USU8
Proses Adiabatik
 NO HEAT EXCHANGE : Q = 0
 Q = U + W ; W = -U or U = -W
 Work done at EXPENSE of internal energy
 INPUT Work INCREASES internal energy
Work Out Work In
U +U
Q = 0
W = -U U = -W
Tulus B.S. - Teknik Mesin USU9
 Reversible
System changes state and can be restored by
reversing original process.
Example : Water (s) Water (l)
 Irreversible
System changes state and must take a different
path to restore to original state.
Example : CH4 + 2O2  CO2 + 2H2O

Proses Reversibel & Irreversibel
Tulus B.S. - Teknik Mesin USU 10
Aplikasi Hukum Pertama
Tulus B.S. - Teknik Mesin USU11
Energy cannot be created or destroyed; it can only
change forms
Aplikasi Hukum Pertama
Tulus B.S. - Teknik Mesin USU
12
 The energy change of
a system during a
process is equal to the
net work and heat
transfer between the
system and its
surroundings.
 In the absence of any
work interactions, the
energy change of a
system is equal to the
net heat transfer.
Aplikasi Hukum Pertama
Tulus B.S. - Teknik Mesin USU13
 The increase in the
energy of a potato in
an oven is equal to the
amount of heat
transferred to it.
 The work (shaft) done
on an adiabatic
system is equal to the
increase in the energy
of the system.
Energy Balance
Tulus B.S. - Teknik Mesin USU14
 The net change (increase or decrease) in the total energy
of the system during a process is equal to the difference
between the total energy entering and the total energy
leaving the system during that process.
 That is,
Mechanisms of Energy Transfer
Tulus B.S. - Teknik Mesin USU15
 Energy can be
transferred to or from
a system in three
forms : heat, work, and
mass flow.
 The energy content of
a control volume can
be changed by mass
flow as well as heat
and work interactions.
Massa Atur & Volume Atur
Tulus B.S. - Teknik Mesin USU16
Massa Atur (Closed System) Volume Atur (Open System)
Example Cooling of a Hot Fluid in a Tank
Tulus B.S. - Teknik Mesin USU17
 A rigid tank contains a hot
fluid that is cooled while
being stirred by a paddle
wheel.
 Initially, the internal energy
of the fluid is 800 kJ.
 During the cooling process,
the fluid loses 500 kJ of heat,
and the paddle wheel does
100 kJ of work on the fluid.
 Determine the final internal
energy of the fluid.
 Neglect the energy stored in
the paddle wheel.
Solution
Tulus B.S. - Teknik Mesin USU18
A fluid in a rigid tank
looses heat while being
stirred.
 The final internal energy of
the fluid is to be
determined.
Assumptions
 1The tank is stationary and
thus the kinetic and
potential energy changes
are zero, KE = PE= 0.
Therefore,  E=U and
internal energy is the only
form of the system’s
energy that may change
during this process.
 2 Energy stored in the
paddle wheel is negligible.
Tulus B.S. - Teknik Mesin USU19
 Analysis :Take the contents
of the tank as the system.
 This is a closed system since
no mass crosses the boundary
during the process.
 We observe that the volume of
a rigid tank is constant, and
thus there is no moving
boundary work.
 Also, heat is lost from the
system and shaft work is done
on the system.
 Applying the energy balance
on the system gives
 Therefore, the final internal
energy of the system is 400 kJ.
Energy Conversion Efficiencies
Tulus B.S. - Teknik Mesin USU20
 The definition of
performance is not
limited to
thermodynamics
only.
Combustion Efficiency
Tulus B.S. - Teknik Mesin USU21
 Then the performance
of combustion
equipment can be
characterized by
combustion efficiency,
defined as
 A combustion
efficiency of 100
percent indicates that
the fuel is burned
completely and the
stack gases leave the
combustion chamber at
room temperature, and
thus the amount of
heat released during a
combustion process is
equal to the heating
value of the fuel.
Heating Value
Tulus B.S. - Teknik Mesin USU22
 Heating value of the
fuel, which is the
amount of heat
released when a unit
amount of fuel at
room temperature is
completely burned
and the combustion
products are cooled to
the room temperature
The definition of the
heating value of gasoline
Overall Eficiency
Tulus B.S. - Teknik Mesin USU23
 The effects of other
factors are
incorporated by
defining an overall
efficiency for the
power plant as the
ratio of the net
electrical power
output to the rate of
fuel energy input.
 The overall
efficiencies are about
26-30 percent for
gasoline automotive
engines, 34-40 percent
for diesel engines, and
