SlideShare une entreprise Scribd logo
1  sur  49
Télécharger pour lire hors ligne
Akka streams
Streaming
Johan Andrén
Voxxeddays, Zürich, 2017-02-23
with
All the things!
Johan Andrén
Akka Team
Stockholm Scala User Group
@apnylle
johan.andren@lightbend.com
Make building powerful concurrent &
distributed applications simple.
Akka is a toolkit and runtime
for building highly concurrent,
distributed, and resilient
message-driven applications
on the JVM
Akka
Actors – simple & high performance concurrency
Cluster / Remoting – location transparency, resilience
Cluster tools – and more prepackaged patterns
Streams – back-pressured stream processing
Persistence – Event Sourcing
HTTP – complete, fully async and reactive HTTP Server
Official Kafka, Cassandra, DynamoDB integrations, tons
more in the community
Complete Java & Scala APIs for all features
What’s in the toolkit?
Reactive Streams
Reactive Streams timeline
Oct 2013
RxJava, Akka and Twitter-
people meeting
“Soon thereafter” 2013
Reactive Streams
Expert group formed
Apr 2015
Reactive Streams Spec 1.0
TCK
5+ impls
??? 2015
JEP-266
inclusion in JDK9
Akka Streams, RxJava
Vert.x, MongoDB, …
Reactive Streams
Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with
non-blocking back pressure. This encompasses
efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols
http://www.reactive-streams.org
“
Reactive Streams
Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with
non-blocking back pressure. This encompasses
efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols
http://www.reactive-streams.org
“
Stream processing
Source Sink
Flow
Reactive Streams
Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with
non-blocking back pressure. This encompasses
efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols
http://www.reactive-streams.org
“
Asynchronous stream processing
Source Sink
(possible)
asynchronous
boundaries
Flow
Reactive Streams
Reactive Streams is an initiative to provide a
standard for asynchronous stream processing with
non-blocking back pressure. This encompasses
efforts aimed at runtime environments (JVM and
JavaScript) as well as network protocols
http://www.reactive-streams.org
“
No back pressure
Source Sink
10 msg/s 1 msg/s
Flow
asynchronous
boundary
No back pressure
Source Sink
10 msg/s 1 msg/s
Flow
asynchronous
boundary
OutOfMemoryError!!
No back pressure - bounded buffer
Source Sink
10 msg/s 1 msg/s
Flow
buffer size 6
🗑
asynchronous
boundary
Async non blocking back pressure
Source Sink
1 msg/s
1 msg/s
Flow
buffer size 6
🗑
asynchronous
boundary
Hey! give me 2 more
Reactive Streams
RS Library A RS library B
async
boundary
Reactive Streams
“Make building powerful concurrent &
distributed applications simple.”
Complete and awesome
Java and Scala APIs
(Just like everything in Akka)
Akka Streams
Akka Streams in ~20 seconds:
final ActorSystem system = ActorSystem.create();

final Materializer materializer = ActorMaterializer.create(system);



final Source<Integer, NotUsed> source =

Source.range(0, 20000000);



final Flow<Integer, String, NotUsed> flow =

Flow.fromFunction((Integer n) -> n.toString());



final Sink<String, CompletionStage<Done>> sink =

Sink.foreach(str -> System.out.println(str));



final RunnableGraph<NotUsed> runnable = source.via(flow).to(sink);



runnable.run(materializer);
complete sources on github
Akka Streams in ~20 seconds:
final ActorSystem system = ActorSystem.create();

final Materializer materializer = ActorMaterializer.create(system);



final Source<Integer, NotUsed> source =

Source.range(0, 20000000);



final Flow<Integer, String, NotUsed> flow =

Flow.fromFunction((Integer n) -> n.toString());



final Sink<String, CompletionStage<Done>> sink =

Sink.foreach(str -> System.out.println(str));



final RunnableGraph<NotUsed> runnable = source.via(flow).to(sink);



runnable.run(materializer);
complete sources on github
Akka Streams in ~20 seconds:
implicit val system = ActorSystem()

implicit val mat = ActorMaterializer()



val source = Source(0 to 20000000)



val flow = Flow[Int].map(_.toString())



val sink = Sink.foreach[String](println(_))



val runnable = source.via(flow).to(sink)



runnable.run()
complete sources on github
Akka Streams in ~20 seconds:
Source.range(0, 20000000)

.map(Object::toString)

.runForeach(str -> System.out.println(str), materializer);
complete sources on github
Akka Streams in ~20 seconds:
Source(0 to 20000000)

.map(_.toString)

.runForeach(println)
complete sources on github
Numbers as a service
final Source<ByteString, NotUsed> numbers = Source.unfold(0L, n -> {

long next = n + 1;

return Optional.of(Pair.create(next, next));

}).map(n -> ByteString.fromString(n.toString() + "n"));





final Route route =

path("numbers", () ->

get(() ->

complete(HttpResponse.create()

.withStatus(StatusCodes.OK)

.withEntity(HttpEntities.create(

ContentTypes.TEXT_PLAIN_UTF8,

numbers

)))

)

);



final CompletionStage<ServerBinding> bindingCompletionStage =

http.bindAndHandle(route.flow(system, materializer), host, materializer);
complete sources on github
Numbers as a service
val numbers =

Source.unfold(0L) { (n) =>

val next = n + 1

Some((next, next))

}.map(n => ByteString(n + "n"))



val route =

path("numbers") {

get {

complete(
HttpResponse(entity = HttpEntity(`text/plain(UTF-8)`, numbers))
)

