Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Informede nº 02 de fisica ii

2 887 vues

Publié le

  • Soyez le premier à commenter

Informede nº 02 de fisica ii

  1. 1. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 Universidad Nacional Santiago Antúnez de Mayolo “UNASAM” Carrera Profesional : Ingeniería Civil. Año y Semestre : 2014 -I Asignatura : Física II Docente : Optaciano Vásquez G. Tema : Práctica de Laboratorio Nº02 Alumno : Arroyo Suárez Joe Anderson Fecha : 18-JUL-2014 1
  2. 2. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 Universidad nacional “SANTIAGO ANTUNEZ DE MAYOLO” FACULTAD DE CIENCIAS DEPARTAMENTO ACADÉMICO DE CIENCIAS SECCIÓN DE FÍSICA MANUAL DE PRÁCTICAS DE LABORATORIO DE FISICA II PRACTICA N° 02 “PENDULO SIMPLE” AUTOR: M.Sc. Optaciano L. Vásquez García 2
  3. 3. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 HUARAZ - PERÚ 2014 UNIVERSIDAD NACIONAL FACULTAD DE CIENCIAS “SANTIAGO ANTUNEZ DE MAYOLO” DEPARTAMENTO DE CIENCIAS 3 SECCIÓN DE FISICA CURSO: FISICA II PRACTICA DE LABORATORIO Nº 2. PENDULO SIMPLE I. OBJETIVO(S) 1.1. Objetivos Generales  Comprender el origen físico de la ecuación diferencial del oscilador armónico simple  Estudiar las oscilaciones del péndulo y determinar las simplificaciones que deben hacerse para que dichas oscilaciones puedan ser descritas como un movimiento armónico simple 1.2. Objetivos Específicos  Investigar la dependencia del período T de un péndulo simple de su longitud L y la masa m de la masa pendular.  Mostrar que el período T de un péndulo depende significativamente de la amplitud angular de la oscilación para ángulos grandes, pero que la dependencia es insignificante para pequeñas amplitudes angulares de oscilación.  Determinar experimentalmente el valor de la aceleración de la gravedad g en el laboratorio comparando el período de un péndulo simple medido con la predicción teórica. II. MARCO TEÓICO Y CONCEPTUAL El péndulo simple o péndulo matemático es un sistema mecánico que exhibe movimiento periódico oscilatorio. El péndulo simple consiste en una esfera considerada puntual de masa m suspendida de un punto fijo mediante una cuerda larga, flexible e inextensible de longitud L y masa despreciable en comparación con la masa de la esfera, como se muestra en la figura 2.1a. (a) (b) Figura 2.1. (a) Representación de un péndulo simple, (b) diagrama de cuerpo libre de m.
  4. 4. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 Si la masa m se desplaza un ángulo pequeño θ a partir de la posición vertical y se libera desde el reposo se observa que la esfera describe un movimiento armónico simple siempre y cuando se desprecie la fricción entre ella y el aire. Del diagrama de cuerpo libre de la partícula de masa m se observa que sobre ésta actúan: la tensión 푇⃗    (2.2) d L d   m mL mgsen     (2.3)   (2.8)* 4 , a lo largo del hilo y el peso 푊⃗⃗⃗ = 푚푔 de la masa pendular. La componente tangencial del peso 푚푔푠푒푛휃 siempre se encuentra dirigida hacia la posición de equilibrio, de dirección opuesta al desplazamiento 푠 . Por tanto, la fuerza tangencial es una fuerza de restitución, de tal manera que cuando se aplica la segunda ley de Newton en dirección tangencial, se tiene t t F ma   (2.1) 2 d s 2 mgsen m dt Donde 푠 es el desplazamiento medido a lo largo del arco de circunferencia descrito por el péndulo y el signo negativo (-) indica el hecho de que la componente tangencial 푚푔푠푒푛휃 actúa en dirección opuesta al desplazamiento (es decir está dirigida