40-60 percent for large
power plants.
Efficiency of a Cooking
Tulus B.S. - Teknik Mesin USU24
 Efficiency of a cooking
appliance can be defined
as the ratio of the useful
energy transferred to the
food to the energy
consumed by the
appliance
 The efficiency of a
cooking appliance
represents the fraction of
the energy supplied to
the appliance that is
transferred to the food.
Efficiencies of Mechanical and Electrical Devices
Tulus B.S. - Teknik Mesin USU25
The mechanical efficiency of a fan is
the ratio of the kinetic energy of air at
the fan exit to the mechanical power input
Pump Efficiency and Turbine Efficiency
Tulus B.S. - Teknik Mesin USU26
Motor and Generator Efficiency
Tulus B.S. - Teknik Mesin USU27
 A pump is usually
packaged together with
its motor, and a turbine
with its generator.
 Therefore, we are
usually interested in the
combined or overall
efficiency of pump-
motor and turbine-
generator combinations
which are defined as
Example Performance of a Hydraulic Turbine–Generator
Tulus B.S. - Teknik Mesin USU28
 The water in a large lake is to be
used to generate electricity by the
installation of a hydraulic turbine-
generator at a location where the
depth of the water is 50 m.
 Water is to be supplied at a rate of
5000 kg/s.
 If the electric power generated is
measured to be 1862 kW and the
generator efficiency is 95 percent,
determine
 (a) the overall efficiency of the
turbine-generator,
 (b) the mechanical efficiency of the
turbine,and
 (c) the shaft power supplied by the
turbine to the generator.
Solution
Tulus B.S. - Teknik Mesin USU29
 A hydraulic turbine-generator
is to generate electricity from
the water of a lake.
 The overall efficiency, the
turbine efficiency, and the
turbine shaft power are to be
determined.
 Assumptions
 1The elevation of the lake
remains constant.
 2The mechanical energy of
water at the turbine exit is
negligible.
 PropertiesThe density of water
can be taken to be = 1000
kg/m3.
 Analysis (a)We take the bottom
of the lake as the reference level
for convenience.
 Then kinetic and potential
energies of water are zero, and
the change in its mechanical
energy per unit mass becomes
Tulus B.S. - Teknik Mesin USU30
Energy & Environment
Tulus B.S. - Teknik Mesin USU31
 Motor vehicles are the
largest source of air
pollution.
 Ground-level ozone,
which is the primary
component of smog,
forms when HC and NOx
react in the presence of
sunlight in hot calm days.
Acid Rain
Tulus B.S. - Teknik Mesin USU32
 Sulfuric acid and nitric
acid are formed when
sulfur oxides and nitric
oxides react with water
vapor and other
chemicals high in the
atmosphere in the
presence of sunlight.
Greenhouse Effect
Tulus B.S. - Teknik Mesin USU33
 The greenhouse effect makes
life on earth possible by
keeping the earth warm
(about 30°C warmer).
 However, excessive amounts
of these gases disturb the
delicate balance by trapping
too much energy, which
causes the average
temperature of the earth to
rise and the climate at some
localities to change.
 These undesirable
consequences of the
greenhouse effect are
referred to as global warming
or global climate change.
Tugas Rumah
(Jawaban diketik dan dikirim ke email : tbsitorus@ymail.com)
Tulus B.S. - Teknik Mesin USU34
Soal - 1
Tulus B.S. - Teknik Mesin USU35
 Water is being heated in a
closed pan on top of a range
while being stirred by a
paddle wheel.
 During the process, 30 kJ of
heat is transferred to the
water, and 5 kJ of heat is lost
to the surrounding air.
 The paddle-wheel work
amounts to 500 Nm.
 Determine the final energy of
the system if its initial energy
is 10 kJ.
Soal - 2
Tulus B.S. - Teknik Mesin USU36
 Water is pumped from a
lower reservoir to a higher
reservoir by a pump that
provides 20 kW of shaft
power.
 The free surface of the upper
reservoir is 45 m higher than
that of the lower reservoir.
 If the flow rate of water is
measured to be 0.03 m3/s,
determine mechanical power
that is converted to thermal
energy during this process
due to frictional effects.
Soal - 3
Tulus B.S. - Teknik Mesin USU37
 An oil pump is drawing 35
kW of electric power while
pumping oil with =860
kg/m3 at a rate of 0.1 m3/s.
 The inlet and outlet
diameters of the pipe are 8
cm and 12 cm, respectively.
 If the pressure rise of oil in
the pump is measured to be
400 kPa and the motor
efficiency is 90
percent,determine the
mechanical efficiency of the
pump.