}

}

val futureBinding = Http().bindAndHandle(route, "127.0.0.1", 8080)
complete sources on github
recv buffer
send buffer
🚚
🚚
🚚
🚚
🚚
🚚
🚚
Back pressure over TCP numbers
TCP HTTP
Server
Client
recv buffer
send buffer
🚚
🚚
🚚
🚚
🚚
🚚
🚑
Back pressure over TCP numbers
TCP HTTP
Backpressure
Server
Client
recv buffer
send buffer
🚚
🚚
🚚
🚚
🚚
🚚
🚚
🚚
🚚
🚚
🚑
Back pressure over TCP numbers
TCP HTTP
Backpressure
Backpressure
Server
Client
A more useful example
complete sources on github
final Flow<Message, Message, NotUsed> measurementsFlow =

Flow.of(Message.class)

.flatMapConcat((Message message) ->

message.asTextMessage()

.getStreamedText()

.fold("", (acc, elem) -> acc + elem)

)

.groupedWithin(1000, FiniteDuration.create(1, SECONDS))

.mapAsync(5, database::asyncBulkInsert)

.map(written ->

TextMessage.create("wrote up to: " + written.get(written.size() - 1))

);



final Route route = path("measurements", () ->

get(() ->

handleWebSocketMessages(measurementsFlow)

)

);



final CompletionStage<ServerBinding> bindingCompletionStage =

http.bindAndHandle(route.flow(system, materializer), host, materializer);
Credit to: Colin Breck
A more useful example
complete sources on github
val measurementsFlow =

Flow[Message].flatMapConcat(message =>

message.asTextMessage.getStreamedText.fold("")(_ + _)

)

.groupedWithin(1000, 1.second)

.mapAsync(5)(Database.asyncBulkInsert)

.map(written => TextMessage("wrote up to: " + written.last))



val route =

path("measurements") {

get {

handleWebSocketMessages(measurementsFlow)

}

}



val futureBinding = Http().bindAndHandle(route, "127.0.0.1", 8080)
The tale of the two pancake chefs
HungrySink
Frying
Pan
BatterSource
Scoops of batter
Pancakes
nom nom nom
asynchronous
boundaries
Roland Patrik
Rolands pipelined pancakes
HungrySinkPan 2BatterSource Pan 1
nom nom nom
Rolands pipelined pancakes
Flow<ScoopOfBatter, HalfCookedPancake, NotUsed> fryingPan1 =

Flow.of(ScoopOfBatter.class).map(batter -> new HalfCookedPancake());



Flow<HalfCookedPancake, Pancake, NotUsed> fryingPan2 =

Flow.of(HalfCookedPancake.class).map(halfCooked -> new Pancake());
Flow<ScoopOfBatter, Pancake, NotUsed> pancakeChef =

fryingPan1.async().via(fryingPan2.async());
section in docs
Rolands pipelined pancakes
// Takes a scoop of batter and creates a pancake with one side cooked
val fryingPan1: Flow[ScoopOfBatter, HalfCookedPancake, NotUsed] =

Flow[ScoopOfBatter].map { batter => HalfCookedPancake() }



// Finishes a half-cooked pancake

val fryingPan2: Flow[HalfCookedPancake, Pancake, NotUsed] =

Flow[HalfCookedPancake].map { halfCooked => Pancake() }


// With the two frying pans we can fully cook pancakes
val pancakeChef: Flow[ScoopOfBatter, Pancake, NotUsed] =

Flow[ScoopOfBatter].via(fryingPan1.async).via(fryingPan2.async)
section in docs
Patriks parallel pancakes
HungrySink
Pan 2
BatterSource
Pan 1
Balance Merge
nom nom nom
Patriks parallel pancakes
Flow<ScoopOfBatter, Pancake, NotUsed> fryingPan =

Flow.of(ScoopOfBatter.class).map(batter -> new Pancake());



Flow<ScoopOfBatter, Pancake, NotUsed> pancakeChef =

Flow.fromGraph(GraphDSL.create(builder -> {

final UniformFanInShape<Pancake, Pancake> mergePancakes =

builder.add(Merge.create(2));

final UniformFanOutShape<ScoopOfBatter, ScoopOfBatter> dispatchBatter =

builder.add(Balance.create(2));



builder.from(dispatchBatter.out(0))
.via(builder.add(fryingPan.async()))
.toInlet(mergePancakes.in(0));

builder.from(dispatchBatter.out(1))
.via(builder.add(fryingPan.async()))
.toInlet(mergePancakes.in(1));



return FlowShape.of(dispatchBatter.in(), mergePancakes.out());

}));
section in docs
Patriks parallel pancakes
val pancakeChef: Flow[ScoopOfBatter, Pancake, NotUsed] =

Flow.fromGraph(GraphDSL.create() { implicit builder =>

import GraphDSL.Implicits._


val dispatchBatter = builder.add(Balance[ScoopOfBatter](2))

val mergePancakes = builder.add(Merge[Pancake](2))



// Using two pipelines, having two frying pans each, in total using

// four frying pans

dispatchBatter.out(0) ~> fryingPan1.async ~> fryingPan2.async ~> mergePancakes.in(0)

dispatchBatter.out(1) ~> fryingPan1.async ~> fryingPan2.async ~> mergePancakes.in(1)



FlowShape(dispatchBatter.in, mergePancakes.out)