hacia la posición de equilibrio). Por otro lado la magnitud del desplazamiento es 푠 = 퐿휃 , siendo la longitud del péndulo L constante, la ecuación 2.1 se escribe   2 2 2 2 dt dt 0 g sen L     (2.4) Esta es ecuación diferencial no lineal, cuya solución exacta es un desarrollo en serie de infinitos términos. Sin embargo, si las oscilaciones son pequeñas, es decir el ángulo θ es pequeño, se puede utilizar la aproximación 푠푒푛휃 ≅ 휃 , donde el ángulo θ se expresa en radianes. Por lo tanto la ecuación diferencial (2.4) se escribe 0 g L     (2.5) La ecuación (2.3) es la ecuación deferencial de un movimiento armónico simple, es decir, m describe un Movimiento armónico simple (M.A.S. y la solución de la ecuación (2.5) es de la forma   0  sen t  (2.6) Donde θ0 es el máximo desplazamiento angular, φ es el desfasaje y ω es la frecuencia natural circular, la misma que queda expresada como 2  g T L    (2.7) El período del movimiento pendular está dado por 2 L T g
  5. 5. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 Donde L es la longitud medida desde el punto de suspensión hasta el centro de masa de la esfera y g es la aceleración de la gravedad local. Debe observarse además que la masa m de la esfera y la amplitud máxima de las oscilaciones θ0, no aparecen en esta expresión. El período de un péndulo (dada nuestra hipótesis) no es dependiente de m y θ0 al menos de acuerdo a la teoría. Sin embargo, si nuestras hipótesis no se aplican al estudio del péndulo (el cable es pesado, la esfera tiene una gran y complicada forma, la amplitud es grande, etc), podría esperarse que esta fórmula no predice correctamente el período del péndulo. Una investigación científica correcta trata de incluir todos menos uno de los factores que influyen constantemente. Los factores que permanecen constantes son llamados controles. El único factor que cambia durante la experimentación se llama variable independiente. La propiedad del sistema físico que se mide para determinar el efecto de cambio de la variable independiente es llamada variable dependiente. Si logramos mantener todos los demás factores constantes, cualquier cambio en el resultado de un experimento debería provenir de la variable independiente. De este modo, tratamos de dejar fuera los efectos individuales que cada uno de los factores ejerce sobre el fenómeno que estamos estudiando. Así por ejemplo si la amplitud de oscilación es grande, el período queda expresada por la ecuación 2 4 1 9 2 1 ................. 4 2 64 2 5 L T sen sen g                   (2.9)       En este experimento, Ud. podrá determinar experimentalmente la validez de las fórmulas teórica para el período (T) de un péndulo simple. Va a estudiar la forma en que el período de un péndulo simple (la variable dependiente) es afectada cuando se varía tanto la masa m de la esfera, así como la amplitud θ0 de las oscilaciones, o la longitud L del péndulo (la variable independiente) y manteniendo los otros factores (los controles) constantes. También se utilizará los resultados de estos experimentos para medir el valor de la aceleración de la gravedad g experimentalmente. III. MATERIAL A UTILIZAR 3.1. Un soporte universal con dos varillas de acero y una nuez.
  6. 6. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 6 3.2. Una prensa. 3.3. Una regla graduada en mm. 3.4. Un kit del péndulo simple.
  7. 7. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 7 3.5. Un cronómetro. 3.6. Un transportador 3.7. Un nivel de burbujas.
