SlideShare une entreprise Scribd logo
1  sur  48
Télécharger pour lire hors ligne
Akka streams
Asynchronous stream processing
Johan Andrén
JFokus, Stockholm, 2017-02-08
with
Johan Andrén
Akka Team
Stockholm Scala User Group
Make building powerful concurrent &
distributed applications simple.
Akka is a toolkit and runtime
for building highly concurrent,
distributed, and resilient
message-driven applications
on the JVM
Akka
Actors – simple & high performance concurrency
Cluster / Remoting – location transparency, resilience
Cluster tools – and more prepackaged patterns
Streams – back-pressured stream processing
Persistence – Event Sourcing
HTTP – complete, fully async and reactive HTTP Server
Official Kafka, Cassandra, DynamoDB integrations, tons
more in the community
Complete Java & Scala APIs for all features
What’s in the toolkit?
Reactive Streams
Reactive Streams timeline
Oct 2013
RxJava, Akka and Twitter-
people meeting
“Soon thereafter” 2013
Reactive Streams
Expert group formed
Apr 2015
Reactive Streams Spec 1.0
TCK
5+ impls
??? 2015
JEP-266
inclusion in JDK9
Akka Streams, Rx
Vert.x, MongoDB, …
Reactive Streams
Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with
non-blocking back pressure. This encompasses
efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols
http://www.reactive-streams.org
“
Reactive Streams
Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with
non-blocking back pressure. This encompasses
efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols
http://www.reactive-streams.org
“
Stream processing
Source Sink
Flow
Reactive Streams
Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with
non-blocking back pressure. This encompasses
efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols
http://www.reactive-streams.org
“
Asynchronous stream processing
Source Sink
(possible)
asynchronous
boundaries
Flow
Reactive Streams
Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with
non-blocking back pressure. This encompasses
efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols
http://www.reactive-streams.org
“
No back pressure
Source Sink
10 msg/s 1 msg/s
Flow
asynchronous
boundary
No back pressure
Source Sink
10 msg/s 1 msg/s
Flow
asynchronous
boundary
OutOfMemoryError!!
No back pressure - bounded buffer
Source Sink
10 msg/s 1 msg/s
Flow
buffer size 6
!
asynchronous
boundary
Async non blocking back pressure
Source Sink
1 msg/s
1 msg/s
Flow
buffer size 6
!
asynchronous
boundary
Hey! give me 2 more
Reactive Streams
RS Library A RS library B
async
boundary
Reactive Streams
“Make building powerful concurrent &
distributed applications simple.”
Complete and awesome
Java and Scala APIs
(Just like everything in Akka)
Akka Streams
Akka Streams in ~20 seconds:
final ActorSystem system = ActorSystem.create();

final Materializer materializer = ActorMaterializer.create(system);



final Source<Integer, NotUsed> source =

Source.range(0, 20000000);



final Flow<Integer, String, NotUsed> flow =

Flow.fromFunction((Integer n) -> n.toString());



final Sink<String, CompletionStage<Done>> sink =

Sink.foreach(str -> System.out.println(str));



final RunnableGraph<NotUsed> runnable = source.via(flow).to(sink);



runnable.run(materializer);
complete sources on github
Akka Streams in ~20 seconds:
implicit val system = ActorSystem()

implicit val mat = ActorMaterializer()



val source = Source(0 to 20000000)



val flow = Flow[Int].map(_.toString())



val sink = Sink.foreach[String](println(_))



val runnable = source.via(flow).to(sink)



runnable.run()
complete sources on github
Akka Streams in ~20 seconds:
Source.range(0, 20000000)

.map(Object::toString)

.runForeach(str -> System.out.println(str), materializer);
complete sources on github
Akka Streams in ~20 seconds:
Source(0 to 20000000)

.map(_.toString)

.runForeach(println)
complete sources on github
Numbers as a service
final Source<ByteString, NotUsed> numbers = Source.unfold(0L, n -> {

long next = n + 1;

return Optional.of(Pair.create(next, next));

}).map(n -> ByteString.fromString(n.toString() + "n"));





final Route route =

path("numbers", () ->

get(() ->

complete(HttpResponse.create()

.withStatus(StatusCodes.OK)

.withEntity(HttpEntities.create(

ContentTypes.TEXT_PLAIN_UTF8,

numbers

)))

)

);



final CompletionStage<ServerBinding> bindingCompletionStage =

http.bindAndHandle(route.flow(system, materializer), host, materializer);
complete sources on github
Numbers as a service
val numbers =

Source.unfold(0L) { (n) =>

val next = n + 1

Some((next, next))

}.map(n => ByteString(n + "n"))



val route =

path("numbers") {

get {

complete(
HttpResponse(entity = HttpEntity(`text/plain(UTF-8)`, numbers))
)

}

}

val futureBinding = Http().bindAndHandle(route, "127.0.0.1", 8080)
complete sources on github
recv buffer
send buffer
"
"
"
"
"
"
"
Back pressure over TCP numbers
TCP HTTP
Server
Client
recv buffer
send buffer
"
"
"
"
"
"
#
Back pressure over TCP numbers
TCP HTTP
Backpressure
Server
Client
recv buffer
send buffer
"
"
"
"
"
"
"
"
"
"
#
Back pressure over TCP numbers
TCP HTTP
Backpressure
Backpressure
Server
Client
A more useful example
complete sources on github
final Flow<Message, Message, NotUsed> measurementsFlow =

Flow.of(Message.class)

.flatMapConcat((Message message) ->

message.asTextMessage()

.getStreamedText()

.fold("", (acc, elem) -> acc + elem)

)

.groupedWithin(1000, FiniteDuration.create(1, SECONDS))

.mapAsync(5, database::asyncBulkInsert)