})
section in docs
Making pancakes together
HungrySink
Pan 3
BatterSource
Pan 1
Balance Merge
Pan 2
Pan 4
nom nom nom
Built in stages Flow stages
map/fromFunction, mapConcat,
statefulMapConcat, filter, filterNot,
collect, grouped, sliding, scan,
scanAsync, fold, foldAsync, reduce, drop,
take, takeWhile, dropWhile, recover,
recoverWith, recoverWithRetries,
mapError, detach, throttle, intersperse,
limit, limitWeighted, log,
recoverWithRetries, mapAsync,
mapAsyncUnordered, takeWithin,
dropWithin, groupedWithin, initialDelay,
delay, conflate, conflateWithSeed, batch,
batchWeighted, expand, buffer,
prefixAndTail, groupBy, splitWhen,
splitAfter, flatMapConcat, flatMapMerge,
initialTimeout, completionTimeout,
idleTimeout, backpressureTimeout,
keepAlive, initialDelay, merge,
mergeSorted,
Source stages
fromIterator, apply, single, repeat, cycle,
tick, fromFuture, fromCompletionStage,
unfold, unfoldAsync, empty, maybe, failed,
lazily, actorPublisher, actorRef, combine,
unfoldResource, unfoldResourceAsync,
queue, asSubscriber, fromPublisher, zipN,
zipWithN
Sink stages
head, headOption, last, lastOption, ignore,
cancelled, seq, foreach, foreachParallel,
onComplete, lazyInit, queue, fold, reduce,
combine, actorRef, actorRefWithAck,
actorSubscriber, asPublisher,
fromSubscriber
Additional Sink and Source
converters
{from,as}OutputStream,
{from,as}InputStream, {as,from}
javaCollector,
javaCollectorParallelUnordered
File IO Sinks and Sources
fromPath, toPath
mergePreferred, zip, zipWith,
zipWithIndex, concat, prepend,
orElse, interleave, unzip,
unzipWith, broadcast, balance,
partition, watchTermination,
monitor
Even more
Framing, JSON framing, killswitch,
BroadcastHub, MergeHub
But I want to
connect other
things!
@doggosdoingthings
A community for Akka Streams connectors
http://github.com/akka/alpakka
Alpakka
Alpakka – a community for Stream connectors
Existing Alpakka
MQTT
AMQP/
RabbitMQ
SSE
Cassandra
FTP/
SFTP
Kafka
AWS S3
Files
AWS
DynamoDB
AWS SQS
JMS
Azure
IoT Hub
TCP
In Akka
Actors
Reactive
Streams
Java
Streams
Basic
File IO
Alpakka PRs
AWS
Lambda
MongoDB*
druid.io
Caffeine
IronMQ
HBase
But my usecase is a
unique snowflake!
❄
❄
❄
GraphStage API
public class Map<A, B> extends GraphStage<FlowShape<A, B>> {

private final Function<A, B> f;

public final Inlet<A> in = Inlet.create("Map.in");

public final Outlet<B> out = Outlet.create("Map.out");
private final FlowShape<A, B> shape = FlowShape.of(in, out);
public Map(Function<A, B> f) {

this.f = f;

}

public FlowShape<A,B> shape() {

return shape;

}

public GraphStageLogic createLogic(Attributes inheritedAttributes) {

return new GraphStageLogic(shape) {

{

setHandler(in, new AbstractInHandler() {

@Override

public void onPush() throws Exception {

push(out, f.apply(grab(in)));

}

});

setHandler(out, new AbstractOutHandler() {

@Override

public void onPull() throws Exception {

pull(in);

}

});

}

};

}

}
complete sources on github
GraphStage API
class Map[A, B](f: A => B) extends GraphStage[FlowShape[A, B]] {



val in = Inlet[A]("Map.in")

val out = Outlet[B]("Map.out")

override val shape = FlowShape.of(in, out)



override def createLogic(attr: Attributes): GraphStageLogic =

new GraphStageLogic(shape) {

setHandler(in, new InHandler {

override def onPush(): Unit = {

push(out, f(grab(in)))

}

})

setHandler(out, new OutHandler {

override def onPull(): Unit = {

pull(in)

}

})

}

}
complete sources on github
What about distributed/reactive systems?
Kafka Stream Stream
Stream
Stream
cluster
The community
Mailing list:
https://groups.google.com/group/akka-user
Public chat rooms:
http://gitter.im/akka/dev developing Akka
http://gitter.im/akka/akka using Akka
Easy to contribute tickets:
https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy-to-contribute
https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3A%22nice-to-have+%28low-prio%29%22
~200 active contributors!
Thanks for listening!
@apnylle
johan.andren@lightbend.com
Runnable sample sources (Java & Scala)
https://github.com/johanandren/akka-stream-samples/tree/jfokus-2017
http://akka.io
Akka

Contenu connexe

Tendances

Reactive Streams / Akka Streams - GeeCON Prague 2014
Reactive Streams / Akka Streams - GeeCON Prague 2014Reactive Streams / Akka Streams - GeeCON Prague 2014
Reactive Streams / Akka Streams - GeeCON Prague 2014Konrad Malawski
 
Buiilding reactive distributed systems with Akka
Buiilding reactive distributed systems with AkkaBuiilding reactive distributed systems with Akka
Buiilding reactive distributed systems with AkkaJohan Andrén
 
A dive into akka streams: from the basics to a real-world scenario
A dive into akka streams: from the basics to a real-world scenarioA dive into akka streams: from the basics to a real-world scenario
A dive into akka streams: from the basics to a real-world scenarioGioia Ballin
 
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...Lightbend
 
Async - react, don't wait - PingConf
Async - react, don't wait - PingConfAsync - react, don't wait - PingConf
Async - react, don't wait - PingConfJohan Andrén
 
Fresh from the Oven (04.2015): Experimental Akka Typed and Akka Streams
Fresh from the Oven (04.2015): Experimental Akka Typed and Akka StreamsFresh from the Oven (04.2015): Experimental Akka Typed and Akka Streams
Fresh from the Oven (04.2015): Experimental Akka Typed and Akka StreamsKonrad Malawski
 
2014 akka-streams-tokyo-japanese
2014 akka-streams-tokyo-japanese2014 akka-streams-tokyo-japanese
2014 akka-streams-tokyo-japaneseKonrad Malawski
 
