SlideShare une entreprise Scribd logo
1  sur  115
Télécharger pour lire hors ligne
ING. José Luis Albornoz Salazar
A U T O R
José Luis Albornoz Salazar
Teniente Coronel (GN)
Licenciado en Ciencias y Artes Militares (EFOFAC)
Ingeniero Civil (IUPFAN)
Un gran descubrimiento resuelve un gran problema, pero en la
solución de todo el problema, hay un cierto descubrimiento. El
problema que se plantea puede ser modesto; pero, si pone a
prueba la curiosidad que induce a poner en juego las facultades
inventivas, si se resuelve por propios medios, se puede
experimentar el encanto del descubrimiento y el goce del triunfo.
Experiencias de este tipo, a una edad conveniente, pueden
determinar una afición para el trabajo intelectual e imprimirle una
huella imperecedera en la mente y en el carácter.
Por ello, un profesor de matemáticas tiene una gran
oportunidad. Si dedica su tiempo a ejercitar a los alumnos en
operaciones rutinarias, matará en ellos el interés, impedirá su
desarrollo intelectual y acabará desaprovechando su
oportunidad. Pero si, por el contrario, pone a prueba la curiosidad
de sus alumnos planteándoles problemas adecuados a sus
conocimientos, y los ayuda a resolverlos por medio de preguntas
estimulantes, podrá despertarles el gusto por el pensamiento
independiente y proporcionarles ciertos recursos para ello.
Un estudiante cuyos estudios incluyan cierto grado de
matemáticas tiene también una particular oportunidad. Dicha
oportunidad se pierde, claro está, si ve las matemáticas como
una materia de la que tiene que presentar un examen final y de
la cual no volverá a ocuparse una vez pasado éste. Puede
descubrir, sin embargo, que un problema de matemáticas puede
ser tanto o más divertido que un crucigrama. Habiendo
degustado el placer de las matemáticas, ya no las olvidará
fácilmente, presentándose entonces una buena oportunidad
para que las matemáticas adquieran un sentido para él, ya sean
como un pasatiempo o como herramienta de su profesión, o su
profesión misma o la ambición de su vida.
G. POLYA.
“Aunque ya hayas tirado muchas veces con el arco, continúa
prestando atención a la manera cómo colocas la flecha, y cómo
tensas la cuerda.
Cuando un estudiante está consciente de sus necesidades,
termina siendo más inteligente que el profesor distraído”.
LAO TZU.
INTRODUCCIÓN
Todo libro de texto debería empezar con una nota de
incentivo para el estudiante, que bien pudiera expresarse en
términos de comprender los fundamentos científicos que han sido
desarrollados en dicha Ciencia, o expresarse en términos de
“insinuación” de que la materia no está revestida de grandes
dificultades y que su estudio y comprensión resulta “entretenido”
para la especialidad escogida.
Partiendo de la premisa anterior este texto trata de hacer
“agradable” el estudio de la Mecánica de Cuerpos Rígidos que
ha sido denominada como Estática y cuya comprensión y
manejo resulta esencialmente importante para los estudiantes de
las diversas ramas de la ingeniería y herramienta imprescindible
para el Cálculo Estructural en la ingeniería civil.
En tal sentido, hemos hecho un enfoque sencillo pero
tratando de cubrir los aspectos esenciales y necesarios en la
materia objeto de estudio.
En el Capítulo I encontrarás la definición y comentario de los
términos fundamentales de la materia, los cuales constituyen la
base primordial del estudio de la estática. Recomendamos que
prestes especial atención a todos los aspectos indicados, pues,
aunque son muy sencillos y de fácil comprensión, te permitirán
abordar sin dificultad los ejercicios y problemas propuestos más
adelante.
El Capítulo II contiene problemas resueltos de equilibrio
estático, los mismos se presentan bajo un procedimiento que
hemos denominado “paso a paso”. El mismo persigue abarcar
todos aquellos criterios que deben ser tomados en cuenta a la
hora de resolver cualquier problema relacionado con la estática.
Este capítulo persigue generar en el alumno una lógica
metodología en la resolución de problemas.
El Capítulo III se refiere al análisis de estructuras, sobre todo
a la más usada en la estática (armadura), donde las condiciones
de estudio son más profundas que las utilizadas en los capítulos
anteriores pero son hechas con un procedimiento similar (“paso a
paso”), apoyándonos en ejemplos ilustrativos para “fijar” de una
manera eficiente el procedimiento de resolución de problemas.
El Capítulo IV abarca lo relacionado a las características de
solicitación de un cuerpo rígido, mejor conocidas como
Diagramas de Fuerzas Normales, Fuerzas Cortantes y Momentos
Flexionantes. Se indican las suposiciones para el análisis de vigas,
las generalizaciones para la construcción de los diagramas y la
convención de signos utilizados. Se presentan ejemplos ilustrativos
(“paso a paso”) de menor a mayor grado de dificultad.
El Capítulo V presenta 10 ejercicios resueltos que han sido
propuestos por alumnos de la asignatura.
CAPÍTULO I
DEFINICIÓN Y COMENTARIO DE
TÉRMINOS FUNDAMENTALES
DEFINICIÓN Y COMENTARIO DE TÉRMINOS
FUNDAMENTALES
ING. JOSE LUIS ALBORNOZ SALAZAR - 2 -
MECÁNICA :
FUERZA :
ESTATICA APLICADA A LA INGENIERIA CIVIL - 3 - ING. JOSE LUIS ALBORNOZ SALAZAR - 4 -
El punto de aplicación
ESTATICA APLICADA A LA INGENIERIA CIVIL – 5 -
CLASIFICACIÓN DE LAS FUERZAS :
ING. JOSE LUIS ALBORNOZ SALAZAR - 6 -
Dirección
El sentido
La magnitud o intensidad
COMPONENTES DE UNA FUERZA :
ESTATICA APLICADA A LA INGENIERIA CIVIL – 7 - ING. JOSE LUIS ALBORNOZ SALAZAR - 8 -
ESTATICA APLICADA A LA INGENIERIA CIVIL – 9 -
PRINCIPIOS DE LA ESTÁTICA GRÁFICA
ING. JOSE LUIS ALBORNOZ SALAZAR - 10 -
ESTATICA APLICADA A LA INGENIERIA CIVIL – 11 - ING. JOSE LUIS ALBORNOZ SALAZAR - 12 -
ESTATICA APLICADA A LA INGENIERIA CIVIL – 13 - ING. JOSE LUIS ALBORNOZ SALAZAR - 14 -
MOMENTO DE UNA FUERZA
ESTATICA APLICADA A LA INGENIERIA CIVIL – 15 - ING. JOSE LUIS ALBORNOZ SALAZAR - 16 -
ESTATICA APLICADA A LA INGENIERIA CIVIL – 17 - ING. JOSE LUIS ALBORNOZ SALAZAR - 18 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 19 - ING. JOSE LUIS ALBORNOZ SALAZAR - 20 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 21 -
EQUILIBRIO ESTÁTICO
ING. JOSE LUIS ALBORNOZ SALAZAR - 22 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 23 - ING. JOSE LUIS ALBORNOZ SALAZAR - 24 -
∑ Fy = 0
∑ Fx = 0
∑ Mo = 0
DIAGRAMA DE CUERPO LIBRE
ESTATICA APLICADA A LA INGENIERIA CIVIL - 25 - ING. JOSE LUIS ALBORNOZ SALAZAR - 26 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 27 - ING. JOSE LUIS ALBORNOZ SALAZAR - 28 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 29 -
-
ING. JOSE LUIS ALBORNOZ SALAZAR - 30 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 31 - ING. JOSE LUIS ALBORNOZ SALAZAR - 32 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 33 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 34 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 35 - ING. JOSE LUIS ALBORNOZ SALAZAR - 36 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 37 - ING. JOSE LUIS ALBORNOZ SALAZAR - 38 -
CAPÍTULO II
PROBLEMAS RESUELTOS DE
EQUILIBRIO ESTÁTICO
( “paso a paso” )
ING. JOSE LUIS ALBORNOZ SALAZAR - 40 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 41 – ING. JOSE LUIS ALBORNOZ SALAZAR - 42 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 43 - ING. JOSE LUIS ALBORNOZ SALAZAR - 44 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 45 – ING. JOSE LUIS ALBORNOZ SALAZAR - 46 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 47 - ING. JOSE LUIS ALBORNOZ SALAZAR - 48 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 49 – ING. JOSE LUIS ALBORNOZ SALAZAR - 50 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 51 - ING. JOSE LUIS ALBORNOZ SALAZAR - 52 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 53 – ING. JOSE LUIS ALBORNOZ SALAZAR - 54 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 55 – ING. JOSE LUIS ALBORNOZ SALAZAR - 56 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 57 –
ING. JOSE LUIS ALBORNOZ SALAZAR - 58 -
NOTA: La figura representa un solo cuerpo, en realidad pueden ser tres vigas
soldadas entre si, pero su estudio estático se realiza considerándolo como una sola.
ESTATICA APLICADA A LA INGENIERIA CIVIL - 59 - ING. JOSE LUIS ALBORNOZ SALAZAR - 60 -
NOTA: Son dos vigas soldadas entre si, pero su comportamiento estático es el de