.map(written ->

TextMessage.create("wrote up to: " + written.get(written.size() - 1))

);



final Route route = path("measurements", () ->

get(() ->

handleWebSocketMessages(measurementsFlow)

)

);



final CompletionStage<ServerBinding> bindingCompletionStage =

http.bindAndHandle(route.flow(system, materializer), host, materializer);
Credit to: Colin Breck
A more useful example
complete sources on github
val measurementsFlow =

Flow[Message].flatMapConcat(message =>

message.asTextMessage.getStreamedText.fold("")(_ + _)

)

.groupedWithin(1000, 1.second)

.mapAsync(5)(Database.asyncBulkInsert)

.map(written => TextMessage("wrote up to: " + written.last))



val route =

path("measurements") {

get {

handleWebSocketMessages(measurementsFlow)

}

}



val futureBinding = Http().bindAndHandle(route, "127.0.0.1", 8080)
The tale of the two pancake chefs
HungrySink
Frying
Pan
BatterSource
Scoops of batter
Pancakes
nom nom nom
asynchronous
boundaries
Roland Patrik
Rolands pipelined pancakes
HungrySinkPan 2BatterSource Pan 1
nom nom nom
Rolands pipelined pancakes
Flow<ScoopOfBatter, HalfCookedPancake, NotUsed> fryingPan1 =

Flow.of(ScoopOfBatter.class).map(batter -> new HalfCookedPancake());



Flow<HalfCookedPancake, Pancake, NotUsed> fryingPan2 =

Flow.of(HalfCookedPancake.class).map(halfCooked -> new Pancake());
Flow<ScoopOfBatter, Pancake, NotUsed> pancakeChef =

fryingPan1.async().via(fryingPan2.async());
section in docs
Rolands pipelined pancakes
// Takes a scoop of batter and creates a pancake with one side cooked
val fryingPan1: Flow[ScoopOfBatter, HalfCookedPancake, NotUsed] =

Flow[ScoopOfBatter].map { batter => HalfCookedPancake() }



// Finishes a half-cooked pancake

val fryingPan2: Flow[HalfCookedPancake, Pancake, NotUsed] =

Flow[HalfCookedPancake].map { halfCooked => Pancake() }


// With the two frying pans we can fully cook pancakes
val pancakeChef: Flow[ScoopOfBatter, Pancake, NotUsed] =

Flow[ScoopOfBatter].via(fryingPan1.async).via(fryingPan2.async)
section in docs
Patriks parallel pancakes
HungrySink
Pan 2
BatterSource
Pan 1
Balance Merge
nom nom nom
Patriks parallel pancakes
Flow<ScoopOfBatter, Pancake, NotUsed> fryingPan =

Flow.of(ScoopOfBatter.class).map(batter -> new Pancake());



Flow<ScoopOfBatter, Pancake, NotUsed> pancakeChef =

Flow.fromGraph(GraphDSL.create(builder -> {

final UniformFanInShape<Pancake, Pancake> mergePancakes =

builder.add(Merge.create(2));

final UniformFanOutShape<ScoopOfBatter, ScoopOfBatter> dispatchBatter =

builder.add(Balance.create(2));



builder.from(dispatchBatter.out(0))
.via(builder.add(fryingPan.async()))
.toInlet(mergePancakes.in(0));

builder.from(dispatchBatter.out(1))
.via(builder.add(fryingPan.async()))
.toInlet(mergePancakes.in(1));



return FlowShape.of(dispatchBatter.in(), mergePancakes.out());

}));
section in docs
Patriks parallel pancakes
val pancakeChef: Flow[ScoopOfBatter, Pancake, NotUsed] =

Flow.fromGraph(GraphDSL.create() { implicit builder =>

import GraphDSL.Implicits._


val dispatchBatter = builder.add(Balance[ScoopOfBatter](2))

val mergePancakes = builder.add(Merge[Pancake](2))



// Using two pipelines, having two frying pans each, in total using

// four frying pans

dispatchBatter.out(0) ~> fryingPan1.async ~> fryingPan2.async ~> mergePancakes.in(0)

dispatchBatter.out(1) ~> fryingPan1.async ~> fryingPan2.async ~> mergePancakes.in(1)



FlowShape(dispatchBatter.in, mergePancakes.out)

})
section in docs
Making pancakes together
HungrySink
Pan 3
BatterSource
Pan 1
Balance Merge
Pan 2
Pan 4
nom nom nom
Built in stages Flow stages
map/fromFunction, mapConcat,
statefulMapConcat, filter, filterNot,
collect, grouped, sliding, scan,
scanAsync, fold, foldAsync, reduce, drop,
take, takeWhile, dropWhile, recover,
recoverWith, recoverWithRetries,
mapError, detach, throttle, intersperse,
limit, limitWeighted, log,
recoverWithRetries, mapAsync,
mapAsyncUnordered, takeWithin,
dropWithin, groupedWithin, initialDelay,
delay, conflate, conflateWithSeed, batch,
batchWeighted, expand, buffer,
prefixAndTail, groupBy, splitWhen,
splitAfter, flatMapConcat, flatMapMerge,
initialTimeout, completionTimeout,
idleTimeout, backpressureTimeout,
keepAlive, initialDelay, merge,
mergeSorted,
Source stages
fromIterator, apply, single, repeat, cycle,
tick, fromFuture, fromCompletionStage,
unfold, unfoldAsync, empty, maybe, failed,
lazily, actorPublisher, actorRef, combine,
unfoldResource, unfoldResourceAsync,
queue, asSubscriber, fromPublisher, zipN,
zipWithN
Sink stages
head, headOption, last, lastOption, ignore,
cancelled, seq, foreach, foreachParallel,
onComplete, lazyInit, queue, fold, reduce,
combine, actorRef, actorRefWithAck,
actorSubscriber, asPublisher,
fromSubscriber
Additional Sink and Source
converters
fromOutputStream,
asInputStream,
fromInputStream,
asOutputStream,
asJavaStream,
fromJavaStream, javaCollector,
javaCollectorParallelUnordered
File IO Sinks and Sources
fromPath, toPath
mergePreferred, zip, zipWith,
zipWithIndex, concat,
prepend, orElse, interleave,
unzip, unzipWith, broadcast,
balance, partition,
watchTermination, monitor
But I want to
connect other
things!
@doggosdoingthings
A community for Akka Streams connectors
http://github.com/akka/alpakka
Alpakka
Alpakka – a community for Stream connectors
Existing Alpakka
MQTT
AMQP/
RabbitMQ
SSE
Cassandra
FTP
Kafka
AWS S3
Files
AWS
DynamoDB
AWS SQS
JMS
Azure
IoT Hub
TCP
In Akka
Actors
Reactive
Streams
Java
Streams
Basic
File IO
Alpakka PRs
AWS
Lambda
MongoDB*
druid.io
Caffeine
IronMQ
HBase
But my usecase is a
unique snowflake!
❄
❄
❄
GraphStage API
public class Map<A, B> extends GraphStage<FlowShape<A, B>> {