  8. 8. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 8 3.8. Un vernier 3.9. Una balanza IV. METODOLOGÍA
  9. 9. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 4.1 EXPERIMENTO 1. Investigación de la dependencia del período (T) de la amplitud de la oscilación (θ0). En este experimento se trata de medir los períodos (Ti) del péndulo para diversas amplitudes θi,0, manteniendo una longitud (L) fija así como una masa también constante m1 durante el experimento y representar en una gráfica la relación entre ambos. Para ello se sigue el siguiente procedimiento. a) Utilizando la esfera de acero, realice la instalación mostrada en la figura 2.2b. En la parte superior, el hilo debe amarrarse de tal manera que se pueda cambiar la longitud con facilidad. b) Fije la longitud L del péndulo a un valor de 1 m aproximadamente midiendo la longitud del hilo con la regla y con el vernier el diámetro de la esfera (퐿 = 퐿ℎ푖푙표 + 푅퐸 ). Registre dicho valor con su respectivo error. c) Con la balanza mida la masa m de la esfera. Registre dicho valor con su respectivo error d) Desplace lateralmente a la masa pendular m un ángulo de 5° a partir de la posición de equilibrio y libérela desde el reposo, midiendo el ángulo con un transportador. (a) (b) Figura 2.2. (a) Péndulo simple del laboratorio, (b) Instalación del péndulo simple e) Con el cronómetro mida el tiempo requerido para 10 oscilaciones. Repita este paso por tres veces y 9 registre sus datos en la tabla I. f) Determine el período del péndulo para dicho ángulo usando la ecuación (푇 = 푡⁄푛), donde t es el tiempo y n el número de oscilaciones. g) Repita los pasos (d), (e) y (f) para ángulos de 10°, 15°, 20°, 25° y 30°. Ordene los datos en la tabla I y haga una gráfica representando el período en función de la amplitud. Tabla I. Relación período (T) – amplitud de oscilación (θ0) para el movimiento pendular. Experimento I: L =L0 ± ΔL = 1m ± 0.001m ; m = mo ± Δm = 43.1g ± 0.1g Amplitud Tiempo (s) Período Promedio t1 t2 t3 T1 T2 T3 Tpromedio 5° 19.80 19.09 19.95 1.980 1.909 1.995 1,995 10° 20.09 20.01 19.98 2.009 2.001 1.998 2,014 15° 20.08 19.97 20.01 2.008 1.997 2.001 2,033 20° 20.00 20.15 20.07 2.000 2.015 2.007 2,039 25° 20.00 20.06 19.95 2.000 2.006 1.995 2,051 30° 20.34 20.33 20.40 2.034 2.033 2.040 2,105
  10. 10. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 4.2 Experimento II. Investigación de la dependencia del período (T) de la masa (m) del péndulo. En este experimento se trata de medir los períodos (Ti) del péndulo para diversas masa mi manteniendo constantes la amplitud θ0 y la longitud (L) durante todo el experimento y representar en una gráfica la relación que aparece entre el período y la mas a del péndulo. Para ello se sigue el siguiente procedimiento. a) Utilizando la esfera de acero, realice la instalación mostrada en la figura 2.2b. b) Fije la longitud L del péndulo a un valor de 1 m aproximadamente midiendo la longitud del hilo con la regla y con el vernier el diámetro de la esfera (퐿 = 퐿ℎ푖푙표 + 푅퐸 ). Registre dicho valor con su respectivo error. c) Con la balanza mida la masa m de la esfera. Ristre su valor con su respectivo error en la Tabla II. d) Considere una amplitud constante midiendo con el transportador un ángulo entre 휃 ≅ 5° − 10°. Registre el valor escogido en la Tabla II. e) Desplace lateralmente a la esfera hasta el ángulo escogido y déjela oscilar libremente. f) Mida el tiempo que demora la esfera en dar 10 oscilaciones. Registre sus valores en la Tabla II. g) Determine