Contenu connexe

Tendances

Hukum termodinamika kedua
Hukum termodinamika keduaHukum termodinamika kedua
Hukum termodinamika keduaEdi B Mulyana
 
Perpindahan panas bu lidia
Perpindahan panas bu lidiaPerpindahan panas bu lidia
Perpindahan panas bu lidiaAlen Pepa
 
PRA RANCANGAN PABRIK CUMENE
PRA RANCANGAN PABRIK CUMENEPRA RANCANGAN PABRIK CUMENE
PRA RANCANGAN PABRIK CUMENEAsvif Ma'rufah
 
Siklus daya gas
Siklus daya gasSiklus daya gas
Siklus daya gasRock Sandy
 
Modul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar KalorModul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar KalorAli Hasimi Pane
 
Perpindahan panas (2)
Perpindahan panas (2)Perpindahan panas (2)
Perpindahan panas (2)Alen Pepa
 
Hukum termo iii(entropy).rina (1)
Hukum termo iii(entropy).rina (1)Hukum termo iii(entropy).rina (1)
Hukum termo iii(entropy).rina (1)Annie Fitriia
 
Termodinamika 1 lanjutan
Termodinamika 1 lanjutanTermodinamika 1 lanjutan
Termodinamika 1 lanjutanAPRIL
 
Hukum II dan III termodinamika
Hukum II dan III termodinamikaHukum II dan III termodinamika
Hukum II dan III termodinamikaBughis Berkata
 
Efek Panas- Thermodinamika
Efek Panas- ThermodinamikaEfek Panas- Thermodinamika
Efek Panas- ThermodinamikaFadhly M S
 

Tendances (20)

Perpindahan panasd
Perpindahan panasdPerpindahan panasd
Perpindahan panasd
 
Hukum termodinamika kedua
Hukum termodinamika keduaHukum termodinamika kedua
Hukum termodinamika kedua
 
Teknik kimia
Teknik kimiaTeknik kimia
Teknik kimia
 
heat transfer Ppt radiasi
heat transfer Ppt radiasiheat transfer Ppt radiasi
heat transfer Ppt radiasi
 
Perpindahan panas bu lidia
Perpindahan panas bu lidiaPerpindahan panas bu lidia
Perpindahan panas bu lidia
 
PRA RANCANGAN PABRIK CUMENE
PRA RANCANGAN PABRIK CUMENEPRA RANCANGAN PABRIK CUMENE
PRA RANCANGAN PABRIK CUMENE
 
Siklus daya gas
Siklus daya gasSiklus daya gas
Siklus daya gas
 
Modul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar KalorModul Penyelesaian Soal Alat Penukar Kalor
Modul Penyelesaian Soal Alat Penukar Kalor
 
Perpindahan panas (2)
Perpindahan panas (2)Perpindahan panas (2)
Perpindahan panas (2)
 
Double Pipe Heat Excanger
Double Pipe Heat ExcangerDouble Pipe Heat Excanger
Double Pipe Heat Excanger
 
Sistem dan dimensi
Sistem dan dimensiSistem dan dimensi
Sistem dan dimensi
 
Tabel uap
Tabel uapTabel uap
Tabel uap
 
Kalor
KalorKalor
Kalor
 
Perpindahan Massa
Perpindahan MassaPerpindahan Massa
Perpindahan Massa
 
Hukum termo iii(entropy).rina (1)
Hukum termo iii(entropy).rina (1)Hukum termo iii(entropy).rina (1)
Hukum termo iii(entropy).rina (1)
 
Termodinamika 1 lanjutan
Termodinamika 1 lanjutanTermodinamika 1 lanjutan
Termodinamika 1 lanjutan
 
Hukum II dan III termodinamika
Hukum II dan III termodinamikaHukum II dan III termodinamika
Hukum II dan III termodinamika
 
Hukum termodinamika-i
Hukum termodinamika-iHukum termodinamika-i
Hukum termodinamika-i
 
Siklus rankine
Siklus rankineSiklus rankine
Siklus rankine
 
Efek Panas- Thermodinamika
Efek Panas- ThermodinamikaEfek Panas- Thermodinamika
Efek Panas- Thermodinamika
 

En vedette

Contoh Soal dan Pembahasan Termodinamika
Contoh Soal dan Pembahasan TermodinamikaContoh Soal dan Pembahasan Termodinamika
Contoh Soal dan Pembahasan TermodinamikaRenny Aniwarna
 
Termodinamika (1- 2) l proses_dan_siklus
Termodinamika (1- 2) l proses_dan_siklusTermodinamika (1- 2) l proses_dan_siklus
Termodinamika (1- 2) l proses_dan_siklusjayamartha
 
Soal termo
Soal termoSoal termo
Soal termoipan1992
 
Termodinamika dasar 2..
Termodinamika dasar 2..Termodinamika dasar 2..
Termodinamika dasar 2..basyrul arafah
 
Contoh Soal dan Pembahasan Teori Kinetik Gas
Contoh Soal dan Pembahasan Teori Kinetik GasContoh Soal dan Pembahasan Teori Kinetik Gas
Contoh Soal dan Pembahasan Teori Kinetik GasRenny Aniwarna
 
kumpulan soal pilihan ganda teori kinetik gas fisika
kumpulan soal pilihan ganda teori kinetik gas fisikakumpulan soal pilihan ganda teori kinetik gas fisika
kumpulan soal pilihan ganda teori kinetik gas fisikaBella Andreana
 