un solo cuerpo
ESTATICA APLICADA A LA INGENIERIA CIVIL - 61 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 62 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 63 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 64 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 65 - ING. JOSE LUIS ALBORNOZ SALAZAR - 66 -
ESTATICA APLICADA A LA INGENIERIA CIVIL – 67 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 68 -
ESTATICA APLICADA A LA INGENIERIA CIVIL – 69 – - ING. JOSE LUIS ALBORNOZ SALAZAR - 70 -
(Ver página 38 y siguiente)
ESTATICA APLICADA A LA INGENIERIA CIVIL – 71 – - ING. JOSE LUIS ALBORNOZ SALAZAR - 72 -
(Ver página 38 y siguiente)
ESTATICA APLICADA A LA INGENIERIA CIVIL – 73 – - ING. JOSE LUIS ALBORNOZ SALAZAR - 74 -
ESTATICA APLICADA A LA INGENIERIA CIVIL – 75 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 76 -
ESTATICA APLICADA A LA INGENIERIA CIVIL – 77 – ING. JOSE LUIS ALBORNOZ SALAZAR – 78 -
ESTATICA APLICADA A LA INGENIERIA CIVIL – 79 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 80 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 81 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 82 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 83 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 84 -
CAPÍTULO III
ANÁLISIS DE ESTRUCTURAS
ESTATICA APLICADA A LA INGENIERIA CIVIL - 85 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 86-
ESTATICA APLICADA A LA INGENIERIA CIVIL - 87 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 88 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 89 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 90-
ESTATICA APLICADA A LA INGENIERIA CIVIL - 91 - - ING. JOSE LUIS ALBORNOZ SALAZAR – 92 -
- ANÁLISIS DE ESTRUCTURA
ESTATICA APLICADA A LA INGENIERIA CIVIL - 93 -
- ING. JOSE LUIS ALBORNOZ SALAZAR – 94 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 95 - - ING. JOSE LUIS ALBORNOZ SALAZAR – 96 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 97 - - ING. JOSE LUIS ALBORNOZ SALAZAR – 98 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 99 - - ING. JOSE LUIS ALBORNOZ SALAZAR – 100 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 101 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 102 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 103 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 104 -
EJEMPLO ILUSTRATIVO E.3.2 :
**************************************
ESTATICA APLICADA A LA INGENIERIA CIVIL - 105 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 106 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 107 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 108 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 109 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 110 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 111 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 112 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 113 -
- ING. JOSE LUIS ALBORNOZ SALAZAR - 114 -
CAPÍTULO IV
CARACTERÍSTICAS DE SOLICITACIÓN
FUERZAS NORMALES, FUERZAS CORTANTES
Y MOMENTOS FLEXIONANTES
ESTATICA APLICADA A LA INGENIERIA CIVIL - 115 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 116 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 117 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 118 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 119- - ING. JOSE LUIS ALBORNOZ SALAZAR - 120 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 121 - ING. JOSE LUIS ALBORNOZ SALAZAR - 122 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 123 - ING. JOSE LUIS ALBORNOZ SALAZAR - 124 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 125 - ING. JOSE LUIS ALBORNOZ SALAZAR - 126 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 127 - ING. JOSE LUIS ALBORNOZ SALAZAR - 128 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 129 - ING. JOSE LUIS ALBORNOZ SALAZAR - 130 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 131 - ING. JOSE LUIS ALBORNOZ SALAZAR - 132 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 133 - ING. JOSE LUIS ALBORNOZ SALAZAR - 134 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 135 - ING. JOSE LUIS ALBORNOZ SALAZAR - 136 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 137 - ING. JOSE LUIS ALBORNOZ SALAZAR - 138 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 139 - ING. JOSE LUIS ALBORNOZ SALAZAR - 140 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 141 - ING. JOSE LUIS ALBORNOZ SALAZAR - 142 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 143 - ING. JOSE LUIS ALBORNOZ SALAZAR - 144 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 145 - ING. JOSE LUIS ALBORNOZ SALAZAR - 146 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 147 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 148 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 149 - ING. JOSE LUIS ALBORNOZ SALAZAR - 150 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 151 - ING. JOSE LUIS ALBORNOZ SALAZAR - 152 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 153 -
CAPÍTULO V
10 EJERCICIOS RESUELTOS
Este último capítulo contiene 10 ejercicios complementarios (propuestos
por los alumnos de la asignatura) que permiten poner en práctica los
conocimientos adquiridos a través de todo el recorrido de los 4 capítulos
anteriores. Es de hacer notar que el primer ejercicio contempla la realización de
los diagramas de solicitación en una estructura con una configuración
geométrica variada (barras horizontales, verticales e inclinadas) con la finalidad
de que los estudiantes se familiaricen con la construcción de estos diagramas,
bajo las siguientes observaciones o secuencia de elaboración:
a) Calculamos las fuerzas de restricción generadas por los vínculos
(reacciones externas).
b) Realizamos el despiece en cada tramo lineal del cuerpo, teniendo
sumo cuidado en analizar las fuerzas o reacciones internas que se
generan en el punto donde se practica el corte o separación de la
barra.
c) En las barras inclinadas es necesario estudiar las reacciones verticales
y horizontales, para calcular los componentes perpendiculares a la
sección transversal de la barra (N) y las perpendiculares al eje de la
misma (V).
d) Una vez cumplidos los pasos anteriores, estudiamos las características
de solicitación en el “pedazo de barra” en cuestión y la graficamos.
e) Por último se trasladan los “diagramas parciales” de cada barra al
“diagrama total” del cuerpo o figura estudiada.
EJERCICIO 5.1:
ING. JOSE LUIS ALBORNOZ SALAZAR - 155 -
1.- Primero se construye el DIAGRAMA DE CUERPO LIBRE (D.C.L):
2.- Segundo: Estudio la estabilidad de la figura desde el punto de vista de los
grados de libertad que restringen los vínculos:
2.1.- Grados de libertad que posee la figura:
2.1.1.- Son dos barras unidas por una articulación intermedia
(nodo) en el punto “C”.
2.1.2.- Cada barra posee 3 grados de libertad, por lo tanto la figura
tiene 6 grados de libertad (3x2=6).
2.2.- Grados de libertad que restringen los vínculos:
2.2.1.- Vínculo doble en “A” restringe 2 GL.
2.2.2.- Vínculo doble en “E” restringe 2 GL.
2.2.3.- Articulación intermedia (nodo) en “C” restringe 2 GL.
[ GL = 2(m-1) = 2 (2-1) = 2 ] (Ver página 86)
2.2.4.- Grados de libertad restringidos = 2 + 2 +2 = 6
2.3.- Grados de estabilidad = GL = 6 – 6 = 0 “ISOSTÁTICA”
ESTATICA APLICADA A LA INGENIERIA CIVIL - 156 -
2.4.- Observo si alguna de las reacciones o fuerzas de restricción (HA,
VA, HE, VE) son concurrentes sobre una misma linea de acción (ver
página 38 y siguiente). Como en este caso no hay ninguna, puedo
proceder a realizar el análisis estático de la estructura.
3.- Tercero: Realizamos el análisis estático:
(Recuerde fijar “su” sistema de referencia de signos, tal como se indicó en el
capítulo 2, ver página 41).
∑ MA = 0
+ 216 + (12) (21) (21/2) + (120) (9) + (12) HE – (21) (VE) = 0
3942 + 12 HE – 21 VE = 0 (ecuación 1)
∑ MC (hacia la derecha) = 0
+ (12) (9) (9/2) – (120) (6) + (27) (HE) – (9) (VE) = 0
- 234 + 27 HE – 9 VE = 0 (ecuación 2)
Con las ecuaciones 1 y 2 construyo un sistema de ecuaciones y calculo
HE y VE.
HE = 88 t ( ) VE = 238 t ( )
∑ Fx = 0
- HA + 120 – HE = 0 ; - HA + 120 – 88 = O
HA = 32 t ( )
∑ Fy = 0
(Ver páginas 31 y 51 para recordar el estudio de las fuerzas distribuidas
en el cálculo del equilibrio estático)