el período del péndulo para dicho ángulo usando la ecuación (푇 = 푡⁄푛), donde t es el 10 tiempo y n el número de oscilaciones h) Repita los pasos desde (a) hasta (g) para las demás esferas. Registre sus valores en la Tabla II. Tabla II: Relación período (T) – masa (m) para el movimiento pendular Experimento II: L = L0 ± ΔL = 1m ± 0.001m ; 휽ퟎ = 휽o ± Δ휽ퟎ = 10º ± 1º Masa (g) Tiempo (s) Período Promedio t1 t2 t3 T1 T2 T3 Tpromedio 43.1 20.34 20.19 20.26 2.034 2.019 2.026 2.0263 8.45 19.79 20.15 19.95 1.979 2.015 1.995 1.9963 7.40 20.00 20.19 20.12 2.000 2.019 2.012 2.6810 4.3 Experimento III. Investigación de la dependencia del período (T) de la longitud (L) del péndulo. En este experimento se trata de medir los períodos (Ti) del péndulo para diversas masa Li manteniendo constantes la amplitud θ0 y la masa del péndulo m durante todo el experimento y representar en una gráfica la relación que aparece entre el período y la longitud del péndulo. Para ello se sigue el siguiente procedimiento. a) Utilizando la esfera de acero de mayor diámetro, realice la instalación mostrada en la figura 2.2b. b) Con la balanza mida la masa m de la esfera. Ristre su valor con su respectivo error en la Tabla III. c) Considere una amplitud constante midiendo con el transportador un ángulo entre 휃 ≅ 5° − 10°. Registre el valor escogido en la Tabla III. d) Fije la longitud L del péndulo a un valor de 120 m aproximadamente midiendo la longitud del hilo con la regla y con el vernier el diámetro de la esfera (퐿 = 퐿ℎ푖푙표 + 푅퐸). Registre dicho valor con su respectivo error en la tabla III. e) Desplace lateralmente a la esfera hasta el ángulo escogido y déjela oscilar libremente. f) Mida el tiempo que demora la esfera en dar 10 oscilaciones. Registre sus valores en la Tabla III. g) Determine el período del péndulo para dicho ángulo usando la ecuación (푇 = 푡⁄푛), donde t es el tiempo y n el número de oscilaciones h) Repita los pasos desde (a) hasta (g) para las demás longitudes. Registre sus valores en la Tabla III. Tabla III: Relación período (T) – longitud (L) para el movimiento pendular
  11. 11. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 Experimento I: 휽ퟎ = 휽o ± Δ휽ퟎ = 5.71º ± 1º ; m = mo ± Δm = 43.1g ± 0.1g 11 Longitud (m) Tiempo (s) Período Promedio t1 t2 t3 T1 T2 T3 Tpromedio 1,20 21.64 21.56 21.59 2.164 2.156 2.159 2.1596 1,10 20.85 20.94 20.99 2.085 2.094 2.099 2.0926 1,00 19.71 19.77 19.74 1.971 1.977 1.974 1.9740 0,90 19.05 19.10 19.01 1.905 1.910 1.901 1.9053 0,80 17.94 18.00 18.03 1.794 1.800 1.803 1.7990 0,70 16.67 16.74 16.70 1.667 1.674 1.670 1.6703 0,60 15.37 15.33 15.40 1.537 1.533 1.540 1.5366 0,50 14.12 14.13 14.16 1.412 1.413 1.416 1.4136 4.4 Modelo matemático En las secciones anteriores pudimos encontrar que el período de un péndulo depende de su longitud pero no de su masa. Ahora vamos a tratar de determinar de qué manera el período depende de la longitud de péndulo. Para entender detalladamente como el período y la longitud están relacionados necesitamos construir un modelo matemático. En esta ecuación nuestro modelo sería una ecuación que exprese la relación detallada entre el período del péndulo y la longitud del mismo. Tendremos en cuenta dos modelos para evaluar cómo el período del péndulo está relacionado con su longitud.  Modelo lineal: 푇 = 퐴퐿 + 퐵, donde A y B son constantes.  Modelo cuadrático: 푇 2 = 퐶퐿 + 퐷, donde C y D son constantes. Nuestro objetivo es determinar dos cosas  Primero: ¿Ninguno de los dos modelos describen correctamente los datos (dentro de las incertidumbres)?  