SlideShare une entreprise Scribd logo
1  sur  7
Télécharger pour lire hors ligne
http://www.maths.net.au/                                                            2010 Mathematics HSC Solutions



                   2010 Mathematics HSC Solutions 
 Question 1                                           (b)        x 2  x  12  0
 (a)                                                        ( x  4)( x  3)  0
        x2  4x  0
                                                                       y
       x( x  4)  0
       x  0 or x  4  0
                                                             –3                4
                     x4                                                            x


 (b)      1    52   52
                                                          3  x  4
         52   52   54
                            2 5                     (c) y  ln  3x 
                                                            dy 3
       a  2       and b  1                                 
                                                            dx 3x
 (c) ( x  1) 2  ( y  2) 2  25                               1
                                                              
                                                                x
 (d) 2 x  3  9                                                                1
                                                            at x  2, m 
                                                                                2
       2x  3  9     or    (2 x  3)  9
                                                                               2 3
                                                      (d) (i)  5 x  1 dx        5  5 x  1 2 dx
                                                                                                   1

           2x  6               2 x  3  9                  
                                                                            3 5 2
              x3                   2 x  12                                 2
                                                                                  5 x  1  c
                                                                                           3
                                                                           
                                      x  6                                 15

       d 2                                                           x        1      2x
 (e)      x tan x  tan x (2 x)  x 2 (sec 2 x)             (ii) 
                                                                         dx            dx
       dx                                                         4 x 2
                                                                              2  4  x2
                   x(2 tan x  x sec2 x)                                     1
                                                                              ln  4  x 2   c
                                                                              2
             a
 (f) s 
                                                      (e)    6
            1 r
             1
                                                              x  k  dx  30
                                                             0
                                                              x2     
                                                                           6
            1 1
               3
                                                               2  kx   30
              3                                                       0
          
              2                                                    62
                                                                       6k  30
                                                                   2
 (g) x  8                                                              6k  12
 Question 2                                                              k 2
                                                      Question 3
       d cos x x( sin x)  cos x(1)
 (a)                                                              2  12 4  6 
       dx x                x2                         (a) (i) M          ,       
                 x sin x  cos x                                  2         2 
                                                                 5, 1
                        x2


                                                  1
http://www.maths.net.au/                                                                          2010 Mathematics HSC Solutions


                     86                                                   3                   1
      (ii) mBC                                                               ln x dx           0  2 ln 2  ln 3
                     6  12                                             1                      2
                       1                                                                      1.24 (2 d.p.)
                    
                       3
                                                                (iii) The approximation using the
                   2 1                                               trapezoidal rule is less than the
      (iii) mMN 
                   25                                                actual value of the integral, because
                    1                                                 the shaded area of the trapeziums,
                 
                     3                                                is less than the actual area below
            since mBC  mMN ,                                         the curve.
             BC || MN
                                                                                   y
             Corresponding angles on parallel                                  2
             lines are equal, so
             ACB  ANM                                                       1
             ABC  AMN
              ABC ||| AMN (equiangular)
                                                                                              1        2    3     4 x
                          1
      (iv)       y  2    x  2
                          3                                                 -1
                3y  6  x  2
                                                            Question 4
             x  3y  8  0
                                                            (a) (i) Forms an AP, a  1 , d  0.75
                                                                    Tn  1  (n  1)  0.75
                        12  6    6  8
                                    2             2
      (v) BC 
                                                                      Tn  0.25  0.75n
                  2 10
                                                                      T9  0.25  0.75  9
                 1                                                    T9  7 km
      (vi) Area  bh
                 2                                                    Susannah runs 7 km in the 9th week
                 1                                              (ii) Tn  0.25  0.75n
             44  2 10h
                 2                                                    10  0.25  0.75n
                 22 10                                                n  13
              h
                   5                                                  In the 13th week.