private final Function<A, B> f;

public final Inlet<A> in = Inlet.create("Map.in");

public final Outlet<B> out = Outlet.create("Map.out");
private final FlowShape<A, B> shape = FlowShape.of(in, out);
public Map(Function<A, B> f) {

this.f = f;

}

public FlowShape<A,B> shape() {

return shape;

}

public GraphStageLogic createLogic(Attributes inheritedAttributes) {

return new GraphStageLogic(shape) {

{

setHandler(in, new AbstractInHandler() {

@Override

public void onPush() throws Exception {

push(out, f.apply(grab(in)));

}

});

setHandler(out, new AbstractOutHandler() {

@Override

public void onPull() throws Exception {

pull(in);

}

});

}

};

}

}
complete sources on github
GraphStage API
class Map[A, B](f: A => B) extends GraphStage[FlowShape[A, B]] {



val in = Inlet[A]("Map.in")

val out = Outlet[B]("Map.out")

override val shape = FlowShape.of(in, out)



override def createLogic(attr: Attributes): GraphStageLogic =

new GraphStageLogic(shape) {

setHandler(in, new InHandler {

override def onPush(): Unit = {

push(out, f(grab(in)))

}

})

setHandler(out, new OutHandler {

override def onPull(): Unit = {

pull(in)

}

})

}

}
complete sources on github
What about distributed/reactive systems?
Kafka Stream Stream
Stream
Stream
cluster
The community
Mailing list:
https://groups.google.com/group/akka-user
Public chat rooms:
http://gitter.im/akka/dev developing Akka
http://gitter.im/akka/akka using Akka
Easy to contribute tickets:
https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy-to-contribute
https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3A%22nice-to-have+%28low-prio%29%22
~200 active contributors!
Thanks for listening!
@apnylle
johan.andren@lightbend.com
Runnable sample sources (Java & Scala)
https://github.com/johanandren/akka-stream-samples/tree/jfokus-2017
http://akka.io
Akka

Contenu connexe

Tendances

Kafka Streams: What it is, and how to use it?
Kafka Streams: What it is, and how to use it?Kafka Streams: What it is, and how to use it?
Kafka Streams: What it is, and how to use it?confluent
 
An Introduction to Apache Kafka
An Introduction to Apache KafkaAn Introduction to Apache Kafka
An Introduction to Apache KafkaAmir Sedighi
 
Kafka connect 101
Kafka connect 101Kafka connect 101
Kafka connect 101Whiteklay
 
A visual introduction to Apache Kafka
A visual introduction to Apache KafkaA visual introduction to Apache Kafka
A visual introduction to Apache KafkaPaul Brebner
 
Apache Kafka Introduction
Apache Kafka IntroductionApache Kafka Introduction
Apache Kafka IntroductionAmita Mirajkar
 
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...StampedeCon
 
Producer Performance Tuning for Apache Kafka
Producer Performance Tuning for Apache KafkaProducer Performance Tuning for Apache Kafka
Producer Performance Tuning for Apache KafkaJiangjie Qin
 
From Zero to Hero with Kafka Connect
From Zero to Hero with Kafka ConnectFrom Zero to Hero with Kafka Connect
From Zero to Hero with Kafka Connectconfluent
 
Apache Flink and what it is used for
Apache Flink and what it is used forApache Flink and what it is used for
Apache Flink and what it is used forAljoscha Krettek
 
Flexible Authentication Strategies with SASL/OAUTHBEARER (Michael Kaminski, T...
Flexible Authentication Strategies with SASL/OAUTHBEARER (Michael Kaminski, T...Flexible Authentication Strategies with SASL/OAUTHBEARER (Michael Kaminski, T...
Flexible Authentication Strategies with SASL/OAUTHBEARER (Michael Kaminski, T...confluent
 
Kafka Tutorial: Kafka Security
Kafka Tutorial: Kafka SecurityKafka Tutorial: Kafka Security
Kafka Tutorial: Kafka SecurityJean-Paul Azar
 
Apache Kafka - Martin Podval
Apache Kafka - Martin PodvalApache Kafka - Martin Podval
Apache Kafka - Martin PodvalMartin Podval
 
Facebook Messages & HBase
Facebook Messages & HBaseFacebook Messages & HBase
Facebook Messages & HBase强 王
 
Deep Dive into Apache Kafka
Deep Dive into Apache KafkaDeep Dive into Apache Kafka
Deep Dive into Apache Kafkaconfluent
 