VA – (12)(21) + VE = 0 ; VA – 252 + 238 = 0
VA = 14 t ( )
ING. JOSE LUIS ALBORNOZ SALAZAR - 157 -
El gráfico con todas las reacciones externas será:
4.- Cuarto: Se procede a realizar el despiece (preferiblemente en cada barra
recta), para calcular los valores de las reacciones internas en cada punto donde
la barra cambia de dirección y así facilitar la construcción de los diagramas de
solicitación.
BARRA “AB” :
∑ Fx = 0 ; HBi – 32 = 0
HBi = 32 t ( )
ESTATICA APLICADA A LA INGENIERIA CIVIL - 158 -
∑ Fy = 0 ; 14 – VBi = 0
VBi = 14 t ( )
∑ MA = 0 ; + 216 + (HBi) (15) – MBi = 0
MBi = 696 tm (en sentido anti horario)
Con la información obtenida anteriormente puedo indicar las condiciones
de equilibrio de la BARRA “AB” :
BARRA “BC” :
Al estudiar las reacciones internas generadas en el punto “B” de la
BARRA “BC” debo tener presente que las mismas serán de igual magnitud pero
de sentido contrario a las calculadas en el punto “B” de la BARRA “AB”.
Recuerde que en los nodos (articulaciones intermedias) no se genera
momento, sólo una reacción interna vertical y otra horizontal.
∑ Fx = 0 ; HCi – 32 = 0
HCi = 32 t ( )
∑ Fy = 0 ; 14 – (12) (12) + VCi = 0
VCi = 130 t ( )
ING. JOSE LUIS ALBORNOZ SALAZAR - 159 -
Aunque sepamos que en el punto “C” no se genera momento por ser una
articulación intermedia, se recomienda calcularlo, con la finalidad de garantizar
que los resultados que se obtuvieron en la barra anterior fueron correctos.
∑ MC = 0 ; + 696 + (14) (12) – (12) (12) (6) = 0
MC = 0 tm
Con la información obtenida anteriormente puedo indicar las condiciones
de equilibrio de la BARRA “BC” :
BARRA “CD” :
Cuando vamos a estudiar la BARRA “CD” notamos que tiene más dificultad
que las anteriores (es una barra inclinada y sobre ella hay una fuerza distribuida
que no es perpendicular a su eje). En estos casos es recomendable “trasladar”
la información de las barras que están en sus extremos. Como en este caso
conocemos las fuerzas internas en el punto “C” (BARRA “BC”) procedo a
estudiar la BARRA “DE” para calcular las fuerzas internas en el punto “D”.
BARRA “DE” :
ESTATICA APLICADA A LA INGENIERIA CIVIL - 160 -
NOTA IMPORTANTE: Cuando en alguno de los puntos donde se va a realizar
el despiece se encuentra una fuerza puntual aplicada, se debe realizar el mismo
(despiece) antes de dicho punto; en otras palabras, NO se debe tomar en
cuenta la fuerza puntual aplicada. Para garantizar las condiciones de equilibrio
dicho punto debe ser estudiado por separado. En este caso en particular
observe que la fuerza de 120 t. que está aplicada en el punto “D” no forma parte
del diagrama de cuerpo libre de la BARRA “DE”.
∑ Fx = 0 ; HDi – 88 = 0
HDi = 88 t ( )
∑ Fy = 0 ; 238 – VDi = 0
VDi = 238 t ( )
∑ ME = 0 ; (HDi) (21) - MDi = 0 ; (88) (21) – MDi = 0
MDi = 1848 tm (en sentido anti horario)
PUNTO “D” :
Con la información del punto “D” de la BARRA “DE” estudio las
condiciones de equilibrio de dicho punto.
ING. JOSE LUIS ALBORNOZ SALAZAR - 161 -
∑ Fx = 0 ; - Hd – 88 + 120 = 0
Hd = 32 t ( )
∑ Fy = 0 ; 238 – Vd = 0
Vd = 238 t ( )
∑ MD = 0 ; 1848 - Md = 0
Md = 1848 tm (en sentido anti horario)
Con esta información y la anteriormente obtenida con el estudio de la
BARRA “BC” puedo tener las condiciones de equilibrio de la BARRA “CD”.
Recuerde que se colocan las mismas magnitudes pero sentido contrario.
BARRA “CD” :
Con toda la información anterior procedo a construir los diagramas de
fuerzas (Normal y de Corte) y Momento.
Como el fin que perseguimos en la resolución de este problema es
esencialmente didáctico, realizamos primero el despiece de todas las barras y
posteriormente los diagramas respectivos, sin embargo, en la práctica, mientras
se hace el despiece se dibujan paralelamente los diagramas de solicitación.
Recuerde la convención de signos indicadas en la página 118.
ESTATICA APLICADA A LA INGENIERIA CIVIL - 162 –
BARRA “AB” :
BARRA “BC” :
ING. JOSE LUIS ALBORNOZ SALAZAR - 163 -
BARRA “CD” :
En las barras inclinadas es necesario estudiar las reacciones de manera
tal que las mismas estén alineadas con su eje (N) y perpendicular al mismo (V).
En este caso en particular notamos que las fuerzas que están en sus extremos
(fuerzas internas) y la fuerza distribuida (fuerzas externas) no están alineadas ni
son perpendiculares a su eje; condición que dificulta la construcción de los
diagramas de solicitación.
Esta dificultad se resuelve si calculamos los componentes
perpendiculares al eje de la viga de las fuerzas internas que actúan en sus
extremos (ver página 8).
 Para calcular la fuerza perpendicular al eje de la BARRA “CD” en el
punto “C” :
32 (sen 56,31) + 130 (sen 56,31) = 125,92 ( ).
 Para calcular la fuerza alineada con el eje de la BARRA “CD”
(perpendicular a la sección transversal de la barra) en el punto “C” :
130 (cos 56,31) – 32 (cos 56,31) = 45,48 ( )
 Para calcular la fuerza perpendicular al eje de la BARRA “CD” en el
punto “D” :
32 (cos 56,31) + 238 (sen 56,31) = 215,78 ( ).
 Para calcular la fuerza alineada con el eje de la BARRA “CD”
(perpendicular a la sección transversal de la barra) en el punto “D” :
238 (cos 56,31) – 32 (sen 56,31) = 105,39 ( )
Con los cálculos anteriores podemos concluimos que la BARRA “CD”
está solicitada como se muestra a continuación:
ESTATICA APLICADA A LA INGENIERIA CIVIL - 164 –
Con la información anterior procedemos a construir el diagrama de
solicitación de la BARRA “CD”. Para facilitar dicha construcción se recomienda
leer las generalizaciones contenidas en las páginas 116, 117 y 118.
BARRA “DE” :
ING. JOSE LUIS ALBORNOZ SALAZAR - 165 - ING. JOSE LUIS ALBORNOZ SALAZAR - 166 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 167 - ING. JOSE LUIS ALBORNOZ SALAZAR - 168 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 169 - ING. JOSE LUIS ALBORNOZ SALAZAR - 170 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 171 - ING. JOSE LUIS ALBORNOZ SALAZAR - 172 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 173 - ING. JOSE LUIS ALBORNOZ SALAZAR - 174 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 175 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 176 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 177 - ING. JOSE LUIS ALBORNOZ SALAZAR - 178 -
BARRA CD
ESTATICA APLICADA A LA INGENIERIA CIVIL - 179 - ING. JOSE LUIS ALBORNOZ SALAZAR - 180 -
9
9
ESTATICA APLICADA A LA INGENIERIA CIVIL - 181 - ING. JOSE LUIS ALBORNOZ SALAZAR - 182 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 183 - ING. JOSE LUIS ALBORNOZ SALAZAR -184 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 185 - ING. JOSE LUIS ALBORNOZ SALAZAR - 186 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 187 - ING. JOSE LUIS ALBORNOZ SALAZAR - 188 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 189 - ING. JOSE LUIS ALBORNOZ SALAZAR - 190 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 191 -
ING. JOSE LUIS ALBORNOZ SALAZAR - 192 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 193 - ING. JOSE LUIS ALBORNOZ SALAZAR - 194 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 195 - ING. JOSE LUIS ALBORNOZ SALAZAR - 196 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 197 - ING. JOSE LUIS ALBORNOZ SALAZAR - 198 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 199 - ING. JOSE LUIS ALBORNOZ SALAZAR - 200 -
ESTATICA APLICADA A LA INGENIERIA CIVIL - 201 -
I N D I C E
CAPÍTULO V………………………………..………………………….. 155
ÍNDICE GRÁFICO
Página 40
Página 45
Página 46
Página 47
Página 50
Página 52
Página 54
Página 56
Página 58
Página 60
Página 62
Página 64
Página 67
Página 70
Página 74
Página 75
Página 76
Página 77
Pagina 79
Página 80
Página 81
Página 82
Página 83
Página 89
Página 96
Página 104
Página 113
Página 119
Página 126
Página 127
Página 132
Página 136
Página 139
Página 142
Página 151
Página 155
Página 166
Página 169
Página 170
Página 175
Página 180
Página 185
Página 188
Página 191
Página 195
El autor de este trabajo solicita su valiosa colaboración en el sentido
de enviar cualquier sugerencia y/o recomendaciones a la siguiente
dirección
martilloatomico@gmail.com
Igualmente puede enviar cualquier ejercicio o problema que considere
pueda ser incluido en el mismo.
Si en sus horas de estudio o práctica se encuentra con un problema
que no pueda resolver, envíelo a la anterior dirección y se le enviará
resuelto a la suya.