 (b) (i)            y
                                                                (iii) S 26            26
                                                                                        2    2 1   26  1  0.75
                3                                                                269.75 km
                2                                                                  2
                                                                       
                1                                           (b) Area    e 2 x  e x  dx
                                                                       0
               -1       1       2       3   4    5 x                                               2
               -2                                                        e2 x        
                                                                              e x 
               -3                                                        2           0
               -4
               -5                                                         e4        e0    
                                                                          e 2     e0 
      (ii)      x           1         2           3                      2         2      
                            0       ln(2)       ln(3)                           2
               f(x)                                                      e  2e  3
                                                                           4
                                                                       
                                                                              2

                                                        2
http://www.maths.net.au/                                                              2010 Mathematics HSC Solutions



 (c) (i) P (2 mint) 
                              4 3                                     4 r 3  20  0
                                
                             12 11                                     r3  5  0
                              1
                                                                               5
                             11                                       r    3
                                                                                
                              1 1 1
      (ii) P (2same)                                               d2A        60
                             11 11 11                                       4  3
                                                                         2
                              3                                       dr          r
                           
                             11                                                  5
                                                                      when r  3 ,
                                                                                     
                                         3                              2
                                                                      d A
      (iii) P (2 different)  1                                            16  0,  c.c.up,
                                        11                            dr 2
                                   8                                                                           5
                                                                      local minimum at r              3
                                   11                                                                        




 (d) f  x   f   x   1  e x 1  e  x 

                            1  e x  e x  1                                                     1      1 sin x
                                         x                  (b) (i) sec2 x  sec x tan x               
                           2e e x
                                                                                                 cos 2 x cos x cos x
       f  x   f   x   1  e x   1  e  x                                          
                                                                                                 1  sin x
                                                                                                  cos 2 x
                            2  e x  e x

                                                                                                 1  sin x
 Question 5                                                      (ii) sec2 x  sec x tan x 
                                                                                                  cos 2 x
                                                                                                 1  sin x
 (a) (i)    V   r 2h                                                                         
                                                                                                 1  sin 2 x
            10   r 2 h                                                                                1  sin x
                                                                                               
                  10                                                                             1  sin x 1  sin x 
             h 2
                 r                                                                                    1
                                                                                               
                                                                                                   1  sin x
            A  2 r 2  2 rh
                                10 
                2 r 2  2 r  2                                             
                                                                                  1
                                                                 (iii) I  
                                                                             4

                               r                                                    dx
                                                                           0 1  sin x
                          20
                2 r 2 
                                                                                
                                                                          4
                           r                                               sec 2 x  sec x tan x  dx
                                                                          0
                                                                          tan x  sec x 0
                                                                                           
      (ii) dA          20                                                                  4

                4 r  2
            dr         r                                                                             
               dA                                                         tan  sec    tan 0  sec 0 
           let     0 to find stationary points                               4     4                  
               dr
                                                                         1 2 1
                                                                         2

                                                         3
http://www.maths.net.au/                                                      2010 Mathematics HSC Solutions


                    1 1
                                                        (iii)
            A1   dx
 (c)                                                                              y
                 
                 a x
             1   ln x a
                          1
                                                                             8
             1  ln 1  ln  a 
                                                                       –2
       ln  a   1                                                                         x
                  1
            a
                  e                                 (b) (i) l  r
                                                            9  5
                  b
                    1
           A2   dx
                                                                 1.8
                1 x
             1   ln x 1
                          b                             (ii) In OPT and OQT
                                                             OP = OQ (equal radii of 5 cm)
             1  ln  b   ln 1                           OPT = OQT (both right angles)
       ln  b   1                                          OT is a common line
                                                             OPT  OQT (RHS)
            be
                                                        (iii) POT  1 POQ
 Question 6                                                          2

                                                                        0.9
 (a) (i)     f ( x)  ( x  2)( x  4)
                                  2
                                                                           PT
                                                                tan(0.9) 
             f ( x)  x3  2 x 2  4 x  8                                  5
                                                                PT  5 tan(0.9)
             f ( x)  3 x 2  4 x  4                       PT  6.3 cm (1 d.p.)
                                                                       
                                                        (iv) PTQ    1.8  2
            Consider the discriminate,                                2 2
              42  4(3)(4)                                  (angle sum of a quadrilateral is 2 )
               32
                                                                PTQ  1.34
            Therefore there are no zeros, and                         1
                                                                Area  (6.3) 2 sin(1.34)
            hence, no stationary points. (the                         2
            derivative function is positive                               1                       
            definite)                                                     (5) 2 (1.8  sin(1.8)) 
                                                                          2                       
       (ii) f ( x )  6 x  4                                         9 cm 2