Hukum Termodinamika 2 & 3 Dan Mesin Panas
Hukum Termodinamika 2 & 3 Dan Mesin PanasHukum Termodinamika 2 & 3 Dan Mesin Panas
Hukum Termodinamika 2 & 3 Dan Mesin PanasJefris Okdean
 
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)Ali Hasimi Pane
 
kumpulan soal hukum-hukum gas
kumpulan soal hukum-hukum gaskumpulan soal hukum-hukum gas
kumpulan soal hukum-hukum gasRfebiola
 
Termodinamika
TermodinamikaTermodinamika
Termodinamikaigoriv
 
Termodinamika
TermodinamikaTermodinamika
TermodinamikaNur Huda
 
Simposio “Ciencias e Inglés en la evaluación internacional”: Resultados del E...
Simposio “Ciencias e Inglés en la evaluación internacional”: Resultados del E...Simposio “Ciencias e Inglés en la evaluación internacional”: Resultados del E...
Simposio “Ciencias e Inglés en la evaluación internacional”: Resultados del E...Instituto Nacional de Evaluación Educativa
 
25 hukum-termodinamika
25 hukum-termodinamika25 hukum-termodinamika
25 hukum-termodinamikaAnne Maryani
 
Termodinamika (5) b sistem_paramagnetik
Termodinamika (5) b sistem_paramagnetikTermodinamika (5) b sistem_paramagnetik
Termodinamika (5) b sistem_paramagnetikjayamartha
 

En vedette (20)

Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Contoh Soal dan Pembahasan Termodinamika
Contoh Soal dan Pembahasan TermodinamikaContoh Soal dan Pembahasan Termodinamika
Contoh Soal dan Pembahasan Termodinamika
 
Fisika TERMODINAMIKA
Fisika TERMODINAMIKAFisika TERMODINAMIKA
Fisika TERMODINAMIKA
 
Fis 17-termodinamika
Fis 17-termodinamikaFis 17-termodinamika
Fis 17-termodinamika
 
Termodinamika (1- 2) l proses_dan_siklus
Termodinamika (1- 2) l proses_dan_siklusTermodinamika (1- 2) l proses_dan_siklus
Termodinamika (1- 2) l proses_dan_siklus
 
Soal termo
Soal termoSoal termo
Soal termo
 
Termodinamika 1
Termodinamika 1Termodinamika 1
Termodinamika 1
 
Termodinamika dasar 2..
Termodinamika dasar 2..Termodinamika dasar 2..
Termodinamika dasar 2..
 
Contoh Soal dan Pembahasan Teori Kinetik Gas
Contoh Soal dan Pembahasan Teori Kinetik GasContoh Soal dan Pembahasan Teori Kinetik Gas
Contoh Soal dan Pembahasan Teori Kinetik Gas
 
kumpulan soal pilihan ganda teori kinetik gas fisika
kumpulan soal pilihan ganda teori kinetik gas fisikakumpulan soal pilihan ganda teori kinetik gas fisika
kumpulan soal pilihan ganda teori kinetik gas fisika
 
Hukum Termodinamika 2 & 3 Dan Mesin Panas
Hukum Termodinamika 2 & 3 Dan Mesin PanasHukum Termodinamika 2 & 3 Dan Mesin Panas
Hukum Termodinamika 2 & 3 Dan Mesin Panas
 
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)Modul thermodinamika (penyelesaian soal  siklus pembangkit daya)
Modul thermodinamika (penyelesaian soal siklus pembangkit daya)
 
Termodinamika modul
Termodinamika modulTermodinamika modul
Termodinamika modul
 
kumpulan soal hukum-hukum gas
kumpulan soal hukum-hukum gaskumpulan soal hukum-hukum gas
kumpulan soal hukum-hukum gas
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Termodinamika
TermodinamikaTermodinamika
Termodinamika
 
Simposio “Ciencias e Inglés en la evaluación internacional”: Resultados del E...
Simposio “Ciencias e Inglés en la evaluación internacional”: Resultados del E...Simposio “Ciencias e Inglés en la evaluación internacional”: Resultados del E...
Simposio “Ciencias e Inglés en la evaluación internacional”: Resultados del E...
 