Deep Dive into Building Streaming Applications with Apache Pulsar
Deep Dive into Building Streaming Applications with Apache Pulsar Deep Dive into Building Streaming Applications with Apache Pulsar
Deep Dive into Building Streaming Applications with Apache Pulsar Timothy Spann
 
카프카, 산전수전 노하우
카프카, 산전수전 노하우카프카, 산전수전 노하우
카프카, 산전수전 노하우if kakao
 
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...confluent
 
Infrastructure at Scale: Apache Kafka, Twitter Storm & Elastic Search (ARC303...
Infrastructure at Scale: Apache Kafka, Twitter Storm & Elastic Search (ARC303...Infrastructure at Scale: Apache Kafka, Twitter Storm & Elastic Search (ARC303...
Infrastructure at Scale: Apache Kafka, Twitter Storm & Elastic Search (ARC303...Amazon Web Services
 
IBM JVM 소개 - Oracle JVM 과 비교
IBM JVM 소개 - Oracle JVM 과 비교IBM JVM 소개 - Oracle JVM 과 비교
IBM JVM 소개 - Oracle JVM 과 비교JungWoon Lee
 

Tendances (20)

Kafka Streams: What it is, and how to use it?
Kafka Streams: What it is, and how to use it?Kafka Streams: What it is, and how to use it?
Kafka Streams: What it is, and how to use it?
 
An Introduction to Apache Kafka
An Introduction to Apache KafkaAn Introduction to Apache Kafka
An Introduction to Apache Kafka
 
Kafka connect 101
Kafka connect 101Kafka connect 101
Kafka connect 101
 
A visual introduction to Apache Kafka
A visual introduction to Apache KafkaA visual introduction to Apache Kafka
A visual introduction to Apache Kafka
 
Apache Kafka Introduction
Apache Kafka IntroductionApache Kafka Introduction
Apache Kafka Introduction
 
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
Apache Hadoop YARN – Multi-Tenancy, Capacity Scheduler & Preemption - Stamped...
 
Producer Performance Tuning for Apache Kafka
Producer Performance Tuning for Apache KafkaProducer Performance Tuning for Apache Kafka
Producer Performance Tuning for Apache Kafka
 
From Zero to Hero with Kafka Connect
From Zero to Hero with Kafka ConnectFrom Zero to Hero with Kafka Connect
From Zero to Hero with Kafka Connect
 
Apache Flink and what it is used for
Apache Flink and what it is used forApache Flink and what it is used for
Apache Flink and what it is used for
 
Flexible Authentication Strategies with SASL/OAUTHBEARER (Michael Kaminski, T...
Flexible Authentication Strategies with SASL/OAUTHBEARER (Michael Kaminski, T...Flexible Authentication Strategies with SASL/OAUTHBEARER (Michael Kaminski, T...
Flexible Authentication Strategies with SASL/OAUTHBEARER (Michael Kaminski, T...
 
Kafka Tutorial: Kafka Security
Kafka Tutorial: Kafka SecurityKafka Tutorial: Kafka Security
Kafka Tutorial: Kafka Security
 
Kafka presentation
Kafka presentationKafka presentation
Kafka presentation
 
Apache Kafka - Martin Podval
Apache Kafka - Martin PodvalApache Kafka - Martin Podval
Apache Kafka - Martin Podval
 
Facebook Messages & HBase
Facebook Messages & HBaseFacebook Messages & HBase
Facebook Messages & HBase
 
Deep Dive into Apache Kafka
Deep Dive into Apache KafkaDeep Dive into Apache Kafka
Deep Dive into Apache Kafka
 
Deep Dive into Building Streaming Applications with Apache Pulsar
Deep Dive into Building Streaming Applications with Apache Pulsar Deep Dive into Building Streaming Applications with Apache Pulsar
Deep Dive into Building Streaming Applications with Apache Pulsar
 
카프카, 산전수전 노하우
카프카, 산전수전 노하우카프카, 산전수전 노하우
카프카, 산전수전 노하우
 
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
Show Me Kafka Tools That Will Increase My Productivity! (Stephane Maarek, Dat...
 
Infrastructure at Scale: Apache Kafka, Twitter Storm & Elastic Search (ARC303...
Infrastructure at Scale: Apache Kafka, Twitter Storm & Elastic Search (ARC303...Infrastructure at Scale: Apache Kafka, Twitter Storm & Elastic Search (ARC303...
Infrastructure at Scale: Apache Kafka, Twitter Storm & Elastic Search (ARC303...
 
IBM JVM 소개 - Oracle JVM 과 비교
IBM JVM 소개 - Oracle JVM 과 비교IBM JVM 소개 - Oracle JVM 과 비교
IBM JVM 소개 - Oracle JVM 과 비교
 

Similaire à Asynchronous stream processing with Akka Streams

Reactive streams processing using Akka Streams
Reactive streams processing using Akka StreamsReactive streams processing using Akka Streams
Reactive streams processing using Akka StreamsJohan Andrén
 
Akka streams - Umeå java usergroup
Akka streams - Umeå java usergroupAkka streams - Umeå java usergroup
Akka streams - Umeå java usergroupJohan Andrén
 
Streaming all the things with akka streams
Streaming all the things with akka streams   Streaming all the things with akka streams
Streaming all the things with akka streams Johan Andrén
 
Reactive stream processing using Akka streams
Reactive stream processing using Akka streams Reactive stream processing using Akka streams
Reactive stream processing using Akka streams Johan Andrén
 
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache KafkaExploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache KafkaLightbend
 
Reactive integrations with Akka Streams
Reactive integrations with Akka StreamsReactive integrations with Akka Streams
Reactive integrations with Akka StreamsKonrad Malawski
 