                                                    Question 7
            The graph is concave down when
            6x  4  0
                                                    (a) (i) x   4 cos 2t dt
                                                            
                 2
            x
                 3                                                 2sin 2t  c
            The graph is concave up when
                 2                                              when t = 0, x  1 ,
                                                                             
            x                                                 1  2sin 2(0)  c
                 3
                                                                c 1

                                                                 x  2sin 2t  1
                                                                  


                                                4
http://www.maths.net.au/                                                                2010 Mathematics HSC Solutions


      (ii) at x  0
                                                                                    1     
           0  2sin 2t  1                                           T is the point  , 2  .
                                                                                     2     
                      1                                             mBT  4
           sin 2t  
                      2                                             Eqn BT: y  4  4( x  2)
                                                                            y  4x  4
              2t  
                       6
                     13                                           Since this line is not vertical, if there
              t          ,
                    12 12                                           is one simultaneous solution between
                                                                    this line and the parabola, it is a
              Therefore, the first time it will be at               tangent. So, sub y  4 x  4 into
                             13                                     y  x2
              rest is at t =      3.4 s
                              12                                    4 x  4  x2
      (iii) x  2sin 2t  1 dt                                       x2  4 x  4  0
               
                                                                     x  2
                                                                               2
                                                                                   0
                  cos 2t  t  c
                                                                    x2
              at t = 0, x = 0                                        BT is a tangent to the parabola
              0   cos 2(0)  0  c
         c 1
         x   cos 2t  t  1
          dy                                                Question 8
 (b) (i)      2x
          dx
         at x = –1, m = –2                                  (a) P  Ae kt
                                                                P  102e kt
              y  1  2( x  1)
                                                                when t = 75, P = 200 000 000
              2x  y 1  0                                     200000000  102e 75 k
                                                                k  0.22
      (ii) M   , 
                   1 5
                       
                 2 2                                          P  102e0.22t
            mAB  1
                                                                P  102e0.22(100)
           so, to find the x-value on the curve,
           where the tangent is 1, let 2x = 1.                  P  539 311 817 787
                                     1 1                       P  539 billion
           Therefore the point C is  ,  .
                                     2 4                  (b) P ( HH )  0.36
           Since the x-values of M and C are                     P ( H )  0.6
           the same, then the line MC will be                    P (T )  0.4
           vertical.
                                                                 P (TT )  0.16
              x–coordinate of T is 0.5.                     (c) (i) A  4 (amplitude)
      (iii)
              2x  y 1  0                                            2
                                                                (ii) T 
                 1                                                      b
              2  y 1  0                                            2
                 2                                                  
              y  2                                                    b
                                                                    b2

                                                        5
http://www.maths.net.au/                                                                    2010 Mathematics HSC Solutions


      (iii)        y                                         (ii)1      A1  P (1  0.005)1  2000
                                                                                P (1.005)1  2000
               4
               3                                                        A2  A1 (1.005)1  2000
               2                                                                 P (1.005)1  2000  (1.005)1  2000
                                                                                                    
               1
                                                                                P (1.005) 2  2000(1  1.005)
                                                 x                      A3  A2 (1.005)1  2000
              -1                          
              -2                    2                                            P (1.005) 2  2000(1  1.005)  (1.005)1  2000
                                                                                                                
              -3
                                                                                P (1.005)3  2000(1  1.005  1.0052 )
              -4
                                                                               
 (d) f  x   x3  3 x 2  kx  8                                      An  P (1.005) n  2000(1  1.005    1.005n 1 )

       f   x   3x 2  6 x  k                                               P (1.005n )  2000 
                                                                                                     1(1.005n  1)
                                                                                                       1.005  1
                                                                                P (1.005n )  400 000  (1.005n  1)
      For an increasing function f   x   0 ,                                P (1.005n )  400 000 1.005n  400 000
                                                                                ( P  400 000) 1.005n  400 000
      i.e. 3 x 2  6 x  k  0

      Consider the graph of y  3 x 2  6 x with                   2           An  ( P  400 000) 1.005n  400 000
                                                                            0  (232 175.55  400 000) 1.005n  400 000
      x-intercepts at 0 and 2. Vertex at x = 1,                                  400 000
                                                                       1.005n 
      y = –3.  if k  3 , f   x  is positive                                167824.45
                                                                            n  log1.005 (2.38)
      definite and hence f  x  is an                                                log10 2.38
                                                                                n
                                                                                     log10 1.005
      increasing function.
                                                                                n  174.1
 Question 9