25 hukum-termodinamika
25 hukum-termodinamika25 hukum-termodinamika
25 hukum-termodinamika
 
Termodinamika (5) b sistem_paramagnetik
Termodinamika (5) b sistem_paramagnetikTermodinamika (5) b sistem_paramagnetik
Termodinamika (5) b sistem_paramagnetik
 

Similaire à energi & hukum i termodinamika - bagian 2 - mhs

433075894 trabajo-termodinamica-meza-b
433075894 trabajo-termodinamica-meza-b433075894 trabajo-termodinamica-meza-b
433075894 trabajo-termodinamica-meza-bGermansantiagoQuispe
 
Ch 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and massCh 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and massabfisho
 
energy transfer methods
energy transfer methodsenergy transfer methods
energy transfer methodsMUAZASHFAQ
 
Chap_8_lecture.ppt
Chap_8_lecture.pptChap_8_lecture.ppt
Chap_8_lecture.pptQiyeZheng2
 
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadotoApplied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadotomusadoto
 
first law of thermodynamics and second law
first law of thermodynamics and second lawfirst law of thermodynamics and second law
first law of thermodynamics and second lawnaphis ahamad
 
Presentation by Bishal about thermodynamics
Presentation by Bishal about thermodynamicsPresentation by Bishal about thermodynamics
Presentation by Bishal about thermodynamicsAASHISH463514
 
Exergy analysis of Power Plants
Exergy analysis of Power PlantsExergy analysis of Power Plants
Exergy analysis of Power PlantsZin Eddine Dadach
 
Unit 2: BASIC MECHANICAL ENGINEERING by varun pratap singh
Unit 2: BASIC MECHANICAL ENGINEERING  by varun pratap singhUnit 2: BASIC MECHANICAL ENGINEERING  by varun pratap singh
Unit 2: BASIC MECHANICAL ENGINEERING by varun pratap singhVarun Pratap Singh
 
Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)shone john
 
Thermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsThermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsMuhammad Surahman
 
Basics Of Thermodynamics Part 2.pdf
Basics Of Thermodynamics Part 2.pdfBasics Of Thermodynamics Part 2.pdf
Basics Of Thermodynamics Part 2.pdfSwapnilSajane1
 
Chapter 3 thermodynamics final
Chapter 3 thermodynamics finalChapter 3 thermodynamics final
Chapter 3 thermodynamics finalAaba Tambe
 

Similaire à energi & hukum i termodinamika - bagian 2 - mhs (20)

10751259.ppt
10751259.ppt10751259.ppt
10751259.ppt
 
Chapter 15 thermodynamics
Chapter 15   thermodynamicsChapter 15   thermodynamics
Chapter 15 thermodynamics
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
433075894 trabajo-termodinamica-meza-b
433075894 trabajo-termodinamica-meza-b433075894 trabajo-termodinamica-meza-b
433075894 trabajo-termodinamica-meza-b
 
Ch 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and massCh 3 energy transfer by work, heat and mass
Ch 3 energy transfer by work, heat and mass
 
energy transfer methods
energy transfer methodsenergy transfer methods
energy transfer methods
 
Chap_8_lecture.ppt
Chap_8_lecture.pptChap_8_lecture.ppt
Chap_8_lecture.ppt
 
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadotoApplied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
 
Lecture one power plant
Lecture one power plantLecture one power plant
Lecture one power plant
 
first law of thermodynamics and second law
first law of thermodynamics and second lawfirst law of thermodynamics and second law
first law of thermodynamics and second law
 
Presentation by Bishal about thermodynamics
Presentation by Bishal about thermodynamicsPresentation by Bishal about thermodynamics
Presentation by Bishal about thermodynamics
 
Thermodynamics week 2 (2).pdf
Thermodynamics week 2 (2).pdfThermodynamics week 2 (2).pdf
Thermodynamics week 2 (2).pdf
 
Exergy analysis of Power Plants
Exergy analysis of Power PlantsExergy analysis of Power Plants
Exergy analysis of Power Plants
 
Unit 2: BASIC MECHANICAL ENGINEERING by varun pratap singh
Unit 2: BASIC MECHANICAL ENGINEERING  by varun pratap singhUnit 2: BASIC MECHANICAL ENGINEERING  by varun pratap singh
Unit 2: BASIC MECHANICAL ENGINEERING by varun pratap singh
 
first law of thermodynamics
first law of thermodynamics first law of thermodynamics
first law of thermodynamics
 
Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)Refrigeration and air conditioning (full note)
Refrigeration and air conditioning (full note)
 
Thermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of ThermodynamicsThermodynamic Chapter 4 Second Law Of Thermodynamics
Thermodynamic Chapter 4 Second Law Of Thermodynamics
 
Basics Of Thermodynamics Part 2.pdf
Basics Of Thermodynamics Part 2.pdfBasics Of Thermodynamics Part 2.pdf
Basics Of Thermodynamics Part 2.pdf
 
Thermodynamics, part 3.ppt
Thermodynamics, part 3.pptThermodynamics, part 3.ppt
Thermodynamics, part 3.ppt
 
Chapter 3 thermodynamics final
Chapter 3 thermodynamics finalChapter 3 thermodynamics final
Chapter 3 thermodynamics final
 