VJUG24 - Reactive Integrations with Akka Streams
VJUG24  - Reactive Integrations with Akka StreamsVJUG24  - Reactive Integrations with Akka Streams
VJUG24 - Reactive Integrations with Akka StreamsJohan Andrén
 
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...Lightbend
 
Scala usergroup stockholm - reactive integrations with akka streams
Scala usergroup stockholm - reactive integrations with akka streamsScala usergroup stockholm - reactive integrations with akka streams
Scala usergroup stockholm - reactive integrations with akka streamsJohan Andrén
 
Reactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka StreamsReactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka StreamsDean Wampler
 
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...HostedbyConfluent
 
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...Reactivesummit
 
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & KafkaBack-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & KafkaAkara Sucharitakul
 
Let the alpakka pull your stream
Let the alpakka pull your streamLet the alpakka pull your stream
Let the alpakka pull your streamEnno Runne
 
Building Stateful Microservices With Akka
Building Stateful Microservices With AkkaBuilding Stateful Microservices With Akka
Building Stateful Microservices With AkkaYaroslav Tkachenko
 
Introduction to apache kafka, confluent and why they matter
Introduction to apache kafka, confluent and why they matterIntroduction to apache kafka, confluent and why they matter
Introduction to apache kafka, confluent and why they matterPaolo Castagna
 
From Zero to Stream Processing
From Zero to Stream ProcessingFrom Zero to Stream Processing
From Zero to Stream ProcessingEventador
 
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYCBuilding a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYCKonrad Malawski
 
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...confluent
 
Kafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platformKafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platformPaolo Castagna
 

Similaire à Asynchronous stream processing with Akka Streams (20)

Reactive streams processing using Akka Streams
Reactive streams processing using Akka StreamsReactive streams processing using Akka Streams
Reactive streams processing using Akka Streams
 
Akka streams - Umeå java usergroup
Akka streams - Umeå java usergroupAkka streams - Umeå java usergroup
Akka streams - Umeå java usergroup
 
Streaming all the things with akka streams
Streaming all the things with akka streams   Streaming all the things with akka streams
Streaming all the things with akka streams
 
Reactive stream processing using Akka streams
Reactive stream processing using Akka streams Reactive stream processing using Akka streams
Reactive stream processing using Akka streams
 
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache KafkaExploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
 
Reactive integrations with Akka Streams
Reactive integrations with Akka StreamsReactive integrations with Akka Streams
Reactive integrations with Akka Streams
 
VJUG24 - Reactive Integrations with Akka Streams
VJUG24  - Reactive Integrations with Akka StreamsVJUG24  - Reactive Integrations with Akka Streams
VJUG24 - Reactive Integrations with Akka Streams
 
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
 
Scala usergroup stockholm - reactive integrations with akka streams
Scala usergroup stockholm - reactive integrations with akka streamsScala usergroup stockholm - reactive integrations with akka streams
Scala usergroup stockholm - reactive integrations with akka streams
 
Reactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka StreamsReactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka Streams
 
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
 
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
 
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & KafkaBack-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
 
Let the alpakka pull your stream
Let the alpakka pull your streamLet the alpakka pull your stream
Let the alpakka pull your stream
 
Building Stateful Microservices With Akka
Building Stateful Microservices With AkkaBuilding Stateful Microservices With Akka
Building Stateful Microservices With Akka
 
Introduction to apache kafka, confluent and why they matter
Introduction to apache kafka, confluent and why they matterIntroduction to apache kafka, confluent and why they matter
Introduction to apache kafka, confluent and why they matter
 
From Zero to Stream Processing
From Zero to Stream ProcessingFrom Zero to Stream Processing
From Zero to Stream Processing
 
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYCBuilding a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
 
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
 
Kafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platformKafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platform
 

Plus de Johan Andrén

Next generation message driven systems with Akka
Next generation message driven systems with AkkaNext generation message driven systems with Akka
Next generation message driven systems with AkkaJohan Andrén
 
Buiilding reactive distributed systems with Akka
Buiilding reactive distributed systems with AkkaBuiilding reactive distributed systems with Akka
Buiilding reactive distributed systems with AkkaJohan Andrén
 
Next generation actors with Akka
Next generation actors with AkkaNext generation actors with Akka
Next generation actors with AkkaJohan Andrén
 
Next generation message driven systems with Akka
Next generation message driven systems with AkkaNext generation message driven systems with Akka
Next generation message driven systems with AkkaJohan Andrén
 
Networks and types - the future of Akka
Networks and types - the future of AkkaNetworks and types - the future of Akka
Networks and types - the future of AkkaJohan Andrén
 
Building reactive distributed systems with Akka
Building reactive distributed systems with Akka Building reactive distributed systems with Akka
Building reactive distributed systems with Akka Johan Andrén
 
Introduction to akka actors with java 8
Introduction to akka actors with java 8Introduction to akka actors with java 8
Introduction to akka actors with java 8Johan Andrén
 
Async - react, don't wait - PingConf
Async - react, don't wait - PingConfAsync - react, don't wait - PingConf
Async - react, don't wait - PingConfJohan Andrén
 
Scala frukostseminarium
Scala frukostseminariumScala frukostseminarium
Scala frukostseminariumJohan Andrén
 
Introduction to Akka
Introduction to AkkaIntroduction to Akka
Introduction to AkkaJohan Andrén
 
Async – react, don't wait
Async – react, don't waitAsync – react, don't wait
Async – react, don't waitJohan Andrén
 
Akka frukostseminarium
Akka   frukostseminariumAkka   frukostseminarium
Akka frukostseminariumJohan Andrén
 
Macros and reflection in scala 2.10
Macros and reflection in scala 2.10Macros and reflection in scala 2.10
Macros and reflection in scala 2.10Johan Andrén
 
Introduction to Scala
Introduction to ScalaIntroduction to Scala
Introduction to ScalaJohan Andrén
 