 (a) (i) A1  500(1  0.005) 240                                       Thus there will be money in the
                                                                       account for the next 175 months
           A2  500(1  0.005) 239
          .                                              (b) (i)       0 x2
          .
          .                                                  (ii) The maximum occurs at x = 2,
                                                                           2
           A240  500(1  0.005)1
                                                                              f   x  dx  4
                                                                        0

                                                                       f  2  f  0  4
           A  A1  A2    A240
                                                                       f  2  4
               500(1.005  1.0052  
                                                                       The maximum value is f  x   4
                        1.005239  1.005240 )
                   1.005(1.005240  1)                       (iii) f  6   f  4 
               500
                        1.005  1                                          4
               $232 175.55                                                   f   x  dx  4
                                                                        2

                                                                       f  4   f  2   4
                                                                       f  4   4  4
                                                                       f  4  0
                                                                       The gradient is –3, so f  6   6




                                                     6
http://www.maths.net.au/                                                                2010 Mathematics HSC Solutions


      (iv)     4
                                                            y  a (1  2 cos  )
                                                             y  a (1  2(1))
                            2    4           6               y  3a
                                                                      OA
                                                     (b) (i) sin  
                                                                       r
                                                             OA  r sin 
             –6                                                     r
                                                            V             y 2 dx
                                                                   r sin 

 Question 10
                                                                             r        x 2  dx
                                                                    r
                                                                               2
                                                                   r sin 

 (a) (i)In ACD, DAC and DCA =                                         x3 
                                                                                         r

                                                                r 2 x  
        90  1  ( sum of )
             2                                                           3  r sin 
                                                                         r3               r 3 sin 3       
        CDB = 180   (suppl. angles)                           r 3     r 3 sin                     
                                                                         3                     3           
        DBC = 90  1  (ABC is isosc.)
                    2
                                                                r 3
        DCB = 90  3  ( sum of )
                     2                                        
                                                                 3
                                                                      2  3sin   sin 3  
        ACB = DCB + DCA = 
                                                     (ii) 1 Initial depth = r. So, find  , to give
        In ABC and ACD,                                   depth 1 r. From the diagram,
        ACB = ADC (both  )
                                                                    2

                                                                            r
        DAC = DBC (both 90  1  )
                               2                            OA  r sin  
                                                                            2
         ABC ||| ACD (equiangular)                                 1
                                                            sin  
                   AD DC a                                            2
        also note                                               30
                   AC CB x
     (ii) orresponding sides of similar
        C
        triangles are in the same proportion.                                  r3 
                                                                                3 1
                                                                          2  
            AD AC                                                       3      2 8
                                                       2 Fraction 
            AC AB                                                           2 r 3
         a     x                                                              3
           
         x a y                                                        5
                                                                    
         a (a  y )  x 2                                             16
         x 2  a 2  ay

     (iii n ACD, by the cosine rule
        I
         x 2  a 2  a 2  2a 2 cos 
         a 2  ay  a 2  a 2  2a 2 cos 
         ay  a 2  2a 2 cos 
         y  a  2a cos 
        y  a (1  2 cos  )
     (ivTo get the maximum value of y, cos 
        must take its minimum value, of –1.

                                                 7

Contenu connexe

Tendances

L19 increasing & decreasing functions
L19 increasing & decreasing functionsL19 increasing & decreasing functions
L19 increasing & decreasing functions
James Tagara
 
Module 4 exponential and logarithmic functions
Module 4   exponential and logarithmic functionsModule 4   exponential and logarithmic functions
Module 4 exponential and logarithmic functions
Aya Chavez
 

Tendances (20)

Improper integral of second kind
Improper integral of second kindImproper integral of second kind
Improper integral of second kind
 
Algebra of sets
Algebra of setsAlgebra of sets
Algebra of sets
 
Matrices
MatricesMatrices
Matrices
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
L19 increasing & decreasing functions
L19 increasing & decreasing functionsL19 increasing & decreasing functions
L19 increasing & decreasing functions
 
Lecture co3 math21-1
Lecture co3 math21-1Lecture co3 math21-1
Lecture co3 math21-1
 