Segundo: En caso afirmativo, ¿cuáles son los valores de las constantes en el modelo? Para evaluar la situación presentada construimos dos gráficas usando el programa Excel. Una será una gráfica de T (en el eje de las y) frente a L (en el eje de las x). El modelo lineal predice que los datos se encuentran a lo largo de una línea recta en un gráfico T vs L. El segundo gráfico corresponde a una relación T2 vs L. El modelo cuadrático predice que los datos podrían fijarse sobre una línea recta en el gráfico T2 vs L. Para construir estos gráficos abra el programa Excel y construya una tabla de datos con columnas para L, T y T2. Graficando los puntos cada vez que midió el período (tal que para cada longitud podría graficar tres valores del período). A continuación puede crear las gráficas T vs L y T2 vs L y usando el Excel construir la “mejor línea recta” (la recta que mejor se ajusta a los datos experimentales). Debe estar seguro además que las unidades han sido utilizadas adecuadamente y que la línea recta es graficada adecuadamente y a partir de ella se obtiene el coeficiente de regresión lineal así como la ecuación de la recta de ajuste que no permita determinar la pendiente y las intersecciones con los ejes coordenados. 4.5 Cálculo de la aceleración de la gravedad Lo más inmediato sería aplicar la ecuación (2.8)* del período de un péndulo en función de su longitud L para hallar 푔 = 4휋 2퐿/푇 2. Sin embargo, aunque el período puede medirse con bastante precisión, su longitud (distancia desde el centro de masa de la masa pendular hasta el punto de suspensión) no es bien determinada. Por el contrario, los incrementos en la longitud del péndulo se miden con un error tan
  12. 12. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 pequeño como la sensibilidad de la escala graduada de la que se dispone, ya que en esta medida no influye la posición del centro de masas de la esfera. Para eliminar estas discrepancias uno de los métodos es construir una gráfica T2 (eje Y) en función de la longitud L (eje X) y determinar la pendiente (T2/L) de la recta obtenida y a partir de la pendiente de la recta obtener la aceleración de la gravedad. Es decir Un modelo ideal sería el mostrado en la figura 2.3 Figura 2.3. Modelo teórico para encontrar la aceleración de la gravedad usando el péndulo simple Como la constante K se puede expresar con tanta precisión como se requiera, el error relativo de la aceleración de la gravedad g es el mismo de la pendiente A 12 g K g K    Debe observarse así mismo que debido a los errores experimentales la recta de la gráfica T2 – L mostrada en la figura 2.3, no necesariamente pasa por el origen de coordenadas para ello debe usarse la ecuación T 2  B  K L Donde los parámetros K y B se determinan utilizando el análisis de regresión lineal. V. CALCULOS Y RESULTADOS. 5.1. ¿Por qué es necesario que las amplitudes de las oscilaciones deben ser pequeñas? Es necesario que las amplitudes sean pequeñas porque así el movimiento del péndulo no será circular, sino rectilíneo, además el periodo depende de la amplitud, pero solo cuando son ángulos pequeños ya que trabaja con un aproximado de Sen(x) = x, cuando x es expresado en radianes 5.2. Con los datos de la Tabla I y utilizando el programa EXCEL trace una gráfica período en función de la amplitud 푻 = 풇(휽ퟎ ). ¿Qué tipo de gráfica obtuvo? Discuta a partir de la gráfica si existe dependencia entre estas magnitudes . Explique su razonamiento.