Dernier

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Cybercrimes in the Darknet and Their Detections: A Comprehensive Analysis and...
Cybercrimes in the Darknet and Their Detections: A Comprehensive Analysis and...Cybercrimes in the Darknet and Their Detections: A Comprehensive Analysis and...
Cybercrimes in the Darknet and Their Detections: A Comprehensive Analysis and...dannyijwest
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxMustafa Ahmed
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 
INTERRUPT CONTROLLER 8259 MICROPROCESSOR
INTERRUPT CONTROLLER 8259 MICROPROCESSORINTERRUPT CONTROLLER 8259 MICROPROCESSOR
INTERRUPT CONTROLLER 8259 MICROPROCESSORTanishkaHira1
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
 
Databricks Generative AI Fundamentals .pdf
Databricks Generative AI Fundamentals  .pdfDatabricks Generative AI Fundamentals  .pdf
Databricks Generative AI Fundamentals .pdfVinayVadlagattu
 
Compressing and Sparsifying LLM in GenAI Applications
Compressing and Sparsifying LLM in GenAI ApplicationsCompressing and Sparsifying LLM in GenAI Applications
Compressing and Sparsifying LLM in GenAI ApplicationsMFatihSIRA
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxpritamlangde
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information SystemsAnge Felix NSANZIYERA
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdfAlexander Litvinenko
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...Amil baba
 
Fundamentals of Internet of Things (IoT) Part-2
Fundamentals of Internet of Things (IoT) Part-2Fundamentals of Internet of Things (IoT) Part-2
Fundamentals of Internet of Things (IoT) Part-2ChandrakantDivate1
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 

Dernier (20)

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Cybercrimes in the Darknet and Their Detections: A Comprehensive Analysis and...
Cybercrimes in the Darknet and Their Detections: A Comprehensive Analysis and...Cybercrimes in the Darknet and Their Detections: A Comprehensive Analysis and...
Cybercrimes in the Darknet and Their Detections: A Comprehensive Analysis and...
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
INTERRUPT CONTROLLER 8259 MICROPROCESSOR
INTERRUPT CONTROLLER 8259 MICROPROCESSORINTERRUPT CONTROLLER 8259 MICROPROCESSOR
INTERRUPT CONTROLLER 8259 MICROPROCESSOR
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Databricks Generative AI Fundamentals .pdf
Databricks Generative AI Fundamentals  .pdfDatabricks Generative AI Fundamentals  .pdf
Databricks Generative AI Fundamentals .pdf
 
Compressing and Sparsifying LLM in GenAI Applications
Compressing and Sparsifying LLM in GenAI ApplicationsCompressing and Sparsifying LLM in GenAI Applications
Compressing and Sparsifying LLM in GenAI Applications
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Introduction to Geographic Information Systems
Introduction to Geographic Information SystemsIntroduction to Geographic Information Systems
Introduction to Geographic Information Systems
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Fundamentals of Internet of Things (IoT) Part-2
Fundamentals of Internet of Things (IoT) Part-2Fundamentals of Internet of Things (IoT) Part-2
Fundamentals of Internet of Things (IoT) Part-2
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 