Metric space
Metric spaceMetric space
Metric space
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Module 4 exponential and logarithmic functions
Module 4   exponential and logarithmic functionsModule 4   exponential and logarithmic functions
Module 4 exponential and logarithmic functions
 
Types of function
Types of function Types of function
Types of function
 
Hamilton Path & Dijkstra's Algorithm
Hamilton Path & Dijkstra's AlgorithmHamilton Path & Dijkstra's Algorithm
Hamilton Path & Dijkstra's Algorithm
 
Riemann sumsdefiniteintegrals
Riemann sumsdefiniteintegralsRiemann sumsdefiniteintegrals
Riemann sumsdefiniteintegrals
 
ONTO ONE TO ONE FUNCTION.ppt
ONTO ONE TO ONE FUNCTION.pptONTO ONE TO ONE FUNCTION.ppt
ONTO ONE TO ONE FUNCTION.ppt
 
Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
Integration presentation
Integration presentationIntegration presentation
Integration presentation
 
Limit and continuty final
Limit and continuty finalLimit and continuty final
Limit and continuty final
 
Straight lines
Straight linesStraight lines
Straight lines
 

Similaire à 2010 mathematics hsc solutions

Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equations
paufong
 
Solving volumes using cross sectional areas
Solving volumes using cross sectional areasSolving volumes using cross sectional areas
Solving volumes using cross sectional areas
gregcross22
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
Lily Maryati
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
Nigel Simmons
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivative
Nigel Simmons
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
Erik Tjersland
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
paufong
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
nechamkin
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
Nigel Simmons
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomials
Erik Tjersland
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
Nigel Simmons
 

Similaire à 2010 mathematics hsc solutions (20)

BBMP1103 - Sept 2011 exam workshop - Part 2
BBMP1103 - Sept 2011 exam workshop - Part 2BBMP1103 - Sept 2011 exam workshop - Part 2
BBMP1103 - Sept 2011 exam workshop - Part 2
 
Chapter 7 solution of equations
Chapter 7 solution of equationsChapter 7 solution of equations
Chapter 7 solution of equations
 
BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4BBMP1103 - Sept 2011 exam workshop - part 4
BBMP1103 - Sept 2011 exam workshop - part 4
 
Solving volumes using cross sectional areas
Solving volumes using cross sectional areasSolving volumes using cross sectional areas
Solving volumes using cross sectional areas
 
Mathematics
MathematicsMathematics
Mathematics
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivative
 
Day 2 graphing linear equations
Day 2 graphing linear equationsDay 2 graphing linear equations
Day 2 graphing linear equations
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
 
1-1 Algebra Review HW
1-1 Algebra Review HW1-1 Algebra Review HW
1-1 Algebra Review HW
 
Alg.Pr10.4 B
Alg.Pr10.4 BAlg.Pr10.4 B
Alg.Pr10.4 B
 
Algebra: Practice 10.5B
Algebra: Practice 10.5BAlgebra: Practice 10.5B
Algebra: Practice 10.5B
 
Chapter 04
Chapter 04Chapter 04
Chapter 04
 
PMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic FractionsPMR Form 3 Mathematics Algebraic Fractions
PMR Form 3 Mathematics Algebraic Fractions
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
Day 3 subtracting polynomials
Day 3 subtracting polynomialsDay 3 subtracting polynomials
Day 3 subtracting polynomials
 
11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)11 X1 T01 08 Simultaneous Equations (2010)
11 X1 T01 08 Simultaneous Equations (2010)
 

Plus de jharnwell

Technology in Mathematics
Technology in MathematicsTechnology in Mathematics
Technology in Mathematics
jharnwell
 
Fantastic trip
Fantastic tripFantastic trip
Fantastic trip
jharnwell
 
Draft nsw maths syllabus
Draft nsw maths syllabusDraft nsw maths syllabus
Draft nsw maths syllabus
jharnwell
 
Scootle presentation
Scootle presentationScootle presentation
Scootle presentation
jharnwell
 
2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions
jharnwell
 
2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions
jharnwell
 
2010 general mathematics hsc solutions
2010 general mathematics hsc solutions2010 general mathematics hsc solutions
2010 general mathematics hsc solutions
jharnwell
 