Plus de Johan Andrén (15)

Next generation message driven systems with Akka
Next generation message driven systems with AkkaNext generation message driven systems with Akka
Next generation message driven systems with Akka
 
Buiilding reactive distributed systems with Akka
Buiilding reactive distributed systems with AkkaBuiilding reactive distributed systems with Akka
Buiilding reactive distributed systems with Akka
 
Next generation actors with Akka
Next generation actors with AkkaNext generation actors with Akka
Next generation actors with Akka
 
Next generation message driven systems with Akka
Next generation message driven systems with AkkaNext generation message driven systems with Akka
Next generation message driven systems with Akka
 
Networks and types - the future of Akka
Networks and types - the future of AkkaNetworks and types - the future of Akka
Networks and types - the future of Akka
 
Building reactive distributed systems with Akka
Building reactive distributed systems with Akka Building reactive distributed systems with Akka
Building reactive distributed systems with Akka
 
Introduction to akka actors with java 8
Introduction to akka actors with java 8Introduction to akka actors with java 8
Introduction to akka actors with java 8
 
Async - react, don't wait - PingConf
Async - react, don't wait - PingConfAsync - react, don't wait - PingConf
Async - react, don't wait - PingConf
 
Scala frukostseminarium
Scala frukostseminariumScala frukostseminarium
Scala frukostseminarium
 
Introduction to Akka
Introduction to AkkaIntroduction to Akka
Introduction to Akka
 
Async – react, don't wait
Async – react, don't waitAsync – react, don't wait
Async – react, don't wait
 
Akka frukostseminarium
Akka   frukostseminariumAkka   frukostseminarium
Akka frukostseminarium
 
Macros and reflection in scala 2.10
Macros and reflection in scala 2.10Macros and reflection in scala 2.10
Macros and reflection in scala 2.10
 
Introduction to Scala
Introduction to ScalaIntroduction to Scala
Introduction to Scala
 
Duchess scala-2012
Duchess scala-2012Duchess scala-2012
Duchess scala-2012
 

Dernier

An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 

Dernier (20)

Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 

Asynchronous stream processing with Akka Streams

  • 1. Akka streams Asynchronous stream processing Johan Andrén JFokus, Stockholm, 2017-02-08 with
  • 3. Make building powerful concurrent & distributed applications simple. Akka is a toolkit and runtime for building highly concurrent, distributed, and resilient message-driven applications on the JVM Akka
  • 4. Actors – simple & high performance concurrency Cluster / Remoting – location transparency, resilience Cluster tools – and more prepackaged patterns Streams – back-pressured stream processing Persistence – Event Sourcing HTTP – complete, fully async and reactive HTTP Server Official Kafka, Cassandra, DynamoDB integrations, tons more in the community Complete Java & Scala APIs for all features What’s in the toolkit?
  • 6. Reactive Streams timeline Oct 2013 RxJava, Akka and Twitter- people meeting “Soon thereafter” 2013 Reactive Streams Expert group formed Apr 2015 Reactive Streams Spec 1.0 TCK 5+ impls ??? 2015 JEP-266 inclusion in JDK9 Akka Streams, Rx Vert.x, MongoDB, …
  • 7. Reactive Streams Reactive Streams is an initiative to provide a standard for asynchronous stream processing with non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and JavaScript) as well as network protocols http://www.reactive-streams.org “
  • 8. Reactive Streams Reactive Streams is an initiative to provide a standard for asynchronous stream processing with non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and JavaScript) as well as network protocols http://www.reactive-streams.org “
  • 10. Reactive Streams Reactive Streams is an initiative to provide a standard for asynchronous stream processing with non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and JavaScript) as well as network protocols http://www.reactive-streams.org “
  • 11. Asynchronous stream processing Source Sink (possible) asynchronous boundaries Flow
  • 12. Reactive Streams Reactive Streams is an initiative to provide a standard for asynchronous stream processing with non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and JavaScript) as well as network protocols http://www.reactive-streams.org “
  • 13. No back pressure Source Sink 10 msg/s 1 msg/s Flow asynchronous boundary
  • 14. No back pressure Source Sink 10 msg/s 1 msg/s Flow asynchronous boundary OutOfMemoryError!!
  • 15. No back pressure - bounded buffer Source Sink 10 msg/s 1 msg/s Flow buffer size 6 ! asynchronous boundary
  • 16. Async non blocking back pressure Source Sink 1 msg/s 1 msg/s Flow buffer size 6 ! asynchronous boundary Hey! give me 2 more
  • 17. Reactive Streams RS Library A RS library B async boundary
  • 18. Reactive Streams “Make building powerful concurrent & distributed applications simple.”
  • 19. Complete and awesome Java and Scala APIs (Just like everything in Akka) Akka Streams
  • 20. Akka Streams in ~20 seconds: final ActorSystem system = ActorSystem.create();
 final Materializer materializer = ActorMaterializer.create(system);
 
 final Source<Integer, NotUsed> source =
 Source.range(0, 20000000);
 
 final Flow<Integer, String, NotUsed> flow =
 Flow.fromFunction((Integer n) -> n.toString());
 
 final Sink<String, CompletionStage<Done>> sink =
 Sink.foreach(str -> System.out.println(str));
 
 final RunnableGraph<NotUsed> runnable = source.via(flow).to(sink);
 
 runnable.run(materializer); complete sources on github
  • 21. Akka Streams in ~20 seconds: implicit val system = ActorSystem()
 implicit val mat = ActorMaterializer()
 
 val source = Source(0 to 20000000)
 
 val flow = Flow[Int].map(_.toString())
 
 val sink = Sink.foreach[String](println(_))
 
 val runnable = source.via(flow).to(sink)
 