energi & hukum i termodinamika - bagian 2 - mhs

  • 1. "Energi & Hukum I Termodinamika" Bagian - 2
  • 2. Hukum Dalam Termodinamika  Hukum Pertama Tulus B.S. - Teknik Mesin USU2  Terkait dengan kekekalan energi.  Bermakna “energi tidak dapat diciptakan dan dimusnahkan namun dapat dikonversi dari suatu bentuk ke bentuk yang lain.“  “Perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem”.
  • 3. Hukum Termodinamika - 1 • The net heat put into a system is equal to the change in internal energy of the system plus the work done BY the system. • The net heat put into a system is equal to the change in internal energy of the system plus the work done BY the system. Q = U + W final - initial) • Conversely, the work done ON a system is equal to the change in internal energy plus the heat lost in the process. Tulus B.S. - Teknik Mesin USU3
  • 4. SIGN CONVENTIONS FOR FIRST LAW • Heat Q input is positive Q = U + W final - initial) • Heat Q out is negative • Work BY a gas is positive • Work ON a gas is negative +Qin +Wout U -Win -Qout U Hukum Termodinamika - 1 Tulus B.S. - Teknik Mesin USU 4
  • 5. Proses Dalam Termodinamika  Proses Isovolume : V = 0 & W = 0     Proses Isovolume : V = 0 & W = 0  Proses Isobar : P = 0  Proses Isothermal : T = 0 & U = 0  Proses Adiabatik : Q = 0 Dari Hukum Pertama : Q = U + W Tulus B.S. - Teknik Mesin USU5
  • 6. Proses Isovolume Dikenal juga dengan proses isometrik atau isokorik  Pada proses isovolume : V = 0 & W = 0  Kemudian : Q = U + W so that Q = U 0 +U -U QIN QOUT HEAT IN = INCREASE IN INTERNAL ENERGY HEAT OUT = DECREASE IN INTERNAL ENERGY No Work Done Tulus B.S. - Teknik Mesin USU6
  • 7. Proses Isobar  Pada proses isobar : P = 0  Kemudian :  Q = U + W dan W = P V -U QIN QOUT Work Out Work In +U HEAT IN = Wout + INCREASE IN INTERNAL ENERGY HEAT OUT = Wout + DECREASE IN INTERNAL ENERGY Tulus B.S. - Teknik Mesin USU7
  • 8. Proses Isotermal  Pada proses isothermal T = 0 & U = 0  Q = U + W & Q = W  NET HEAT INPUT = WORK OUTPUT  WORK INPUT = NET HEAT OUT U = 0 Work Out QIN U = 0 QOUT Work In Tulus B.S. - Teknik Mesin USU8
  • 9. Proses Adiabatik  NO HEAT EXCHANGE : Q = 0  Q = U + W ; W = -U or U = -W  Work done at EXPENSE of internal energy  INPUT Work INCREASES internal energy Work Out Work In U +U Q = 0 W = -U U = -W Tulus B.S. - Teknik Mesin USU9
  • 10.  Reversible System changes state and can be restored by reversing original process. Example : Water (s) Water (l)  Irreversible System changes state and must take a different path to restore to original state. Example : CH4 + 2O2  CO2 + 2H2O  Proses Reversibel & Irreversibel Tulus B.S. - Teknik Mesin USU 10
  • 11. Aplikasi Hukum Pertama Tulus B.S. - Teknik Mesin USU11 Energy cannot be created or destroyed; it can only change forms
  • 12. Aplikasi Hukum Pertama Tulus B.S. - Teknik Mesin USU 12  The energy change of a system during a process is equal to the net work and heat transfer between the system and its surroundings.  In the absence of any work interactions, the energy change of a system is equal to the net heat transfer.
  • 13. Aplikasi Hukum Pertama Tulus B.S. - Teknik Mesin USU13  The increase in the energy of a potato in an oven is equal to the amount of heat transferred to it.  The work (shaft) done on an adiabatic system is equal to the increase in the energy of the system.
  • 14. Energy Balance Tulus B.S. - Teknik Mesin USU14  The net change (increase or decrease) in the total energy of the system during a process is equal to the difference between the total energy entering and the total energy leaving the system during that process.  That is,
  • 15. Mechanisms of Energy Transfer Tulus B.S. - Teknik Mesin USU15  Energy can be transferred to or from a system in three forms : heat, work, and mass flow.  The energy content of a control volume can be changed by mass flow as well as heat and work interactions.
  • 16. Massa Atur & Volume Atur Tulus B.S. - Teknik Mesin USU16 Massa Atur (Closed System) Volume Atur (Open System)
  • 17. Example Cooling of a Hot Fluid in a Tank Tulus B.S. - Teknik Mesin USU17  A rigid tank contains a hot fluid that is cooled while being stirred by a paddle wheel.  Initially, the internal energy of the fluid is 800 kJ.  During the cooling process, the fluid loses 500 kJ of heat, and the paddle wheel does 100 kJ of work on the fluid.  Determine the final internal energy of the fluid.  Neglect the energy stored in the paddle wheel.
  • 18. Solution Tulus B.S. - Teknik Mesin USU18 A fluid in a rigid tank looses heat while being stirred.  The final internal energy of the fluid is to be determined. Assumptions  1The tank is stationary and thus the kinetic and potential energy changes are zero, KE = PE= 0. Therefore,  E=U and internal energy is the only form of the system’s energy that may change during this process.  2 Energy stored in the paddle wheel is negligible.
  • 19. Tulus B.S. - Teknik Mesin USU19  Analysis :Take the contents of the tank as the system.  This is a closed system since no mass crosses the boundary during the process.  We observe that the volume of a rigid tank is constant, and thus there is no moving boundary work.  Also, heat is lost from the system and shaft work is done on the system.  Applying the energy balance on the system gives  Therefore, the final internal energy of the system is 400 kJ.
  • 20. Energy Conversion Efficiencies Tulus B.S. - Teknik Mesin USU20  The definition of performance is not limited to thermodynamics only.