2010 mathematics school certificate solutions
2010 mathematics school certificate solutions2010 mathematics school certificate solutions
2010 mathematics school certificate solutions
jharnwell
 
Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011
jharnwell
 

Plus de jharnwell (11)

Ict in maths presentation for my favourite lesson
Ict in maths presentation   for my favourite lessonIct in maths presentation   for my favourite lesson
Ict in maths presentation for my favourite lesson
 
Technology in Mathematics
Technology in MathematicsTechnology in Mathematics
Technology in Mathematics
 
Tech toolbox for teachers
Tech toolbox for teachersTech toolbox for teachers
Tech toolbox for teachers
 
Fantastic trip
Fantastic tripFantastic trip
Fantastic trip
 
Draft nsw maths syllabus
Draft nsw maths syllabusDraft nsw maths syllabus
Draft nsw maths syllabus
 
Scootle presentation
Scootle presentationScootle presentation
Scootle presentation
 
2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions2010 year 7 naplan calculator solutions
2010 year 7 naplan calculator solutions
 
2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions2010 year 7 naplan non calculator solutions
2010 year 7 naplan non calculator solutions
 
2010 general mathematics hsc solutions
2010 general mathematics hsc solutions2010 general mathematics hsc solutions
2010 general mathematics hsc solutions
 
2010 mathematics school certificate solutions
2010 mathematics school certificate solutions2010 mathematics school certificate solutions
2010 mathematics school certificate solutions
 
Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011Australian curriculum presentation 31 march 2011
Australian curriculum presentation 31 march 2011
 

Dernier

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Dernier (20)