Journey into Reactive Streams and Akka Streams
Journey into Reactive Streams and Akka StreamsJourney into Reactive Streams and Akka Streams
Journey into Reactive Streams and Akka StreamsKevin Webber
 
Next generation message driven systems with Akka
Next generation message driven systems with AkkaNext generation message driven systems with Akka
Next generation message driven systems with AkkaJohan Andrén
 
Reactive Stream Processing with Akka Streams
Reactive Stream Processing with Akka StreamsReactive Stream Processing with Akka Streams
Reactive Stream Processing with Akka StreamsKonrad Malawski
 
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...Reactivesummit
 
Akka Streams and HTTP
Akka Streams and HTTPAkka Streams and HTTP
Akka Streams and HTTPRoland Kuhn
 
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)Konrad Malawski
 
Reactive integrations with Akka Streams
Reactive integrations with Akka StreamsReactive integrations with Akka Streams
Reactive integrations with Akka StreamsKonrad Malawski
 
HBase RowKey design for Akka Persistence
HBase RowKey design for Akka PersistenceHBase RowKey design for Akka Persistence
HBase RowKey design for Akka PersistenceKonrad Malawski
 
End to End Akka Streams / Reactive Streams - from Business to Socket
End to End Akka Streams / Reactive Streams - from Business to SocketEnd to End Akka Streams / Reactive Streams - from Business to Socket
End to End Akka Streams / Reactive Streams - from Business to SocketKonrad Malawski
 
Next generation message driven systems with Akka
Next generation message driven systems with AkkaNext generation message driven systems with Akka
Next generation message driven systems with AkkaJohan Andrén
 
Networks and types - the future of Akka
Networks and types - the future of AkkaNetworks and types - the future of Akka
Networks and types - the future of AkkaJohan Andrén
 
Reactive Streams: Handling Data-Flow the Reactive Way
Reactive Streams: Handling Data-Flow the Reactive WayReactive Streams: Handling Data-Flow the Reactive Way
Reactive Streams: Handling Data-Flow the Reactive WayRoland Kuhn
 

Tendances (20)

Reactive Streams / Akka Streams - GeeCON Prague 2014
Reactive Streams / Akka Streams - GeeCON Prague 2014Reactive Streams / Akka Streams - GeeCON Prague 2014
Reactive Streams / Akka Streams - GeeCON Prague 2014
 
Buiilding reactive distributed systems with Akka
Buiilding reactive distributed systems with AkkaBuiilding reactive distributed systems with Akka
Buiilding reactive distributed systems with Akka
 
A dive into akka streams: from the basics to a real-world scenario
A dive into akka streams: from the basics to a real-world scenarioA dive into akka streams: from the basics to a real-world scenario
A dive into akka streams: from the basics to a real-world scenario
 
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
 
Async - react, don't wait - PingConf
Async - react, don't wait - PingConfAsync - react, don't wait - PingConf
Async - react, don't wait - PingConf
 
Fresh from the Oven (04.2015): Experimental Akka Typed and Akka Streams
Fresh from the Oven (04.2015): Experimental Akka Typed and Akka StreamsFresh from the Oven (04.2015): Experimental Akka Typed and Akka Streams
Fresh from the Oven (04.2015): Experimental Akka Typed and Akka Streams
 
2014 akka-streams-tokyo-japanese
2014 akka-streams-tokyo-japanese2014 akka-streams-tokyo-japanese
2014 akka-streams-tokyo-japanese
 
Journey into Reactive Streams and Akka Streams
Journey into Reactive Streams and Akka StreamsJourney into Reactive Streams and Akka Streams
Journey into Reactive Streams and Akka Streams
 
Next generation message driven systems with Akka
Next generation message driven systems with AkkaNext generation message driven systems with Akka
Next generation message driven systems with Akka
 
Reactive Stream Processing with Akka Streams
Reactive Stream Processing with Akka StreamsReactive Stream Processing with Akka Streams
Reactive Stream Processing with Akka Streams
 
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Ka...
 
Akka Streams and HTTP
Akka Streams and HTTPAkka Streams and HTTP
Akka Streams and HTTP
 
Akka streams
Akka streamsAkka streams
Akka streams
 
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
 
Reactive integrations with Akka Streams
Reactive integrations with Akka StreamsReactive integrations with Akka Streams
Reactive integrations with Akka Streams
 
HBase RowKey design for Akka Persistence
HBase RowKey design for Akka PersistenceHBase RowKey design for Akka Persistence
HBase RowKey design for Akka Persistence
 
End to End Akka Streams / Reactive Streams - from Business to Socket
End to End Akka Streams / Reactive Streams - from Business to SocketEnd to End Akka Streams / Reactive Streams - from Business to Socket
End to End Akka Streams / Reactive Streams - from Business to Socket
 
Next generation message driven systems with Akka
Next generation message driven systems with AkkaNext generation message driven systems with Akka
Next generation message driven systems with Akka
 
Networks and types - the future of Akka
Networks and types - the future of AkkaNetworks and types - the future of Akka
Networks and types - the future of Akka
 
Reactive Streams: Handling Data-Flow the Reactive Way
Reactive Streams: Handling Data-Flow the Reactive WayReactive Streams: Handling Data-Flow the Reactive Way
Reactive Streams: Handling Data-Flow the Reactive Way
 

Similaire à Streaming all the things with akka streams

Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache KafkaExploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache KafkaLightbend
 
Reactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka StreamsReactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka StreamsDean Wampler
 
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...Dan Halperin
 
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & KafkaBack-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & KafkaAkara Sucharitakul
 
Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...
Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...
Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...Guido Schmutz
 
Let the alpakka pull your stream
Let the alpakka pull your streamLet the alpakka pull your stream
Let the alpakka pull your streamEnno Runne
 