  • 21. Combustion Efficiency Tulus B.S. - Teknik Mesin USU21  Then the performance of combustion equipment can be characterized by combustion efficiency, defined as  A combustion efficiency of 100 percent indicates that the fuel is burned completely and the stack gases leave the combustion chamber at room temperature, and thus the amount of heat released during a combustion process is equal to the heating value of the fuel.
  • 22. Heating Value Tulus B.S. - Teknik Mesin USU22  Heating value of the fuel, which is the amount of heat released when a unit amount of fuel at room temperature is completely burned and the combustion products are cooled to the room temperature The definition of the heating value of gasoline
  • 23. Overall Eficiency Tulus B.S. - Teknik Mesin USU23  The effects of other factors are incorporated by defining an overall efficiency for the power plant as the ratio of the net electrical power output to the rate of fuel energy input.  The overall efficiencies are about 26-30 percent for gasoline automotive engines, 34-40 percent for diesel engines, and 40-60 percent for large power plants.
  • 24. Efficiency of a Cooking Tulus B.S. - Teknik Mesin USU24  Efficiency of a cooking appliance can be defined as the ratio of the useful energy transferred to the food to the energy consumed by the appliance  The efficiency of a cooking appliance represents the fraction of the energy supplied to the appliance that is transferred to the food.
  • 25. Efficiencies of Mechanical and Electrical Devices Tulus B.S. - Teknik Mesin USU25 The mechanical efficiency of a fan is the ratio of the kinetic energy of air at the fan exit to the mechanical power input
  • 26. Pump Efficiency and Turbine Efficiency Tulus B.S. - Teknik Mesin USU26
  • 27. Motor and Generator Efficiency Tulus B.S. - Teknik Mesin USU27  A pump is usually packaged together with its motor, and a turbine with its generator.  Therefore, we are usually interested in the combined or overall efficiency of pump- motor and turbine- generator combinations which are defined as
  • 28. Example Performance of a Hydraulic Turbine–Generator Tulus B.S. - Teknik Mesin USU28  The water in a large lake is to be used to generate electricity by the installation of a hydraulic turbine- generator at a location where the depth of the water is 50 m.  Water is to be supplied at a rate of 5000 kg/s.  If the electric power generated is measured to be 1862 kW and the generator efficiency is 95 percent, determine  (a) the overall efficiency of the turbine-generator,  (b) the mechanical efficiency of the turbine,and  (c) the shaft power supplied by the turbine to the generator.
  • 29. Solution Tulus B.S. - Teknik Mesin USU29  A hydraulic turbine-generator is to generate electricity from the water of a lake.  The overall efficiency, the turbine efficiency, and the turbine shaft power are to be determined.  Assumptions  1The elevation of the lake remains constant.  2The mechanical energy of water at the turbine exit is negligible.  PropertiesThe density of water can be taken to be = 1000 kg/m3.  Analysis (a)We take the bottom of the lake as the reference level for convenience.  Then kinetic and potential energies of water are zero, and the change in its mechanical energy per unit mass becomes
  • 30. Tulus B.S. - Teknik Mesin USU30
  • 31. Energy & Environment Tulus B.S. - Teknik Mesin USU31  Motor vehicles are the largest source of air pollution.  Ground-level ozone, which is the primary component of smog, forms when HC and NOx react in the presence of sunlight in hot calm days.
  • 32. Acid Rain Tulus B.S. - Teknik Mesin USU32  Sulfuric acid and nitric acid are formed when sulfur oxides and nitric oxides react with water vapor and other chemicals high in the atmosphere in the presence of sunlight.
  • 33. Greenhouse Effect Tulus B.S. - Teknik Mesin USU33  The greenhouse effect makes life on earth possible by keeping the earth warm (about 30°C warmer).  However, excessive amounts of these gases disturb the delicate balance by trapping too much energy, which causes the average temperature of the earth to rise and the climate at some localities to change.  These undesirable consequences of the greenhouse effect are referred to as global warming or global climate change.
  • 34. Tugas Rumah (Jawaban diketik dan dikirim ke email : tbsitorus@ymail.com) Tulus B.S. - Teknik Mesin USU34
  • 35. Soal - 1 Tulus B.S. - Teknik Mesin USU35  Water is being heated in a closed pan on top of a range while being stirred by a paddle wheel.  During the process, 30 kJ of heat is transferred to the water, and 5 kJ of heat is lost to the surrounding air.  The paddle-wheel work amounts to 500 Nm.  Determine the final energy of the system if its initial energy is 10 kJ.
  • 36. Soal - 2 Tulus B.S. - Teknik Mesin USU36  Water is pumped from a lower reservoir to a higher reservoir by a pump that provides 20 kW of shaft power.  The free surface of the upper reservoir is 45 m higher than that of the lower reservoir.  If the flow rate of water is measured to be 0.03 m3/s, determine mechanical power that is converted to thermal energy during this process due to frictional effects.
  • 37. Soal - 3 Tulus B.S. - Teknik Mesin USU37  An oil pump is drawing 35 kW of electric power while pumping oil with =860 kg/m3 at a rate of 0.1 m3/s.  The inlet and outlet diameters of the pipe are 8 cm and 12 cm, respectively.  If the pressure rise of oil in the pump is measured to be 400 kPa and the motor efficiency is 90 percent,determine the mechanical efficiency of the pump.