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 

2010 mathematics hsc solutions

  • 1. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 2010 Mathematics HSC Solutions  Question 1 (b) x 2  x  12  0 (a) ( x  4)( x  3)  0 x2  4x  0 y x( x  4)  0 x  0 or x  4  0 –3 4 x4 x (b) 1 52 52   3  x  4 52 52 54  2 5 (c) y  ln  3x  dy 3 a  2 and b  1  dx 3x (c) ( x  1) 2  ( y  2) 2  25 1  x (d) 2 x  3  9 1 at x  2, m  2 2x  3  9 or (2 x  3)  9 2 3 (d) (i)  5 x  1 dx    5  5 x  1 2 dx 1 2x  6 2 x  3  9   3 5 2 x3 2 x  12 2  5 x  1  c 3  x  6 15 d 2 x 1 2x (e) x tan x  tan x (2 x)  x 2 (sec 2 x) (ii)   dx   dx dx  4 x 2 2  4  x2  x(2 tan x  x sec2 x) 1  ln  4  x 2   c 2 a (f) s  (e) 6 1 r 1   x  k  dx  30 0   x2  6 1 1 3  2  kx   30 3  0  2 62  6k  30 2 (g) x  8 6k  12 Question 2 k 2 Question 3 d cos x x( sin x)  cos x(1) (a)   2  12 4  6  dx x x2 (a) (i) M   ,   x sin x  cos x  2 2     5, 1 x2 1
  • 2. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 86 3 1 (ii) mBC   ln x dx   0  2 ln 2  ln 3 6  12 1 2 1  1.24 (2 d.p.)  3 (iii) The approximation using the 2 1 trapezoidal rule is less than the (iii) mMN  25 actual value of the integral, because 1 the shaded area of the trapeziums,  3 is less than the actual area below since mBC  mMN , the curve. BC || MN y Corresponding angles on parallel 2 lines are equal, so ACB  ANM 1 ABC  AMN  ABC ||| AMN (equiangular) 1 2 3 4 x 1 (iv) y  2    x  2 3 -1 3y  6  x  2 Question 4 x  3y  8  0 (a) (i) Forms an AP, a  1 , d  0.75 Tn  1  (n  1)  0.75 12  6    6  8 2 2 (v) BC  Tn  0.25  0.75n  2 10 T9  0.25  0.75  9 1 T9  7 km (vi) Area  bh 2 Susannah runs 7 km in the 9th week 1 (ii) Tn  0.25  0.75n 44  2 10h 2 10  0.25  0.75n 22 10 n  13 h 5 In the 13th week. (b) (i) y (iii) S 26  26 2  2 1   26  1  0.75 3  269.75 km 2 2  1 (b) Area    e 2 x  e x  dx 0 -1 1 2 3 4 5 x 2 -2  e2 x    e x  -3  2 0 -4 -5  e4   e0     e 2     e0  (ii) x 1 2 3 2  2  0 ln(2) ln(3) 2 f(x) e  2e  3 4  2 2
  • 3. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (c) (i) P (2 mint)  4 3 4 r 3  20  0  12 11  r3  5  0 1  5 11 r 3  1 1 1 (ii) P (2same)    d2A 60 11 11 11  4  3 2 3 dr r  11 5 when r  3 ,  3 2 d A (iii) P (2 different)  1   16  0,  c.c.up, 11 dr 2 8 5   local minimum at r  3 11  (d) f  x   f   x   1  e x 1  e  x   1  e x  e x  1 1 1 sin x x (b) (i) sec2 x  sec x tan x    2e e x cos 2 x cos x cos x f  x   f   x   1  e x   1  e  x   1  sin x cos 2 x  2  e x  e x 1  sin x Question 5 (ii) sec2 x  sec x tan x  cos 2 x 1  sin x (a) (i) V   r 2h  1  sin 2 x 10   r 2 h 1  sin x  10 1  sin x 1  sin x  h 2 r 1  1  sin x A  2 r 2  2 rh  10   2 r 2  2 r  2   1 (iii) I   4 r   dx 0 1  sin x 20  2 r 2   4 r    sec 2 x  sec x tan x  dx 0   tan x  sec x 0  (ii) dA 20 4  4 r  2 dr r      dA   tan  sec    tan 0  sec 0  let  0 to find stationary points  4 4   dr  1 2 1  2 3
  • 4. http://www.maths.net.au/ 2010 Mathematics HSC Solutions 1 1 (iii) A1   dx (c) y  a x 1   ln x a 1 8 1  ln 1  ln  a  –2 ln  a   1 x 1 a e (b) (i) l  r 9  5 b 1 A2   dx    1.8 1 x 1   ln x 1 b (ii) In OPT and OQT OP = OQ (equal radii of 5 cm) 1  ln  b   ln 1 OPT = OQT (both right angles) ln  b   1 OT is a common line OPT  OQT (RHS) be (iii) POT  1 POQ Question 6 2  0.9 (a) (i) f ( x)  ( x  2)( x  4) 2 PT tan(0.9)  f ( x)  x3  2 x 2  4 x  8 5 PT  5 tan(0.9) f ( x)  3 x 2  4 x  4 PT  6.3 cm (1 d.p.)   (iv) PTQ    1.8  2 Consider the discriminate, 2 2   42  4(3)(4) (angle sum of a quadrilateral is 2 )  32 PTQ  1.34 Therefore there are no zeros, and 1 Area  (6.3) 2 sin(1.34) hence, no stationary points. (the 2 derivative function is positive 1  definite)   (5) 2 (1.8  sin(1.8))  2  (ii) f ( x )  6 x  4  9 cm 2 Question 7 The graph is concave down when 6x  4  0 (a) (i) x   4 cos 2t dt  2 x 3  2sin 2t  c The graph is concave up when 2 when t = 0, x  1 ,  x 1  2sin 2(0)  c 3 c 1  x  2sin 2t  1  4