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYCBuilding a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYCKonrad Malawski
 
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...Lightbend
 
Building scalable rest service using Akka HTTP
Building scalable rest service using Akka HTTPBuilding scalable rest service using Akka HTTP
Building scalable rest service using Akka HTTPdatamantra
 
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...confluent
 
Kafka Summit SF 2017 - Exactly-once Stream Processing with Kafka Streams
Kafka Summit SF 2017 - Exactly-once Stream Processing with Kafka StreamsKafka Summit SF 2017 - Exactly-once Stream Processing with Kafka Streams
Kafka Summit SF 2017 - Exactly-once Stream Processing with Kafka Streamsconfluent
 
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...HostedbyConfluent
 
Exactly-once Stream Processing with Kafka Streams
Exactly-once Stream Processing with Kafka StreamsExactly-once Stream Processing with Kafka Streams
Exactly-once Stream Processing with Kafka StreamsGuozhang Wang
 
Spark Streaming Info
Spark Streaming InfoSpark Streaming Info
Spark Streaming InfoDoug Chang
 
Spark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka StreamsSpark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka StreamsGuido Schmutz
 
Kafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platformKafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platformPaolo Castagna
 
Server side JavaScript: going all the way
Server side JavaScript: going all the wayServer side JavaScript: going all the way
Server side JavaScript: going all the wayOleg Podsechin
 
Apache Kafka - Scalable Message Processing and more!
Apache Kafka - Scalable Message Processing and more!Apache Kafka - Scalable Message Processing and more!
Apache Kafka - Scalable Message Processing and more!Guido Schmutz
 

Similaire à Streaming all the things with akka streams (20)

Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache KafkaExploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
 
Reactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka StreamsReactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka Streams
 
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
Introduction to Apache Beam & No Shard Left Behind: APIs for Massive Parallel...
 
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & KafkaBack-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
Back-Pressure in Action: Handling High-Burst Workloads with Akka Streams & Kafka
 
Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...
Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...
Spark (Structured) Streaming vs. Kafka Streams - two stream processing platfo...
 
Let the alpakka pull your stream
Let the alpakka pull your streamLet the alpakka pull your stream
Let the alpakka pull your stream
 
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYCBuilding a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
 
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
 
Building scalable rest service using Akka HTTP
Building scalable rest service using Akka HTTPBuilding scalable rest service using Akka HTTP
Building scalable rest service using Akka HTTP
 
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
Streaming Design Patterns Using Alpakka Kafka Connector (Sean Glover, Lightbe...
 
Kafka Summit SF 2017 - Exactly-once Stream Processing with Kafka Streams
Kafka Summit SF 2017 - Exactly-once Stream Processing with Kafka StreamsKafka Summit SF 2017 - Exactly-once Stream Processing with Kafka Streams
Kafka Summit SF 2017 - Exactly-once Stream Processing with Kafka Streams
 
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
Writing Blazing Fast, and Production-Ready Kafka Streams apps in less than 30...
 
Exactly-once Stream Processing with Kafka Streams
Exactly-once Stream Processing with Kafka StreamsExactly-once Stream Processing with Kafka Streams
Exactly-once Stream Processing with Kafka Streams
 
Spark Streaming Info
Spark Streaming InfoSpark Streaming Info
Spark Streaming Info
 
Spark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka StreamsSpark (Structured) Streaming vs. Kafka Streams
Spark (Structured) Streaming vs. Kafka Streams
 
Kafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platformKafka streams - From pub/sub to a complete stream processing platform
Kafka streams - From pub/sub to a complete stream processing platform
 
Server side JavaScript: going all the way
Server side JavaScript: going all the wayServer side JavaScript: going all the way
Server side JavaScript: going all the way
 
Apache Kafka - Scalable Message Processing and more!
Apache Kafka - Scalable Message Processing and more!Apache Kafka - Scalable Message Processing and more!
Apache Kafka - Scalable Message Processing and more!
 
Spark streaming + kafka 0.10
Spark streaming + kafka 0.10Spark streaming + kafka 0.10
Spark streaming + kafka 0.10
 
So you think you can stream.pptx
So you think you can stream.pptxSo you think you can stream.pptx
So you think you can stream.pptx
 

Plus de Johan Andrén

Building reactive distributed systems with Akka
Building reactive distributed systems with Akka Building reactive distributed systems with Akka
Building reactive distributed systems with Akka Johan Andrén
 
Introduction to akka actors with java 8
Introduction to akka actors with java 8Introduction to akka actors with java 8
Introduction to akka actors with java 8Johan Andrén
 
Scala frukostseminarium
Scala frukostseminariumScala frukostseminarium
Scala frukostseminariumJohan Andrén
 
Introduction to Akka
Introduction to AkkaIntroduction to Akka
Introduction to AkkaJohan Andrén
 
Async – react, don't wait
Async – react, don't waitAsync – react, don't wait
Async – react, don't waitJohan Andrén
 
Akka frukostseminarium
Akka   frukostseminariumAkka   frukostseminarium
Akka frukostseminariumJohan Andrén
 
Macros and reflection in scala 2.10
Macros and reflection in scala 2.10Macros and reflection in scala 2.10
Macros and reflection in scala 2.10Johan Andrén
 
Introduction to Scala
Introduction to ScalaIntroduction to Scala
Introduction to ScalaJohan Andrén
 

Plus de Johan Andrén (9)

Building reactive distributed systems with Akka
Building reactive distributed systems with Akka Building reactive distributed systems with Akka
Building reactive distributed systems with Akka
 
Introduction to akka actors with java 8
Introduction to akka actors with java 8Introduction to akka actors with java 8
Introduction to akka actors with java 8
 