Contenu connexe

Tendances

Trabajo de mecanica y resistencia de materiales estructura warren
Trabajo de mecanica y resistencia de materiales   estructura warrenTrabajo de mecanica y resistencia de materiales   estructura warren
Trabajo de mecanica y resistencia de materiales estructura warrenMaria352065
 
Asentamiento y consolidación de suelos
Asentamiento y consolidación de suelosAsentamiento y consolidación de suelos
Asentamiento y consolidación de suelosdiegoupt
 
La hidráulica como rama de la Ingenieria Civil
La hidráulica   como rama  de la Ingenieria CivilLa hidráulica   como rama  de la Ingenieria Civil
La hidráulica como rama de la Ingenieria CivilIng Jose Luis Cruz M
 
Monografia proceso-constructivo de una edificacion
Monografia proceso-constructivo de una edificacionMonografia proceso-constructivo de una edificacion
Monografia proceso-constructivo de una edificacionJhonyAlexander6
 
Relaciones volumetricas y gravimetricas
Relaciones volumetricas y gravimetricasRelaciones volumetricas y gravimetricas
Relaciones volumetricas y gravimetricasMartin Andrade Pacheco
 
Laboratorio 3. Pesos Volumétricos (PVSC + PVSC) - UNAN Managua
Laboratorio 3. Pesos Volumétricos (PVSC + PVSC) - UNAN ManaguaLaboratorio 3. Pesos Volumétricos (PVSC + PVSC) - UNAN Managua
Laboratorio 3. Pesos Volumétricos (PVSC + PVSC) - UNAN ManaguaEnrique Santana
 
Solucionariodelosexamenesdemecanicadesuelosii
SolucionariodelosexamenesdemecanicadesuelosiiSolucionariodelosexamenesdemecanicadesuelosii
Solucionariodelosexamenesdemecanicadesuelosiioscar torres
 
Informe de-topografia-LEVANTAMIENTO TOPOGRÁFICO CON NIVEL DE INGENIERO
Informe de-topografia-LEVANTAMIENTO TOPOGRÁFICO CON NIVEL DE INGENIEROInforme de-topografia-LEVANTAMIENTO TOPOGRÁFICO CON NIVEL DE INGENIERO
Informe de-topografia-LEVANTAMIENTO TOPOGRÁFICO CON NIVEL DE INGENIEROAngelo Alvarez Sifuentes
 
Informe de corte directo n.t.p 339.171
Informe de corte  directo n.t.p 339.171Informe de corte  directo n.t.p 339.171
Informe de corte directo n.t.p 339.171Yoner Chávez
 
ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS Valerìa Lopez
 
Levantamineto topográfico con teodolito
Levantamineto topográfico con teodolitoLevantamineto topográfico con teodolito
Levantamineto topográfico con teodolitoYoner Chávez
 
Determinacion de la fluidez consistencia normal
Determinacion de la fluidez consistencia normal Determinacion de la fluidez consistencia normal
Determinacion de la fluidez consistencia normal Rodrigo Chauca Lopez
 

Tendances (20)

Metodo de compensacion de poligonos
Metodo de compensacion de poligonosMetodo de compensacion de poligonos
Metodo de compensacion de poligonos
 
5. matricial
5. matricial5. matricial
5. matricial
 
Trabajo de mecanica y resistencia de materiales estructura warren
Trabajo de mecanica y resistencia de materiales   estructura warrenTrabajo de mecanica y resistencia de materiales   estructura warren
Trabajo de mecanica y resistencia de materiales estructura warren
 
EJERCICIOS DE ARMADURAS POR EL MÉTODO DE NODOS
EJERCICIOS DE ARMADURAS POR EL MÉTODO DE NODOSEJERCICIOS DE ARMADURAS POR EL MÉTODO DE NODOS
EJERCICIOS DE ARMADURAS POR EL MÉTODO DE NODOS
 
Asentamiento y consolidación de suelos
Asentamiento y consolidación de suelosAsentamiento y consolidación de suelos
Asentamiento y consolidación de suelos
 
Topografia en carreteras
Topografia en carreterasTopografia en carreteras
Topografia en carreteras
 
La hidráulica como rama de la Ingenieria Civil
La hidráulica   como rama  de la Ingenieria CivilLa hidráulica   como rama  de la Ingenieria Civil
La hidráulica como rama de la Ingenieria Civil
 
AGREGADO FINO Y GRUESO
AGREGADO FINO Y GRUESOAGREGADO FINO Y GRUESO
AGREGADO FINO Y GRUESO
 
Monografia proceso-constructivo de una edificacion
Monografia proceso-constructivo de una edificacionMonografia proceso-constructivo de una edificacion
Monografia proceso-constructivo de una edificacion
 
Relaciones volumetricas y gravimetricas
Relaciones volumetricas y gravimetricasRelaciones volumetricas y gravimetricas
Relaciones volumetricas y gravimetricas
 
Tablas para metodo superposición
Tablas para metodo superposiciónTablas para metodo superposición
Tablas para metodo superposición
 
Laboratorio 3. Pesos Volumétricos (PVSC + PVSC) - UNAN Managua
Laboratorio 3. Pesos Volumétricos (PVSC + PVSC) - UNAN ManaguaLaboratorio 3. Pesos Volumétricos (PVSC + PVSC) - UNAN Managua
Laboratorio 3. Pesos Volumétricos (PVSC + PVSC) - UNAN Managua
 
Solucionariodelosexamenesdemecanicadesuelosii
SolucionariodelosexamenesdemecanicadesuelosiiSolucionariodelosexamenesdemecanicadesuelosii
Solucionariodelosexamenesdemecanicadesuelosii
 
Nivelacion
NivelacionNivelacion
Nivelacion
 
Informe de-topografia-LEVANTAMIENTO TOPOGRÁFICO CON NIVEL DE INGENIERO
Informe de-topografia-LEVANTAMIENTO TOPOGRÁFICO CON NIVEL DE INGENIEROInforme de-topografia-LEVANTAMIENTO TOPOGRÁFICO CON NIVEL DE INGENIERO
Informe de-topografia-LEVANTAMIENTO TOPOGRÁFICO CON NIVEL DE INGENIERO
 
Informe de corte directo n.t.p 339.171
Informe de corte  directo n.t.p 339.171Informe de corte  directo n.t.p 339.171
Informe de corte directo n.t.p 339.171
 
ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS ESTRUCTURA ISOSTATICAS
ESTRUCTURA ISOSTATICAS
 
Levantamineto topográfico con teodolito
Levantamineto topográfico con teodolitoLevantamineto topográfico con teodolito
Levantamineto topográfico con teodolito
 
Determinacion de la fluidez consistencia normal
Determinacion de la fluidez consistencia normal Determinacion de la fluidez consistencia normal
Determinacion de la fluidez consistencia normal
 
Diseño en concreto armado ing. roberto morales morales
Diseño en concreto armado ing. roberto morales moralesDiseño en concreto armado ing. roberto morales morales
Diseño en concreto armado ing. roberto morales morales
 

Plus de Jean Romero

Topografia basica II
Topografia basica IITopografia basica II
Topografia basica IIJean Romero
 
Topografia basica I
Topografia basica ITopografia basica I
Topografia basica IJean Romero
 
Calculo larsson 8 edicion
Calculo larsson 8 edicionCalculo larsson 8 edicion
Calculo larsson 8 edicionJean Romero
 
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantesJean Romero
 
Solucionario analisis matematico iii eduardo espinoza ramos
Solucionario analisis matematico iii   eduardo espinoza ramosSolucionario analisis matematico iii   eduardo espinoza ramos
Solucionario analisis matematico iii eduardo espinoza ramosJean Romero
 
135664670 analisis-estructural-biaggio-arbulu
135664670 analisis-estructural-biaggio-arbulu135664670 analisis-estructural-biaggio-arbulu
135664670 analisis-estructural-biaggio-arbuluJean Romero
 