  • 5. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (ii) at x  0  1  0  2sin 2t  1  T is the point  , 2  . 2  1 mBT  4 sin 2t   2 Eqn BT: y  4  4( x  2)  y  4x  4 2t   6  13 Since this line is not vertical, if there t , 12 12 is one simultaneous solution between this line and the parabola, it is a Therefore, the first time it will be at tangent. So, sub y  4 x  4 into 13 y  x2 rest is at t =  3.4 s 12 4 x  4  x2 (iii) x  2sin 2t  1 dt x2  4 x  4  0   x  2 2 0   cos 2t  t  c x2 at t = 0, x = 0  BT is a tangent to the parabola 0   cos 2(0)  0  c c 1 x   cos 2t  t  1 dy Question 8 (b) (i)  2x dx at x = –1, m = –2 (a) P  Ae kt P  102e kt y  1  2( x  1) when t = 75, P = 200 000 000 2x  y 1  0 200000000  102e 75 k k  0.22 (ii) M   ,  1 5   2 2 P  102e0.22t mAB  1 P  102e0.22(100) so, to find the x-value on the curve, where the tangent is 1, let 2x = 1. P  539 311 817 787 1 1 P  539 billion Therefore the point C is  ,  . 2 4 (b) P ( HH )  0.36 Since the x-values of M and C are P ( H )  0.6 the same, then the line MC will be P (T )  0.4 vertical. P (TT )  0.16 x–coordinate of T is 0.5. (c) (i) A  4 (amplitude) (iii) 2x  y 1  0 2 (ii) T  1 b 2  y 1  0 2 2  y  2 b b2 5
  • 6. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (iii) y (ii)1 A1  P (1  0.005)1  2000  P (1.005)1  2000 4 3 A2  A1 (1.005)1  2000 2   P (1.005)1  2000  (1.005)1  2000   1  P (1.005) 2  2000(1  1.005) x A3  A2 (1.005)1  2000 -1   -2 2   P (1.005) 2  2000(1  1.005)  (1.005)1  2000   -3  P (1.005)3  2000(1  1.005  1.0052 ) -4  (d) f  x   x3  3 x 2  kx  8 An  P (1.005) n  2000(1  1.005    1.005n 1 ) f   x   3x 2  6 x  k  P (1.005n )  2000  1(1.005n  1) 1.005  1  P (1.005n )  400 000  (1.005n  1) For an increasing function f   x   0 ,  P (1.005n )  400 000 1.005n  400 000  ( P  400 000) 1.005n  400 000 i.e. 3 x 2  6 x  k  0 Consider the graph of y  3 x 2  6 x with 2 An  ( P  400 000) 1.005n  400 000 0  (232 175.55  400 000) 1.005n  400 000 x-intercepts at 0 and 2. Vertex at x = 1, 400 000 1.005n  y = –3.  if k  3 , f   x  is positive 167824.45 n  log1.005 (2.38) definite and hence f  x  is an log10 2.38 n log10 1.005 increasing function. n  174.1 Question 9 (a) (i) A1  500(1  0.005) 240 Thus there will be money in the account for the next 175 months A2  500(1  0.005) 239 . (b) (i) 0 x2 . . (ii) The maximum occurs at x = 2, 2 A240  500(1  0.005)1  f   x  dx  4 0 f  2  f  0  4 A  A1  A2    A240 f  2  4  500(1.005  1.0052   The maximum value is f  x   4  1.005239  1.005240 ) 1.005(1.005240  1) (iii) f  6   f  4   500 1.005  1 4  $232 175.55  f   x  dx  4 2 f  4   f  2   4 f  4   4  4 f  4  0 The gradient is –3, so f  6   6 6
  • 7. http://www.maths.net.au/ 2010 Mathematics HSC Solutions (iv) 4 y  a (1  2 cos  ) y  a (1  2(1)) 2 4 6 y  3a OA (b) (i) sin   r OA  r sin  –6 r V  y 2 dx r sin  Question 10 r  x 2  dx r  2 r sin  (a) (i)In ACD, DAC and DCA =  x3  r   r 2 x   90  1  ( sum of ) 2  3  r sin   r3   r 3 sin 3   CDB = 180   (suppl. angles)    r 3     r 3 sin     3  3  DBC = 90  1  (ABC is isosc.) 2 r 3 DCB = 90  3  ( sum of ) 2  3  2  3sin   sin 3   ACB = DCB + DCA =  (ii) 1 Initial depth = r. So, find  , to give In ABC and ACD, depth 1 r. From the diagram, ACB = ADC (both  ) 2 r DAC = DBC (both 90  1  ) 2 OA  r sin   2  ABC ||| ACD (equiangular) 1 sin   AD DC a 2 also note     30 AC CB x (ii) orresponding sides of similar C triangles are in the same proportion.  r3  3 1 2   AD AC 3  2 8   2 Fraction  AC AB 2 r 3 a x 3  x a y 5  a (a  y )  x 2 16 x 2  a 2  ay (iii n ACD, by the cosine rule I x 2  a 2  a 2  2a 2 cos  a 2  ay  a 2  a 2  2a 2 cos  ay  a 2  2a 2 cos  y  a  2a cos  y  a (1  2 cos  ) (ivTo get the maximum value of y, cos  must take its minimum value, of –1. 7