Scala frukostseminarium
Scala frukostseminariumScala frukostseminarium
Scala frukostseminarium
 
Introduction to Akka
Introduction to AkkaIntroduction to Akka
Introduction to Akka
 
Async – react, don't wait
Async – react, don't waitAsync – react, don't wait
Async – react, don't wait
 
Akka frukostseminarium
Akka   frukostseminariumAkka   frukostseminarium
Akka frukostseminarium
 
Macros and reflection in scala 2.10
Macros and reflection in scala 2.10Macros and reflection in scala 2.10
Macros and reflection in scala 2.10
 
Introduction to Scala
Introduction to ScalaIntroduction to Scala
Introduction to Scala
 
Duchess scala-2012
Duchess scala-2012Duchess scala-2012
Duchess scala-2012
 

Dernier

Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 

Dernier (20)

Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 

Streaming all the things with akka streams

  • 1. Akka streams Streaming Johan Andrén Voxxeddays, Zürich, 2017-02-23 with All the things!
  • 2. Johan Andrén Akka Team Stockholm Scala User Group @apnylle johan.andren@lightbend.com
  • 3. Make building powerful concurrent & distributed applications simple. Akka is a toolkit and runtime for building highly concurrent, distributed, and resilient message-driven applications on the JVM Akka
  • 4. Actors – simple & high performance concurrency Cluster / Remoting – location transparency, resilience Cluster tools – and more prepackaged patterns Streams – back-pressured stream processing Persistence – Event Sourcing HTTP – complete, fully async and reactive HTTP Server Official Kafka, Cassandra, DynamoDB integrations, tons more in the community Complete Java & Scala APIs for all features What’s in the toolkit?
  • 6. Reactive Streams timeline Oct 2013 RxJava, Akka and Twitter- people meeting “Soon thereafter” 2013 Reactive Streams Expert group formed Apr 2015 Reactive Streams Spec 1.0 TCK 5+ impls ??? 2015 JEP-266 inclusion in JDK9 Akka Streams, RxJava Vert.x, MongoDB, …
  • 7. Reactive Streams Reactive Streams is an initiative to provide a standard for asynchronous stream processing with non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and JavaScript) as well as network protocols http://www.reactive-streams.org “
  • 8. Reactive Streams Reactive Streams is an initiative to provide a standard for asynchronous stream processing with non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and JavaScript) as well as network protocols http://www.reactive-streams.org “
  • 10. Reactive Streams Reactive Streams is an initiative to provide a standard for asynchronous stream processing with non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and JavaScript) as well as network protocols http://www.reactive-streams.org “
  • 11. Asynchronous stream processing Source Sink (possible) asynchronous boundaries Flow
  • 12. Reactive Streams Reactive Streams is an initiative to provide a standard for asynchronous stream processing with non-blocking back pressure. This encompasses efforts aimed at runtime environments (JVM and JavaScript) as well as network protocols http://www.reactive-streams.org “
  • 13. No back pressure Source Sink 10 msg/s 1 msg/s Flow asynchronous boundary
  • 14. No back pressure Source Sink 10 msg/s 1 msg/s Flow asynchronous boundary OutOfMemoryError!!
  • 15. No back pressure - bounded buffer Source Sink 10 msg/s 1 msg/s Flow buffer size 6 🗑 asynchronous boundary
  • 16. Async non blocking back pressure Source Sink 1 msg/s 1 msg/s Flow buffer size 6 🗑 asynchronous boundary Hey! give me 2 more
  • 17. Reactive Streams RS Library A RS library B async boundary
  • 18. Reactive Streams “Make building powerful concurrent & distributed applications simple.”
  • 19. Complete and awesome Java and Scala APIs (Just like everything in Akka) Akka Streams
  • 20. Akka Streams in ~20 seconds: final ActorSystem system = ActorSystem.create();
 final Materializer materializer = ActorMaterializer.create(system);
 
 final Source<Integer, NotUsed> source =
 Source.range(0, 20000000);
 
 final Flow<Integer, String, NotUsed> flow =
 Flow.fromFunction((Integer n) -> n.toString());
 
 final Sink<String, CompletionStage<Done>> sink =
 Sink.foreach(str -> System.out.println(str));
 
 final RunnableGraph<NotUsed> runnable = source.via(flow).to(sink);
 
 runnable.run(materializer); complete sources on github
  • 21. Akka Streams in ~20 seconds: final ActorSystem system = ActorSystem.create();
 final Materializer materializer = ActorMaterializer.create(system);
 
 final Source<Integer, NotUsed> source =
 Source.range(0, 20000000);
 
 final Flow<Integer, String, NotUsed> flow =
 Flow.fromFunction((Integer n) -> n.toString());
 
 final Sink<String, CompletionStage<Done>> sink =
 Sink.foreach(str -> System.out.println(str));
 
 final RunnableGraph<NotUsed> runnable = source.via(flow).to(sink);
 
 runnable.run(materializer); complete sources on github
  • 22. Akka Streams in ~20 seconds: implicit val system = ActorSystem()
 implicit val mat = ActorMaterializer()
 
 val source = Source(0 to 20000000)
 
 val flow = Flow[Int].map(_.toString())
 
 val sink = Sink.foreach[String](println(_))
 
 val runnable = source.via(flow).to(sink)
 
 runnable.run() complete sources on github
  • 23. Akka Streams in ~20 seconds: Source.range(0, 20000000)
 .map(Object::toString)
 .runForeach(str -> System.out.println(str), materializer); complete sources on github
  • 24. Akka Streams in ~20 seconds: Source(0 to 20000000)
 .map(_.toString)
 .runForeach(println) complete sources on github
  • 25. Numbers as a service final Source<ByteString, NotUsed> numbers = Source.unfold(0L, n -> {
 long next = n + 1;
 return Optional.of(Pair.create(next, next));
 }).map(n -> ByteString.fromString(n.toString() + "n"));
 