 runnable.run() complete sources on github
  • 22. Akka Streams in ~20 seconds: Source.range(0, 20000000)
 .map(Object::toString)
 .runForeach(str -> System.out.println(str), materializer); complete sources on github
  • 23. Akka Streams in ~20 seconds: Source(0 to 20000000)
 .map(_.toString)
 .runForeach(println) complete sources on github
  • 24. Numbers as a service final Source<ByteString, NotUsed> numbers = Source.unfold(0L, n -> {
 long next = n + 1;
 return Optional.of(Pair.create(next, next));
 }).map(n -> ByteString.fromString(n.toString() + "n"));
 
 
 final Route route =
 path("numbers", () ->
 get(() ->
 complete(HttpResponse.create()
 .withStatus(StatusCodes.OK)
 .withEntity(HttpEntities.create(
 ContentTypes.TEXT_PLAIN_UTF8,
 numbers
 )))
 )
 );
 
 final CompletionStage<ServerBinding> bindingCompletionStage =
 http.bindAndHandle(route.flow(system, materializer), host, materializer); complete sources on github
  • 25. Numbers as a service val numbers =
 Source.unfold(0L) { (n) =>
 val next = n + 1
 Some((next, next))
 }.map(n => ByteString(n + "n"))
 
 val route =
 path("numbers") {
 get {
 complete( HttpResponse(entity = HttpEntity(`text/plain(UTF-8)`, numbers)) )
 }
 }
 val futureBinding = Http().bindAndHandle(route, "127.0.0.1", 8080) complete sources on github
  • 26. recv buffer send buffer " " " " " " " Back pressure over TCP numbers TCP HTTP Server Client
  • 27. recv buffer send buffer " " " " " " # Back pressure over TCP numbers TCP HTTP Backpressure Server Client
  • 28. recv buffer send buffer " " " " " " " " " " # Back pressure over TCP numbers TCP HTTP Backpressure Backpressure Server Client
  • 29. A more useful example complete sources on github final Flow<Message, Message, NotUsed> measurementsFlow =
 Flow.of(Message.class)
 .flatMapConcat((Message message) ->
 message.asTextMessage()
 .getStreamedText()
 .fold("", (acc, elem) -> acc + elem)
 )
 .groupedWithin(1000, FiniteDuration.create(1, SECONDS))
 .mapAsync(5, database::asyncBulkInsert)
 .map(written ->
 TextMessage.create("wrote up to: " + written.get(written.size() - 1))
 );
 
 final Route route = path("measurements", () ->
 get(() ->
 handleWebSocketMessages(measurementsFlow)
 )
 );
 
 final CompletionStage<ServerBinding> bindingCompletionStage =
 http.bindAndHandle(route.flow(system, materializer), host, materializer); Credit to: Colin Breck
  • 30. A more useful example complete sources on github val measurementsFlow =
 Flow[Message].flatMapConcat(message =>
 message.asTextMessage.getStreamedText.fold("")(_ + _)
 )
 .groupedWithin(1000, 1.second)
 .mapAsync(5)(Database.asyncBulkInsert)
 .map(written => TextMessage("wrote up to: " + written.last))
 
 val route =
 path("measurements") {
 get {
 handleWebSocketMessages(measurementsFlow)
 }
 }
 
 val futureBinding = Http().bindAndHandle(route, "127.0.0.1", 8080)
  • 31. The tale of the two pancake chefs HungrySink Frying Pan BatterSource Scoops of batter Pancakes nom nom nom asynchronous boundaries Roland Patrik
  • 32. Rolands pipelined pancakes HungrySinkPan 2BatterSource Pan 1 nom nom nom
  • 33. Rolands pipelined pancakes Flow<ScoopOfBatter, HalfCookedPancake, NotUsed> fryingPan1 =
 Flow.of(ScoopOfBatter.class).map(batter -> new HalfCookedPancake());
 
 Flow<HalfCookedPancake, Pancake, NotUsed> fryingPan2 =
 Flow.of(HalfCookedPancake.class).map(halfCooked -> new Pancake()); Flow<ScoopOfBatter, Pancake, NotUsed> pancakeChef =
 fryingPan1.async().via(fryingPan2.async()); section in docs
  • 34. Rolands pipelined pancakes // Takes a scoop of batter and creates a pancake with one side cooked val fryingPan1: Flow[ScoopOfBatter, HalfCookedPancake, NotUsed] =
 Flow[ScoopOfBatter].map { batter => HalfCookedPancake() }
 
 // Finishes a half-cooked pancake
 val fryingPan2: Flow[HalfCookedPancake, Pancake, NotUsed] =
 Flow[HalfCookedPancake].map { halfCooked => Pancake() } 
 // With the two frying pans we can fully cook pancakes val pancakeChef: Flow[ScoopOfBatter, Pancake, NotUsed] =
 Flow[ScoopOfBatter].via(fryingPan1.async).via(fryingPan2.async) section in docs
  • 35. Patriks parallel pancakes HungrySink Pan 2 BatterSource Pan 1 Balance Merge nom nom nom
  • 36. Patriks parallel pancakes Flow<ScoopOfBatter, Pancake, NotUsed> fryingPan =
 Flow.of(ScoopOfBatter.class).map(batter -> new Pancake());
 