  13. 13. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 T Amplitud 1,995 5° 2,014 10° 2,033 15° 2,039 20° 2,051 25° 2,105 30°  La gráfica que se obtuvo fue una recta.  Observamos que mediante aumenta la AMPLITUD, también va aumentando el PERIODO, quiere decir que son Directamente Proporcionales. Como se ve en la gráfica a continuación. 2.12 2.1 2.08 2.06 2.04 2.02 2 5.3. Con los datos de la Tabla II y utilizando el programa EXCEL trace una gráfica período en función de la masa 푻 = 풇(풎). ¿Qué tipo de gráfica obtuvo? Discuta a partir de esta gráfica si existe dependencia entre estas magnitudes. Explique su razonamiento.  Se obtuvo una gráfica lineal.  No existe dependencia, pues como vemos si es que se aumenta la MASA, no necesariamente 13 aumenta el PERIODO. T = 0,0038A + 1,9728 R² = 0,8957 1.98 0 10 20 30 40 Series1 Linear (Series1) T m 2.0263 43.1 1.9963 8.45 2.6810 7.40
  14. 14. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 3 2.5 2 1.5 1 0.5 5.4. Con los datos de la Tabla III y utilizando el programa EXCEL trace una gráfica período en función de la longitud 푻 = 풇(푳) . ¿Qué tipo de gráfica obtuvo? Discuta a partir de esta grafica si existe dependencia entre estas magnitudes . Explique su razonamiento.  Se obtuvo una gráfica lineal.  Vemos que existe dependencia entre la LONGITUD de la cuerda y el PERIODO obtenido, siendo Directamente Proporcionales. T L 2.1596 1,2 2.0926 1,1 1.974 1 1.9053 0,9 1.799 0,8 1.6703 0,7 1.5366 0,6 1.4136 0,5 14 T = 0,3274m + 1,5798 R² = 0,7157 0 0 1 2 3 4 Series1 Linear (Series1)
  15. 15. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 2.5 2 1.5 1 0.5 5.5. Con los datos de la Tabla III, construya una tabla con los valores medidos, errores y unidades de T2 (período al cuadrado) y la longitud del péndulo 푳 = 푳ퟎ + 푹푬 T-promedio T^2 L. del péndulo L =Lo+RE 2.1596 4.66387216 1,2 1,201 2.0926 4.37897476 1,1 1,101 1.974 3.896676 1 1,001 1.9053 3.63016809 0,9 0,901 1.799 3.236401 0,8 0,801 1.6703 2.78990209 0,7 0,701 1.5366 2.36113956 0,6 0,601 1.4136 1.99826496 0,5 0,501 5.6 Con los datos de la Tabla construida en el acápite 5.5, y usando el programa EXCEL trace una gráfica 푻ퟐ = 풇(푳) , utilice el análisis de regresión lineal. ¿Qué tipo de gráfica obtuvo? A partir de esta gráfica determine la aceleración de la gravedad de Huaraz con su respectivo error absoluto y porcentual. 15 T = 1,0737L + 0,9062 R² = 0,9903 0 0 0.5 1 1.5 Series1 Linear (Series1)
  16. 16. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 T2 = 1,162e1,207L R² = 0,9766 6 5 4 3 2 1  Se obtuvo una gráfica exponencial.  Para determinar la aceleración de la gravedad se usará la siguiente fórmula: 16 2 2 L 2 2 4 L 2 4 ( ) L T g g T g T         T^2 L =Lo+RE Gravedad 4,66387216 1,201 10,1661405 4,37897476 1,101 9,92600784 3,896676 1,001 10,1414375 3,63016809 0,901 9,79845929 3,236401 0,801 9,77079555 2,78990209 0,701 9,9194774 2,36113956 0,601 10,0487618 1,99826496 0,501 9,89793026 9,95862626 La gravedad resulta 9.95862626 m/s 2 5.7 Con los datos de la Tabla III, trace una gráfica 풍풐품푻 = 풇(풍풐품푳). ¿Qué tipo de gráfica obtuvo? A partir de esta gráfica determine la aceleración de la gravedad de Huaraz con su respectivo error absoluto y porcentual. T Log(T) L. del péndulo Log(L) 2,1596 0,334373319 1,201 0,079543007 0 0 0.5 1 1.5 Series1 Expon. (Series1)