 
 final Route route =
 path("numbers", () ->
 get(() ->
 complete(HttpResponse.create()
 .withStatus(StatusCodes.OK)
 .withEntity(HttpEntities.create(
 ContentTypes.TEXT_PLAIN_UTF8,
 numbers
 )))
 )
 );
 
 final CompletionStage<ServerBinding> bindingCompletionStage =
 http.bindAndHandle(route.flow(system, materializer), host, materializer); complete sources on github
  • 26. Numbers as a service val numbers =
 Source.unfold(0L) { (n) =>
 val next = n + 1
 Some((next, next))
 }.map(n => ByteString(n + "n"))
 
 val route =
 path("numbers") {
 get {
 complete( HttpResponse(entity = HttpEntity(`text/plain(UTF-8)`, numbers)) )
 }
 }
 val futureBinding = Http().bindAndHandle(route, "127.0.0.1", 8080) complete sources on github
  • 27. recv buffer send buffer 🚚 🚚 🚚 🚚 🚚 🚚 🚚 Back pressure over TCP numbers TCP HTTP Server Client
  • 28. recv buffer send buffer 🚚 🚚 🚚 🚚 🚚 🚚 🚑 Back pressure over TCP numbers TCP HTTP Backpressure Server Client
  • 29. recv buffer send buffer 🚚 🚚 🚚 🚚 🚚 🚚 🚚 🚚 🚚 🚚 🚑 Back pressure over TCP numbers TCP HTTP Backpressure Backpressure Server Client
  • 30. A more useful example complete sources on github final Flow<Message, Message, NotUsed> measurementsFlow =
 Flow.of(Message.class)
 .flatMapConcat((Message message) ->
 message.asTextMessage()
 .getStreamedText()
 .fold("", (acc, elem) -> acc + elem)
 )
 .groupedWithin(1000, FiniteDuration.create(1, SECONDS))
 .mapAsync(5, database::asyncBulkInsert)
 .map(written ->
 TextMessage.create("wrote up to: " + written.get(written.size() - 1))
 );
 
 final Route route = path("measurements", () ->
 get(() ->
 handleWebSocketMessages(measurementsFlow)
 )
 );
 
 final CompletionStage<ServerBinding> bindingCompletionStage =
 http.bindAndHandle(route.flow(system, materializer), host, materializer); Credit to: Colin Breck
  • 31. A more useful example complete sources on github val measurementsFlow =
 Flow[Message].flatMapConcat(message =>
 message.asTextMessage.getStreamedText.fold("")(_ + _)
 )
 .groupedWithin(1000, 1.second)
 .mapAsync(5)(Database.asyncBulkInsert)
 .map(written => TextMessage("wrote up to: " + written.last))
 
 val route =
 path("measurements") {
 get {
 handleWebSocketMessages(measurementsFlow)
 }
 }
 
 val futureBinding = Http().bindAndHandle(route, "127.0.0.1", 8080)
  • 32. The tale of the two pancake chefs HungrySink Frying Pan BatterSource Scoops of batter Pancakes nom nom nom asynchronous boundaries Roland Patrik
  • 33. Rolands pipelined pancakes HungrySinkPan 2BatterSource Pan 1 nom nom nom
  • 34. Rolands pipelined pancakes Flow<ScoopOfBatter, HalfCookedPancake, NotUsed> fryingPan1 =
 Flow.of(ScoopOfBatter.class).map(batter -> new HalfCookedPancake());
 
 Flow<HalfCookedPancake, Pancake, NotUsed> fryingPan2 =
 Flow.of(HalfCookedPancake.class).map(halfCooked -> new Pancake()); Flow<ScoopOfBatter, Pancake, NotUsed> pancakeChef =
 fryingPan1.async().via(fryingPan2.async()); section in docs
  • 35. Rolands pipelined pancakes // Takes a scoop of batter and creates a pancake with one side cooked val fryingPan1: Flow[ScoopOfBatter, HalfCookedPancake, NotUsed] =
 Flow[ScoopOfBatter].map { batter => HalfCookedPancake() }
 
 // Finishes a half-cooked pancake
 val fryingPan2: Flow[HalfCookedPancake, Pancake, NotUsed] =
 Flow[HalfCookedPancake].map { halfCooked => Pancake() } 
 // With the two frying pans we can fully cook pancakes val pancakeChef: Flow[ScoopOfBatter, Pancake, NotUsed] =
 Flow[ScoopOfBatter].via(fryingPan1.async).via(fryingPan2.async) section in docs
  • 36. Patriks parallel pancakes HungrySink Pan 2 BatterSource Pan 1 Balance Merge nom nom nom
  • 37. Patriks parallel pancakes Flow<ScoopOfBatter, Pancake, NotUsed> fryingPan =
 Flow.of(ScoopOfBatter.class).map(batter -> new Pancake());
 
 Flow<ScoopOfBatter, Pancake, NotUsed> pancakeChef =
 Flow.fromGraph(GraphDSL.create(builder -> {
 final UniformFanInShape<Pancake, Pancake> mergePancakes =
 builder.add(Merge.create(2));
 final UniformFanOutShape<ScoopOfBatter, ScoopOfBatter> dispatchBatter =
 builder.add(Balance.create(2));
 
 builder.from(dispatchBatter.out(0)) .via(builder.add(fryingPan.async())) .toInlet(mergePancakes.in(0));
 builder.from(dispatchBatter.out(1)) .via(builder.add(fryingPan.async())) .toInlet(mergePancakes.in(1));
 
 return FlowShape.of(dispatchBatter.in(), mergePancakes.out());
 })); section in docs
  • 38. Patriks parallel pancakes val pancakeChef: Flow[ScoopOfBatter, Pancake, NotUsed] =
 Flow.fromGraph(GraphDSL.create() { implicit builder =>
 import GraphDSL.Implicits._ 
 val dispatchBatter = builder.add(Balance[ScoopOfBatter](2))
 val mergePancakes = builder.add(Merge[Pancake](2))
 