139221184 mecanica-para-ingenieros-estatica-j-l-meriam-3°-edicion
139221184 mecanica-para-ingenieros-estatica-j-l-meriam-3°-edicion139221184 mecanica-para-ingenieros-estatica-j-l-meriam-3°-edicion
139221184 mecanica-para-ingenieros-estatica-j-l-meriam-3°-edicionJean Romero
 
Estatica - Villareal
Estatica - VillarealEstatica - Villareal
Estatica - VillarealJean Romero
 
Movimiento ondulatorio
Movimiento ondulatorioMovimiento ondulatorio
Movimiento ondulatorioJean Romero
 
Mecanica de fluidos
Mecanica de fluidosMecanica de fluidos
Mecanica de fluidosJean Romero
 

Plus de Jean Romero (11)

Topografia basica II
Topografia basica IITopografia basica II
Topografia basica II
 
Topografia basica I
Topografia basica ITopografia basica I
Topografia basica I
 
Calculo larsson 8 edicion
Calculo larsson 8 edicionCalculo larsson 8 edicion
Calculo larsson 8 edicion
 
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
57848046 metodos-operativos-de-calculo-vectorial-fausto-cervantes
 
Solucionario analisis matematico iii eduardo espinoza ramos
Solucionario analisis matematico iii   eduardo espinoza ramosSolucionario analisis matematico iii   eduardo espinoza ramos
Solucionario analisis matematico iii eduardo espinoza ramos
 
135664670 analisis-estructural-biaggio-arbulu
135664670 analisis-estructural-biaggio-arbulu135664670 analisis-estructural-biaggio-arbulu
135664670 analisis-estructural-biaggio-arbulu
 
139221184 mecanica-para-ingenieros-estatica-j-l-meriam-3°-edicion
139221184 mecanica-para-ingenieros-estatica-j-l-meriam-3°-edicion139221184 mecanica-para-ingenieros-estatica-j-l-meriam-3°-edicion
139221184 mecanica-para-ingenieros-estatica-j-l-meriam-3°-edicion
 
Estatica - Villareal
Estatica - VillarealEstatica - Villareal
Estatica - Villareal
 
Movimiento ondulatorio
Movimiento ondulatorioMovimiento ondulatorio
Movimiento ondulatorio
 