 Flow<ScoopOfBatter, Pancake, NotUsed> pancakeChef =
 Flow.fromGraph(GraphDSL.create(builder -> {
 final UniformFanInShape<Pancake, Pancake> mergePancakes =
 builder.add(Merge.create(2));
 final UniformFanOutShape<ScoopOfBatter, ScoopOfBatter> dispatchBatter =
 builder.add(Balance.create(2));
 
 builder.from(dispatchBatter.out(0)) .via(builder.add(fryingPan.async())) .toInlet(mergePancakes.in(0));
 builder.from(dispatchBatter.out(1)) .via(builder.add(fryingPan.async())) .toInlet(mergePancakes.in(1));
 
 return FlowShape.of(dispatchBatter.in(), mergePancakes.out());
 })); section in docs
  • 37. Patriks parallel pancakes val pancakeChef: Flow[ScoopOfBatter, Pancake, NotUsed] =
 Flow.fromGraph(GraphDSL.create() { implicit builder =>
 import GraphDSL.Implicits._ 
 val dispatchBatter = builder.add(Balance[ScoopOfBatter](2))
 val mergePancakes = builder.add(Merge[Pancake](2))
 
 // Using two pipelines, having two frying pans each, in total using
 // four frying pans
 dispatchBatter.out(0) ~> fryingPan1.async ~> fryingPan2.async ~> mergePancakes.in(0)
 dispatchBatter.out(1) ~> fryingPan1.async ~> fryingPan2.async ~> mergePancakes.in(1)
 
 FlowShape(dispatchBatter.in, mergePancakes.out)
 }) section in docs
  • 38. Making pancakes together HungrySink Pan 3 BatterSource Pan 1 Balance Merge Pan 2 Pan 4 nom nom nom
  • 39. Built in stages Flow stages map/fromFunction, mapConcat, statefulMapConcat, filter, filterNot, collect, grouped, sliding, scan, scanAsync, fold, foldAsync, reduce, drop, take, takeWhile, dropWhile, recover, recoverWith, recoverWithRetries, mapError, detach, throttle, intersperse, limit, limitWeighted, log, recoverWithRetries, mapAsync, mapAsyncUnordered, takeWithin, dropWithin, groupedWithin, initialDelay, delay, conflate, conflateWithSeed, batch, batchWeighted, expand, buffer, prefixAndTail, groupBy, splitWhen, splitAfter, flatMapConcat, flatMapMerge, initialTimeout, completionTimeout, idleTimeout, backpressureTimeout, keepAlive, initialDelay, merge, mergeSorted, Source stages fromIterator, apply, single, repeat, cycle, tick, fromFuture, fromCompletionStage, unfold, unfoldAsync, empty, maybe, failed, lazily, actorPublisher, actorRef, combine, unfoldResource, unfoldResourceAsync, queue, asSubscriber, fromPublisher, zipN, zipWithN Sink stages head, headOption, last, lastOption, ignore, cancelled, seq, foreach, foreachParallel, onComplete, lazyInit, queue, fold, reduce, combine, actorRef, actorRefWithAck, actorSubscriber, asPublisher, fromSubscriber Additional Sink and Source converters fromOutputStream, asInputStream, fromInputStream, asOutputStream, asJavaStream, fromJavaStream, javaCollector, javaCollectorParallelUnordered File IO Sinks and Sources fromPath, toPath mergePreferred, zip, zipWith, zipWithIndex, concat, prepend, orElse, interleave, unzip, unzipWith, broadcast, balance, partition, watchTermination, monitor
  • 40. But I want to connect other things! @doggosdoingthings
  • 41. A community for Akka Streams connectors http://github.com/akka/alpakka Alpakka
  • 42. Alpakka – a community for Stream connectors Existing Alpakka MQTT AMQP/ RabbitMQ SSE Cassandra FTP Kafka AWS S3 Files AWS DynamoDB AWS SQS JMS Azure IoT Hub TCP In Akka Actors Reactive Streams Java Streams Basic File IO Alpakka PRs AWS Lambda MongoDB* druid.io Caffeine IronMQ HBase
  • 43. But my usecase is a unique snowflake! ❄ ❄ ❄
  • 44. GraphStage API public class Map<A, B> extends GraphStage<FlowShape<A, B>> {
 private final Function<A, B> f;
 public final Inlet<A> in = Inlet.create("Map.in");
 public final Outlet<B> out = Outlet.create("Map.out"); private final FlowShape<A, B> shape = FlowShape.of(in, out); public Map(Function<A, B> f) {
 this.f = f;
 }
 public FlowShape<A,B> shape() {
 return shape;
 }
 public GraphStageLogic createLogic(Attributes inheritedAttributes) {
 return new GraphStageLogic(shape) {
 {
 setHandler(in, new AbstractInHandler() {
 @Override
 public void onPush() throws Exception {
 push(out, f.apply(grab(in)));
 }
 });
 setHandler(out, new AbstractOutHandler() {
 @Override
 public void onPull() throws Exception {
 pull(in);
 }
 });
 }
 };
 }
 } complete sources on github
  • 45. GraphStage API class Map[A, B](f: A => B) extends GraphStage[FlowShape[A, B]] {
 
 val in = Inlet[A]("Map.in")
 val out = Outlet[B]("Map.out")
 override val shape = FlowShape.of(in, out)
 
 override def createLogic(attr: Attributes): GraphStageLogic =
 new GraphStageLogic(shape) {
 setHandler(in, new InHandler {
 override def onPush(): Unit = {
 push(out, f(grab(in)))
 }
 })
 setHandler(out, new OutHandler {
 override def onPull(): Unit = {
 pull(in)
 }
 })
 }
 } complete sources on github
  • 46. What about distributed/reactive systems? Kafka Stream Stream Stream Stream cluster
  • 47. The community Mailing list: https://groups.google.com/group/akka-user Public chat rooms: http://gitter.im/akka/dev developing Akka http://gitter.im/akka/akka using Akka Easy to contribute tickets: https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy-to-contribute https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3A%22nice-to-have+%28low-prio%29%22 ~200 active contributors!
  • 48. Thanks for listening! @apnylle johan.andren@lightbend.com Runnable sample sources (Java & Scala) https://github.com/johanandren/akka-stream-samples/tree/jfokus-2017 http://akka.io Akka