 // Using two pipelines, having two frying pans each, in total using
 // four frying pans
 dispatchBatter.out(0) ~> fryingPan1.async ~> fryingPan2.async ~> mergePancakes.in(0)
 dispatchBatter.out(1) ~> fryingPan1.async ~> fryingPan2.async ~> mergePancakes.in(1)
 
 FlowShape(dispatchBatter.in, mergePancakes.out)
 }) section in docs
  • 39. Making pancakes together HungrySink Pan 3 BatterSource Pan 1 Balance Merge Pan 2 Pan 4 nom nom nom
  • 40. Built in stages Flow stages map/fromFunction, mapConcat, statefulMapConcat, filter, filterNot, collect, grouped, sliding, scan, scanAsync, fold, foldAsync, reduce, drop, take, takeWhile, dropWhile, recover, recoverWith, recoverWithRetries, mapError, detach, throttle, intersperse, limit, limitWeighted, log, recoverWithRetries, mapAsync, mapAsyncUnordered, takeWithin, dropWithin, groupedWithin, initialDelay, delay, conflate, conflateWithSeed, batch, batchWeighted, expand, buffer, prefixAndTail, groupBy, splitWhen, splitAfter, flatMapConcat, flatMapMerge, initialTimeout, completionTimeout, idleTimeout, backpressureTimeout, keepAlive, initialDelay, merge, mergeSorted, Source stages fromIterator, apply, single, repeat, cycle, tick, fromFuture, fromCompletionStage, unfold, unfoldAsync, empty, maybe, failed, lazily, actorPublisher, actorRef, combine, unfoldResource, unfoldResourceAsync, queue, asSubscriber, fromPublisher, zipN, zipWithN Sink stages head, headOption, last, lastOption, ignore, cancelled, seq, foreach, foreachParallel, onComplete, lazyInit, queue, fold, reduce, combine, actorRef, actorRefWithAck, actorSubscriber, asPublisher, fromSubscriber Additional Sink and Source converters {from,as}OutputStream, {from,as}InputStream, {as,from} javaCollector, javaCollectorParallelUnordered File IO Sinks and Sources fromPath, toPath mergePreferred, zip, zipWith, zipWithIndex, concat, prepend, orElse, interleave, unzip, unzipWith, broadcast, balance, partition, watchTermination, monitor Even more Framing, JSON framing, killswitch, BroadcastHub, MergeHub
  • 41. But I want to connect other things! @doggosdoingthings
  • 42. A community for Akka Streams connectors http://github.com/akka/alpakka Alpakka
  • 43. Alpakka – a community for Stream connectors Existing Alpakka MQTT AMQP/ RabbitMQ SSE Cassandra FTP/ SFTP Kafka AWS S3 Files AWS DynamoDB AWS SQS JMS Azure IoT Hub TCP In Akka Actors Reactive Streams Java Streams Basic File IO Alpakka PRs AWS Lambda MongoDB* druid.io Caffeine IronMQ HBase
  • 44. But my usecase is a unique snowflake! ❄ ❄ ❄
  • 45. GraphStage API public class Map<A, B> extends GraphStage<FlowShape<A, B>> {
 private final Function<A, B> f;
 public final Inlet<A> in = Inlet.create("Map.in");
 public final Outlet<B> out = Outlet.create("Map.out"); private final FlowShape<A, B> shape = FlowShape.of(in, out); public Map(Function<A, B> f) {
 this.f = f;
 }
 public FlowShape<A,B> shape() {
 return shape;
 }
 public GraphStageLogic createLogic(Attributes inheritedAttributes) {
 return new GraphStageLogic(shape) {
 {
 setHandler(in, new AbstractInHandler() {
 @Override
 public void onPush() throws Exception {
 push(out, f.apply(grab(in)));
 }
 });
 setHandler(out, new AbstractOutHandler() {
 @Override
 public void onPull() throws Exception {
 pull(in);
 }
 });
 }
 };
 }
 } complete sources on github
  • 46. GraphStage API class Map[A, B](f: A => B) extends GraphStage[FlowShape[A, B]] {
 
 val in = Inlet[A]("Map.in")
 val out = Outlet[B]("Map.out")
 override val shape = FlowShape.of(in, out)
 
 override def createLogic(attr: Attributes): GraphStageLogic =
 new GraphStageLogic(shape) {
 setHandler(in, new InHandler {
 override def onPush(): Unit = {
 push(out, f(grab(in)))
 }
 })
 setHandler(out, new OutHandler {
 override def onPull(): Unit = {
 pull(in)
 }
 })
 }
 } complete sources on github
  • 47. What about distributed/reactive systems? Kafka Stream Stream Stream Stream cluster
  • 48. The community Mailing list: https://groups.google.com/group/akka-user Public chat rooms: http://gitter.im/akka/dev developing Akka http://gitter.im/akka/akka using Akka Easy to contribute tickets: https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy-to-contribute https://github.com/akka/akka/issues?q=is%3Aissue+is%3Aopen+label%3A%22nice-to-have+%28low-prio%29%22 ~200 active contributors!
  • 49. Thanks for listening! @apnylle johan.andren@lightbend.com Runnable sample sources (Java & Scala) https://github.com/johanandren/akka-stream-samples/tree/jfokus-2017 http://akka.io Akka