  17. 17. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 2,0926 0,320686221 1,101 0,041787319 1,974 0,295347148 1,001 0,000434077 1,9053 0,279963367 0,901 -0,045275209 1,799 0,255031163 0,801 -0,096367484 1,6703 0,222794481 0,701 -0,154281982 1,5366 0,186560829 0,601 -0,221125528 1,4136 0,150326536 0,501 -0,300162274 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 -0.3  Se obtuvo una gráfica Logarítmica.  Para determinar la aceleración de la gravedad en Huaraz, utilizaremos la misma fórmula anterior y 17 obtendremos la siguiente tabla: T^2 L =Lo+RE Gravedad 4,66387216 1,201 10,1661405 4,37897476 1,101 9,92600784 3,896676 1,001 10,1414375 3,63016809 0,901 9,79845929 3,236401 0,801 9,77079555 2,78990209 0,701 9,9194774 2,36113956 0,601 10,0487618 1,99826496 0,501 9,89793026 9,95862626 La gravedad resulta 9.95862626 m/s 2 5.8. ¿Cuál (s) de las variable ensayadas tienen una mayor significancia en el período del péndulo? La variable que más significancia tiene en el PERIODO del péndulo es la LONGITUD de la cuerda del péndulo estudiado. 5.9. ¿Cuáles son las posibles fuentes de error de su experimento? y = 0.4684ln(x) + 0.5669 R² = 0.9813 -0.35 0 0.1 0.2 0.3 0.4 Series1 Log. (Series1)
  18. 18. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 Podría suceder que los integrantes del grupo calcularon imprecisamente los datos que debíamos obtener, por otro lado también podría suceder que el soporte no haya estado muy bien nivelado y que el péndulo s haya movido de forma circular en vez de haber tenido una trayectoria recta. 5.10 ¿En qué puntos durante la oscilación de la masa pendular, la esfera tendrá su mayor velocidad? 1(9.8) T g     4  18 ¿Su mayor aceleración?  Su mayor velocidad será en el punto más bajo, es decir en B  Su mayor aceleración será en los extremos, es decir en A y en C 5.11. Si la amplitud de la oscilación fuere mucho mayor que los ángulos recomendados, ¿Qué clase de movimiento describiría el péndulo? ¿Puede encontrarse el período? ¿Qué ecuación utilizaría? Si la amplitud fuera mucho mayor, la trayectoria que recorrería el péndulo sería circular y el periodo dependería significativamente de la amplitud. 5.12. Discuta las transformaciones de energía que ocurren durante el movimiento del péndulo simple. Sin energía ningún proceso físico sería posible. La energía mecánica y su transferencia de un cuerpo a otro reciben el nombre de trabajo. Ambos conceptos permiten estudiar el movimiento de los cuerpos (como es el caso del péndulo) de forma más sencilla que usando términos de fuerza y constituyen, por ello, elementos clave en la descripción de los sistemas físicos. 5.13 Se llama péndulo que bate segundos a aquel que pasa por su posición de equilibrio, una vez cada segundo. (a) ¿Cuál es el período de este péndulo? (b) Determine la longitud del péndulo que bate segundos utilizando la gráfica 푻ퟐ = 풇(푳).  El periodo de este péndulo es igual a 1s  La longitud será igual a: VI. RECOMENDACIONES 0.779 2 4 L 6.1. Asegúrese que la amplitud de la oscilación para los experimentos II y III sean pequeñas, en caso de no disponer de un transportador esta situación se consigue desplazando la masa una distancia horizontal de tal manera que dicha distancia sea un décimo de la longitud del péndulo.
  19. 19. Manual de Prácticas de Laboratorio de Física II PENDULO SIMPLE Optaciano Vásquez G. 2014 Figura 2.3. Mecanismo como se puede determinar la medida del ángulo 6.2. Durante la experimentación mantener las ventanas y puertas cerradas y los operadores no deben caminar cerca del dispositivo, debido a que se generan corrientes de aire que afectarían la precisión en las mediciones. 6.3. Conviene computar el tiempo a partir de una posición que no sea el extremo de la trayectoria de la masa 19 pendular. VII. BIBLIOGRAFÍA 1. GOLDEMBERG, J. Física General y Experimental. Vol I. Edit. Interamericana. México 1972. 2. MEINERS, H. W, EPPENSTEIN. Experimentos de Física. Edit. Limusa. México 1980 3. SEARS, ZEMANSKY, YOUNG. Física Universitaria. Vol I. Edit. Addison – Wesley Ibe. USA – 2005 4. HALLIDAY, RESNICK, WALKER. Fundamentos de Física Vol I. Edit CECSA. México- 2006 5. SERWAY RAYMOND. Física.. Vol. II. Edit. Mc Graw-Hill Mexico – 2005. 6. TIPLER A. PAUL. Física para la Ciencia y la Tecnología. Vol I. Edit. Reverte, S.A. España – 2000.

×