Elasticidad
ElasticidadElasticidad
Elasticidad
 
Mecanica de fluidos
Mecanica de fluidosMecanica de fluidos
Mecanica de fluidos
 

Estatica aplicada-ingenieria-civil

  • 1. ING. José Luis Albornoz Salazar
  • 2. A U T O R José Luis Albornoz Salazar Teniente Coronel (GN) Licenciado en Ciencias y Artes Militares (EFOFAC) Ingeniero Civil (IUPFAN) Un gran descubrimiento resuelve un gran problema, pero en la solución de todo el problema, hay un cierto descubrimiento. El problema que se plantea puede ser modesto; pero, si pone a prueba la curiosidad que induce a poner en juego las facultades inventivas, si se resuelve por propios medios, se puede experimentar el encanto del descubrimiento y el goce del triunfo. Experiencias de este tipo, a una edad conveniente, pueden determinar una afición para el trabajo intelectual e imprimirle una huella imperecedera en la mente y en el carácter. Por ello, un profesor de matemáticas tiene una gran oportunidad. Si dedica su tiempo a ejercitar a los alumnos en operaciones rutinarias, matará en ellos el interés, impedirá su desarrollo intelectual y acabará desaprovechando su oportunidad. Pero si, por el contrario, pone a prueba la curiosidad de sus alumnos planteándoles problemas adecuados a sus conocimientos, y los ayuda a resolverlos por medio de preguntas estimulantes, podrá despertarles el gusto por el pensamiento independiente y proporcionarles ciertos recursos para ello. Un estudiante cuyos estudios incluyan cierto grado de matemáticas tiene también una particular oportunidad. Dicha oportunidad se pierde, claro está, si ve las matemáticas como una materia de la que tiene que presentar un examen final y de la cual no volverá a ocuparse una vez pasado éste. Puede descubrir, sin embargo, que un problema de matemáticas puede ser tanto o más divertido que un crucigrama. Habiendo degustado el placer de las matemáticas, ya no las olvidará fácilmente, presentándose entonces una buena oportunidad para que las matemáticas adquieran un sentido para él, ya sean como un pasatiempo o como herramienta de su profesión, o su profesión misma o la ambición de su vida. G. POLYA. “Aunque ya hayas tirado muchas veces con el arco, continúa prestando atención a la manera cómo colocas la flecha, y cómo tensas la cuerda. Cuando un estudiante está consciente de sus necesidades, termina siendo más inteligente que el profesor distraído”. LAO TZU.
  • 3. INTRODUCCIÓN Todo libro de texto debería empezar con una nota de incentivo para el estudiante, que bien pudiera expresarse en términos de comprender los fundamentos científicos que han sido desarrollados en dicha Ciencia, o expresarse en términos de “insinuación” de que la materia no está revestida de grandes dificultades y que su estudio y comprensión resulta “entretenido” para la especialidad escogida. Partiendo de la premisa anterior este texto trata de hacer “agradable” el estudio de la Mecánica de Cuerpos Rígidos que ha sido denominada como Estática y cuya comprensión y manejo resulta esencialmente importante para los estudiantes de las diversas ramas de la ingeniería y herramienta imprescindible para el Cálculo Estructural en la ingeniería civil. En tal sentido, hemos hecho un enfoque sencillo pero tratando de cubrir los aspectos esenciales y necesarios en la materia objeto de estudio. En el Capítulo I encontrarás la definición y comentario de los términos fundamentales de la materia, los cuales constituyen la base primordial del estudio de la estática. Recomendamos que prestes especial atención a todos los aspectos indicados, pues, aunque son muy sencillos y de fácil comprensión, te permitirán abordar sin dificultad los ejercicios y problemas propuestos más adelante. El Capítulo II contiene problemas resueltos de equilibrio estático, los mismos se presentan bajo un procedimiento que hemos denominado “paso a paso”. El mismo persigue abarcar todos aquellos criterios que deben ser tomados en cuenta a la hora de resolver cualquier problema relacionado con la estática. Este capítulo persigue generar en el alumno una lógica metodología en la resolución de problemas. El Capítulo III se refiere al análisis de estructuras, sobre todo a la más usada en la estática (armadura), donde las condiciones de estudio son más profundas que las utilizadas en los capítulos anteriores pero son hechas con un procedimiento similar (“paso a paso”), apoyándonos en ejemplos ilustrativos para “fijar” de una manera eficiente el procedimiento de resolución de problemas. El Capítulo IV abarca lo relacionado a las características de solicitación de un cuerpo rígido, mejor conocidas como Diagramas de Fuerzas Normales, Fuerzas Cortantes y Momentos Flexionantes. Se indican las suposiciones para el análisis de vigas, las generalizaciones para la construcción de los diagramas y la convención de signos utilizados. Se presentan ejemplos ilustrativos (“paso a paso”) de menor a mayor grado de dificultad. El Capítulo V presenta 10 ejercicios resueltos que han sido propuestos por alumnos de la asignatura.
  • 4. CAPÍTULO I DEFINICIÓN Y COMENTARIO DE TÉRMINOS FUNDAMENTALES DEFINICIÓN Y COMENTARIO DE TÉRMINOS FUNDAMENTALES ING. JOSE LUIS ALBORNOZ SALAZAR - 2 - MECÁNICA : FUERZA :
  • 5. ESTATICA APLICADA A LA INGENIERIA CIVIL - 3 - ING. JOSE LUIS ALBORNOZ SALAZAR - 4 - El punto de aplicación
  • 6. ESTATICA APLICADA A LA INGENIERIA CIVIL – 5 - CLASIFICACIÓN DE LAS FUERZAS : ING. JOSE LUIS ALBORNOZ SALAZAR - 6 - Dirección El sentido La magnitud o intensidad
  • 7. COMPONENTES DE UNA FUERZA : ESTATICA APLICADA A LA INGENIERIA CIVIL – 7 - ING. JOSE LUIS ALBORNOZ SALAZAR - 8 -
  • 8. ESTATICA APLICADA A LA INGENIERIA CIVIL – 9 - PRINCIPIOS DE LA ESTÁTICA GRÁFICA ING. JOSE LUIS ALBORNOZ SALAZAR - 10 -
  • 9. ESTATICA APLICADA A LA INGENIERIA CIVIL – 11 - ING. JOSE LUIS ALBORNOZ SALAZAR - 12 -
  • 10. ESTATICA APLICADA A LA INGENIERIA CIVIL – 13 - ING. JOSE LUIS ALBORNOZ SALAZAR - 14 -
  • 11. MOMENTO DE UNA FUERZA ESTATICA APLICADA A LA INGENIERIA CIVIL – 15 - ING. JOSE LUIS ALBORNOZ SALAZAR - 16 -
  • 12. ESTATICA APLICADA A LA INGENIERIA CIVIL – 17 - ING. JOSE LUIS ALBORNOZ SALAZAR - 18 -
  • 13. ESTATICA APLICADA A LA INGENIERIA CIVIL - 19 - ING. JOSE LUIS ALBORNOZ SALAZAR - 20 -
  • 14. ESTATICA APLICADA A LA INGENIERIA CIVIL - 21 - EQUILIBRIO ESTÁTICO ING. JOSE LUIS ALBORNOZ SALAZAR - 22 -
  • 15. ESTATICA APLICADA A LA INGENIERIA CIVIL - 23 - ING. JOSE LUIS ALBORNOZ SALAZAR - 24 - ∑ Fy = 0 ∑ Fx = 0 ∑ Mo = 0
  • 16. DIAGRAMA DE CUERPO LIBRE ESTATICA APLICADA A LA INGENIERIA CIVIL - 25 - ING. JOSE LUIS ALBORNOZ SALAZAR - 26 -
  • 17. ESTATICA APLICADA A LA INGENIERIA CIVIL - 27 - ING. JOSE LUIS ALBORNOZ SALAZAR - 28 -
  • 18. ESTATICA APLICADA A LA INGENIERIA CIVIL - 29 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 30 -
  • 19. ESTATICA APLICADA A LA INGENIERIA CIVIL - 31 - ING. JOSE LUIS ALBORNOZ SALAZAR - 32 -
  • 20. ESTATICA APLICADA A LA INGENIERIA CIVIL - 33 - ING. JOSE LUIS ALBORNOZ SALAZAR - 34 -
  • 21. ESTATICA APLICADA A LA INGENIERIA CIVIL - 35 - ING. JOSE LUIS ALBORNOZ SALAZAR - 36 -
  • 22. ESTATICA APLICADA A LA INGENIERIA CIVIL - 37 - ING. JOSE LUIS ALBORNOZ SALAZAR - 38 -
  • 23.
  • 24.
  • 25. CAPÍTULO II PROBLEMAS RESUELTOS DE EQUILIBRIO ESTÁTICO ( “paso a paso” ) ING. JOSE LUIS ALBORNOZ SALAZAR - 40 -
  • 26. ESTATICA APLICADA A LA INGENIERIA CIVIL - 41 – ING. JOSE LUIS ALBORNOZ SALAZAR - 42 -
  • 27. ESTATICA APLICADA A LA INGENIERIA CIVIL - 43 - ING. JOSE LUIS ALBORNOZ SALAZAR - 44 -
  • 28. ESTATICA APLICADA A LA INGENIERIA CIVIL - 45 – ING. JOSE LUIS ALBORNOZ SALAZAR - 46 -
  • 29. ESTATICA APLICADA A LA INGENIERIA CIVIL - 47 - ING. JOSE LUIS ALBORNOZ SALAZAR - 48 -
  • 30. ESTATICA APLICADA A LA INGENIERIA CIVIL - 49 – ING. JOSE LUIS ALBORNOZ SALAZAR - 50 -
  • 31. ESTATICA APLICADA A LA INGENIERIA CIVIL - 51 - ING. JOSE LUIS ALBORNOZ SALAZAR - 52 -
  • 32. ESTATICA APLICADA A LA INGENIERIA CIVIL - 53 – ING. JOSE LUIS ALBORNOZ SALAZAR - 54 -
  • 33. ESTATICA APLICADA A LA INGENIERIA CIVIL - 55 – ING. JOSE LUIS ALBORNOZ SALAZAR - 56 -
  • 34. ESTATICA APLICADA A LA INGENIERIA CIVIL - 57 – ING. JOSE LUIS ALBORNOZ SALAZAR - 58 - NOTA: La figura representa un solo cuerpo, en realidad pueden ser tres vigas soldadas entre si, pero su estudio estático se realiza considerándolo como una sola.
  • 35. ESTATICA APLICADA A LA INGENIERIA CIVIL - 59 - ING. JOSE LUIS ALBORNOZ SALAZAR - 60 - NOTA: Son dos vigas soldadas entre si, pero su comportamiento estático es el de un solo cuerpo
  • 36. ESTATICA APLICADA A LA INGENIERIA CIVIL - 61 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 62 -
  • 37. ESTATICA APLICADA A LA INGENIERIA CIVIL - 63 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 64 -
  • 38. ESTATICA APLICADA A LA INGENIERIA CIVIL - 65 - ING. JOSE LUIS ALBORNOZ SALAZAR - 66 -
  • 39. ESTATICA APLICADA A LA INGENIERIA CIVIL – 67 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 68 -
  • 40. ESTATICA APLICADA A LA INGENIERIA CIVIL – 69 – - ING. JOSE LUIS ALBORNOZ SALAZAR - 70 - (Ver página 38 y siguiente)
  • 41. ESTATICA APLICADA A LA INGENIERIA CIVIL – 71 – - ING. JOSE LUIS ALBORNOZ SALAZAR - 72 - (Ver página 38 y siguiente)
  • 42. ESTATICA APLICADA A LA INGENIERIA CIVIL – 73 – - ING. JOSE LUIS ALBORNOZ SALAZAR - 74 -
  • 43. ESTATICA APLICADA A LA INGENIERIA CIVIL – 75 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 76 -
  • 44. ESTATICA APLICADA A LA INGENIERIA CIVIL – 77 – ING. JOSE LUIS ALBORNOZ SALAZAR – 78 -
  • 45. ESTATICA APLICADA A LA INGENIERIA CIVIL – 79 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 80 -
  • 46. ESTATICA APLICADA A LA INGENIERIA CIVIL - 81 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 82 -
  • 47. ESTATICA APLICADA A LA INGENIERIA CIVIL - 83 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 84 -
  • 48. CAPÍTULO III ANÁLISIS DE ESTRUCTURAS ESTATICA APLICADA A LA INGENIERIA CIVIL - 85 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 86-
  • 49. ESTATICA APLICADA A LA INGENIERIA CIVIL - 87 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 88 -
  • 50. ESTATICA APLICADA A LA INGENIERIA CIVIL - 89 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 90-
  • 51. ESTATICA APLICADA A LA INGENIERIA CIVIL - 91 - - ING. JOSE LUIS ALBORNOZ SALAZAR – 92 -
  • 52. - ANÁLISIS DE ESTRUCTURA ESTATICA APLICADA A LA INGENIERIA CIVIL - 93 - - ING. JOSE LUIS ALBORNOZ SALAZAR – 94 -
  • 53. ESTATICA APLICADA A LA INGENIERIA CIVIL - 95 - - ING. JOSE LUIS ALBORNOZ SALAZAR – 96 -
  • 54. ESTATICA APLICADA A LA INGENIERIA CIVIL - 97 - - ING. JOSE LUIS ALBORNOZ SALAZAR – 98 -
  • 55. ESTATICA APLICADA A LA INGENIERIA CIVIL - 99 - - ING. JOSE LUIS ALBORNOZ SALAZAR – 100 -
  • 56. ESTATICA APLICADA A LA INGENIERIA CIVIL - 101 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 102 -
  • 57. ESTATICA APLICADA A LA INGENIERIA CIVIL - 103 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 104 - EJEMPLO ILUSTRATIVO E.3.2 : **************************************
  • 58. ESTATICA APLICADA A LA INGENIERIA CIVIL - 105 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 106 -
  • 59. ESTATICA APLICADA A LA INGENIERIA CIVIL - 107 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 108 -
  • 60. ESTATICA APLICADA A LA INGENIERIA CIVIL - 109 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 110 -
  • 61. ESTATICA APLICADA A LA INGENIERIA CIVIL - 111 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 112 -
  • 62. ESTATICA APLICADA A LA INGENIERIA CIVIL - 113 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 114 -
  • 63. CAPÍTULO IV CARACTERÍSTICAS DE SOLICITACIÓN FUERZAS NORMALES, FUERZAS CORTANTES Y MOMENTOS FLEXIONANTES
  • 64. ESTATICA APLICADA A LA INGENIERIA CIVIL - 115 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 116 -
  • 65. ESTATICA APLICADA A LA INGENIERIA CIVIL - 117 - - ING. JOSE LUIS ALBORNOZ SALAZAR - 118 -
  • 66. ESTATICA APLICADA A LA INGENIERIA CIVIL - 119- - ING. JOSE LUIS ALBORNOZ SALAZAR - 120 -
  • 67. ESTATICA APLICADA A LA INGENIERIA CIVIL - 121 - ING. JOSE LUIS ALBORNOZ SALAZAR - 122 -
  • 68. ESTATICA APLICADA A LA INGENIERIA CIVIL - 123 - ING. JOSE LUIS ALBORNOZ SALAZAR - 124 -
  • 69. ESTATICA APLICADA A LA INGENIERIA CIVIL - 125 - ING. JOSE LUIS ALBORNOZ SALAZAR - 126 -
  • 70. ESTATICA APLICADA A LA INGENIERIA CIVIL - 127 - ING. JOSE LUIS ALBORNOZ SALAZAR - 128 -
  • 71. ESTATICA APLICADA A LA INGENIERIA CIVIL - 129 - ING. JOSE LUIS ALBORNOZ SALAZAR - 130 -
  • 72. ESTATICA APLICADA A LA INGENIERIA CIVIL - 131 - ING. JOSE LUIS ALBORNOZ SALAZAR - 132 -
  • 73. ESTATICA APLICADA A LA INGENIERIA CIVIL - 133 - ING. JOSE LUIS ALBORNOZ SALAZAR - 134 -
  • 74. ESTATICA APLICADA A LA INGENIERIA CIVIL - 135 - ING. JOSE LUIS ALBORNOZ SALAZAR - 136 -
  • 75. ESTATICA APLICADA A LA INGENIERIA CIVIL - 137 - ING. JOSE LUIS ALBORNOZ SALAZAR - 138 -
  • 76. ESTATICA APLICADA A LA INGENIERIA CIVIL - 139 - ING. JOSE LUIS ALBORNOZ SALAZAR - 140 -
  • 77. ESTATICA APLICADA A LA INGENIERIA CIVIL - 141 - ING. JOSE LUIS ALBORNOZ SALAZAR - 142 -
  • 78. ESTATICA APLICADA A LA INGENIERIA CIVIL - 143 - ING. JOSE LUIS ALBORNOZ SALAZAR - 144 -
  • 79. ESTATICA APLICADA A LA INGENIERIA CIVIL - 145 - ING. JOSE LUIS ALBORNOZ SALAZAR - 146 -
  • 80. ESTATICA APLICADA A LA INGENIERIA CIVIL - 147 - ING. JOSE LUIS ALBORNOZ SALAZAR - 148 -
  • 81. ESTATICA APLICADA A LA INGENIERIA CIVIL - 149 - ING. JOSE LUIS ALBORNOZ SALAZAR - 150 -
  • 82. ESTATICA APLICADA A LA INGENIERIA CIVIL - 151 - ING. JOSE LUIS ALBORNOZ SALAZAR - 152 -
  • 83. ESTATICA APLICADA A LA INGENIERIA CIVIL - 153 - CAPÍTULO V 10 EJERCICIOS RESUELTOS
  • 84. Este último capítulo contiene 10 ejercicios complementarios (propuestos por los alumnos de la asignatura) que permiten poner en práctica los conocimientos adquiridos a través de todo el recorrido de los 4 capítulos anteriores. Es de hacer notar que el primer ejercicio contempla la realización de los diagramas de solicitación en una estructura con una configuración geométrica variada (barras horizontales, verticales e inclinadas) con la finalidad de que los estudiantes se familiaricen con la construcción de estos diagramas, bajo las siguientes observaciones o secuencia de elaboración: a) Calculamos las fuerzas de restricción generadas por los vínculos (reacciones externas). b) Realizamos el despiece en cada tramo lineal del cuerpo, teniendo sumo cuidado en analizar las fuerzas o reacciones internas que se generan en el punto donde se practica el corte o separación de la barra. c) En las barras inclinadas es necesario estudiar las reacciones verticales y horizontales, para calcular los componentes perpendiculares a la sección transversal de la barra (N) y las perpendiculares al eje de la misma (V). d) Una vez cumplidos los pasos anteriores, estudiamos las características de solicitación en el “pedazo de barra” en cuestión y la graficamos. e) Por último se trasladan los “diagramas parciales” de cada barra al “diagrama total” del cuerpo o figura estudiada. EJERCICIO 5.1: ING. JOSE LUIS ALBORNOZ SALAZAR - 155 - 1.- Primero se construye el DIAGRAMA DE CUERPO LIBRE (D.C.L): 2.- Segundo: Estudio la estabilidad de la figura desde el punto de vista de los grados de libertad que restringen los vínculos: 2.1.- Grados de libertad que posee la figura: 2.1.1.- Son dos barras unidas por una articulación intermedia (nodo) en el punto “C”. 2.1.2.- Cada barra posee 3 grados de libertad, por lo tanto la figura tiene 6 grados de libertad (3x2=6). 2.2.- Grados de libertad que restringen los vínculos: 2.2.1.- Vínculo doble en “A” restringe 2 GL. 2.2.2.- Vínculo doble en “E” restringe 2 GL. 2.2.3.- Articulación intermedia (nodo) en “C” restringe 2 GL. [ GL = 2(m-1) = 2 (2-1) = 2 ] (Ver página 86) 2.2.4.- Grados de libertad restringidos = 2 + 2 +2 = 6 2.3.- Grados de estabilidad = GL = 6 – 6 = 0 “ISOSTÁTICA” ESTATICA APLICADA A LA INGENIERIA CIVIL - 156 -
  • 85. 2.4.- Observo si alguna de las reacciones o fuerzas de restricción (HA, VA, HE, VE) son concurrentes sobre una misma linea de acción (ver página 38 y siguiente). Como en este caso no hay ninguna, puedo proceder a realizar el análisis estático de la estructura. 3.- Tercero: Realizamos el análisis estático: (Recuerde fijar “su” sistema de referencia de signos, tal como se indicó en el capítulo 2, ver página 41). ∑ MA = 0 + 216 + (12) (21) (21/2) + (120) (9) + (12) HE – (21) (VE) = 0 3942 + 12 HE – 21 VE = 0 (ecuación 1) ∑ MC (hacia la derecha) = 0 + (12) (9) (9/2) – (120) (6) + (27) (HE) – (9) (VE) = 0 - 234 + 27 HE – 9 VE = 0 (ecuación 2) Con las ecuaciones 1 y 2 construyo un sistema de ecuaciones y calculo HE y VE. HE = 88 t ( ) VE = 238 t ( ) ∑ Fx = 0 - HA + 120 – HE = 0 ; - HA + 120 – 88 = O HA = 32 t ( ) ∑ Fy = 0 (Ver páginas 31 y 51 para recordar el estudio de las fuerzas distribuidas en el cálculo del equilibrio estático) VA – (12)(21) + VE = 0 ; VA – 252 + 238 = 0 VA = 14 t ( ) ING. JOSE LUIS ALBORNOZ SALAZAR - 157 - El gráfico con todas las reacciones externas será: 4.- Cuarto: Se procede a realizar el despiece (preferiblemente en cada barra recta), para calcular los valores de las reacciones internas en cada punto donde la barra cambia de dirección y así facilitar la construcción de los diagramas de solicitación. BARRA “AB” : ∑ Fx = 0 ; HBi – 32 = 0 HBi = 32 t ( ) ESTATICA APLICADA A LA INGENIERIA CIVIL - 158 -
  • 86. ∑ Fy = 0 ; 14 – VBi = 0 VBi = 14 t ( ) ∑ MA = 0 ; + 216 + (HBi) (15) – MBi = 0 MBi = 696 tm (en sentido anti horario) Con la información obtenida anteriormente puedo indicar las condiciones de equilibrio de la BARRA “AB” : BARRA “BC” : Al estudiar las reacciones internas generadas en el punto “B” de la BARRA “BC” debo tener presente que las mismas serán de igual magnitud pero de sentido contrario a las calculadas en el punto “B” de la BARRA “AB”. Recuerde que en los nodos (articulaciones intermedias) no se genera momento, sólo una reacción interna vertical y otra horizontal. ∑ Fx = 0 ; HCi – 32 = 0 HCi = 32 t ( ) ∑ Fy = 0 ; 14 – (12) (12) + VCi = 0 VCi = 130 t ( ) ING. JOSE LUIS ALBORNOZ SALAZAR - 159 - Aunque sepamos que en el punto “C” no se genera momento por ser una articulación intermedia, se recomienda calcularlo, con la finalidad de garantizar que los resultados que se obtuvieron en la barra anterior fueron correctos. ∑ MC = 0 ; + 696 + (14) (12) – (12) (12) (6) = 0 MC = 0 tm Con la información obtenida anteriormente puedo indicar las condiciones de equilibrio de la BARRA “BC” : BARRA “CD” : Cuando vamos a estudiar la BARRA “CD” notamos que tiene más dificultad que las anteriores (es una barra inclinada y sobre ella hay una fuerza distribuida que no es perpendicular a su eje). En estos casos es recomendable “trasladar” la información de las barras que están en sus extremos. Como en este caso conocemos las fuerzas internas en el punto “C” (BARRA “BC”) procedo a estudiar la BARRA “DE” para calcular las fuerzas internas en el punto “D”. BARRA “DE” : ESTATICA APLICADA A LA INGENIERIA CIVIL - 160 -
  • 87. NOTA IMPORTANTE: Cuando en alguno de los puntos donde se va a realizar el despiece se encuentra una fuerza puntual aplicada, se debe realizar el mismo (despiece) antes de dicho punto; en otras palabras, NO se debe tomar en cuenta la fuerza puntual aplicada. Para garantizar las condiciones de equilibrio dicho punto debe ser estudiado por separado. En este caso en particular observe que la fuerza de 120 t. que está aplicada en el punto “D” no forma parte del diagrama de cuerpo libre de la BARRA “DE”. ∑ Fx = 0 ; HDi – 88 = 0 HDi = 88 t ( ) ∑ Fy = 0 ; 238 – VDi = 0 VDi = 238 t ( ) ∑ ME = 0 ; (HDi) (21) - MDi = 0 ; (88) (21) – MDi = 0 MDi = 1848 tm (en sentido anti horario) PUNTO “D” : Con la información del punto “D” de la BARRA “DE” estudio las condiciones de equilibrio de dicho punto. ING. JOSE LUIS ALBORNOZ SALAZAR - 161 - ∑ Fx = 0 ; - Hd – 88 + 120 = 0 Hd = 32 t ( ) ∑ Fy = 0 ; 238 – Vd = 0 Vd = 238 t ( ) ∑ MD = 0 ; 1848 - Md = 0 Md = 1848 tm (en sentido anti horario) Con esta información y la anteriormente obtenida con el estudio de la BARRA “BC” puedo tener las condiciones de equilibrio de la BARRA “CD”. Recuerde que se colocan las mismas magnitudes pero sentido contrario. BARRA “CD” : Con toda la información anterior procedo a construir los diagramas de fuerzas (Normal y de Corte) y Momento. Como el fin que perseguimos en la resolución de este problema es esencialmente didáctico, realizamos primero el despiece de todas las barras y posteriormente los diagramas respectivos, sin embargo, en la práctica, mientras se hace el despiece se dibujan paralelamente los diagramas de solicitación. Recuerde la convención de signos indicadas en la página 118. ESTATICA APLICADA A LA INGENIERIA CIVIL - 162 –
  • 88. BARRA “AB” : BARRA “BC” : ING. JOSE LUIS ALBORNOZ SALAZAR - 163 - BARRA “CD” : En las barras inclinadas es necesario estudiar las reacciones de manera tal que las mismas estén alineadas con su eje (N) y perpendicular al mismo (V). En este caso en particular notamos que las fuerzas que están en sus extremos (fuerzas internas) y la fuerza distribuida (fuerzas externas) no están alineadas ni son perpendiculares a su eje; condición que dificulta la construcción de los diagramas de solicitación. Esta dificultad se resuelve si calculamos los componentes perpendiculares al eje de la viga de las fuerzas internas que actúan en sus extremos (ver página 8).  Para calcular la fuerza perpendicular al eje de la BARRA “CD” en el punto “C” : 32 (sen 56,31) + 130 (sen 56,31) = 125,92 ( ).  Para calcular la fuerza alineada con el eje de la BARRA “CD” (perpendicular a la sección transversal de la barra) en el punto “C” : 130 (cos 56,31) – 32 (cos 56,31) = 45,48 ( )  Para calcular la fuerza perpendicular al eje de la BARRA “CD” en el punto “D” : 32 (cos 56,31) + 238 (sen 56,31) = 215,78 ( ).  Para calcular la fuerza alineada con el eje de la BARRA “CD” (perpendicular a la sección transversal de la barra) en el punto “D” : 238 (cos 56,31) – 32 (sen 56,31) = 105,39 ( ) Con los cálculos anteriores podemos concluimos que la BARRA “CD” está solicitada como se muestra a continuación: ESTATICA APLICADA A LA INGENIERIA CIVIL - 164 –
  • 89. Con la información anterior procedemos a construir el diagrama de solicitación de la BARRA “CD”. Para facilitar dicha construcción se recomienda leer las generalizaciones contenidas en las páginas 116, 117 y 118. BARRA “DE” : ING. JOSE LUIS ALBORNOZ SALAZAR - 165 - ING. JOSE LUIS ALBORNOZ SALAZAR - 166 -
  • 90. ING. JOSE LUIS ALBORNOZ SALAZAR - 167 - ING. JOSE LUIS ALBORNOZ SALAZAR - 168 -
  • 91. ING. JOSE LUIS ALBORNOZ SALAZAR - 169 - ING. JOSE LUIS ALBORNOZ SALAZAR - 170 -
  • 92. ING. JOSE LUIS ALBORNOZ SALAZAR - 171 - ING. JOSE LUIS ALBORNOZ SALAZAR - 172 -
  • 93. ING. JOSE LUIS ALBORNOZ SALAZAR - 173 - ING. JOSE LUIS ALBORNOZ SALAZAR - 174 -
  • 94. ING. JOSE LUIS ALBORNOZ SALAZAR - 175 - ING. JOSE LUIS ALBORNOZ SALAZAR - 176 -
  • 95. ING. JOSE LUIS ALBORNOZ SALAZAR - 177 - ING. JOSE LUIS ALBORNOZ SALAZAR - 178 -
  • 96. BARRA CD ESTATICA APLICADA A LA INGENIERIA CIVIL - 179 - ING. JOSE LUIS ALBORNOZ SALAZAR - 180 - 9 9
  • 97. ESTATICA APLICADA A LA INGENIERIA CIVIL - 181 - ING. JOSE LUIS ALBORNOZ SALAZAR - 182 -
  • 98. ESTATICA APLICADA A LA INGENIERIA CIVIL - 183 - ING. JOSE LUIS ALBORNOZ SALAZAR -184 -
  • 99. ESTATICA APLICADA A LA INGENIERIA CIVIL - 185 - ING. JOSE LUIS ALBORNOZ SALAZAR - 186 -
  • 100. ESTATICA APLICADA A LA INGENIERIA CIVIL - 187 - ING. JOSE LUIS ALBORNOZ SALAZAR - 188 -
  • 101. ESTATICA APLICADA A LA INGENIERIA CIVIL - 189 - ING. JOSE LUIS ALBORNOZ SALAZAR - 190 -
  • 102. ESTATICA APLICADA A LA INGENIERIA CIVIL - 191 - ING. JOSE LUIS ALBORNOZ SALAZAR - 192 -
  • 103. ESTATICA APLICADA A LA INGENIERIA CIVIL - 193 - ING. JOSE LUIS ALBORNOZ SALAZAR - 194 -
  • 104. ESTATICA APLICADA A LA INGENIERIA CIVIL - 195 - ING. JOSE LUIS ALBORNOZ SALAZAR - 196 -
  • 105. ESTATICA APLICADA A LA INGENIERIA CIVIL - 197 - ING. JOSE LUIS ALBORNOZ SALAZAR - 198 -
  • 106. ESTATICA APLICADA A LA INGENIERIA CIVIL - 199 - ING. JOSE LUIS ALBORNOZ SALAZAR - 200 -
  • 107. ESTATICA APLICADA A LA INGENIERIA CIVIL - 201 - I N D I C E
  • 108.
  • 110. Página 50 Página 52 Página 54 Página 56 Página 58 Página 60 Página 62
  • 111. Página 64 Página 67 Página 70 Página 74 Página 75 Página 76 Página 77
  • 112. Pagina 79 Página 80 Página 81 Página 82 Página 83 Página 89 Página 96 Página 104
  • 113. Página 113 Página 119 Página 126 Página 127 Página 132 Página 136 Página 139
  • 114. Página 142 Página 151 Página 155 Página 166 Página 169 Página 170 Página 175 Página 180
  • 115. Página 185 Página 188 Página 191 Página 195 El autor de este trabajo solicita su valiosa colaboración en el sentido de enviar cualquier sugerencia y/o recomendaciones a la siguiente dirección martilloatomico@gmail.com Igualmente puede enviar cualquier ejercicio o problema que considere pueda ser incluido en el mismo. Si en sus horas de estudio o práctica se encuentra con un problema que no pueda resolver, envíelo a la anterior dirección y se le enviará resuelto a la suya.