51 / 54 KYOTO UNIVERSITY
参考える文献:
Matti Åstrand, Patrik Floréen, Valentin Polishchuk, Joel Rybicki, Jukka Suomela,
Jara Uitto. A local 2-approximation algorithm for the vertex cover problem. DISC
2009.
Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, Samy Bengio. Neural
Combinatorial Optimization with Reinforcement Learning. arXiv 2016.
Zhengdao Chen, Soledad Villar, Lei Chen, Joan Bruna. On the equivalence
between graph isomorphism testing and function approximation with GNNs.
NeurIPS 2019.
Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, Le Song. Learning
Combinatorial Optimization Algorithms over Graphs. NIPS 2017.
52 / 54 KYOTO UNIVERSITY
参考える文献:
Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, Dawei Yin. Graph
Neural Networks for Social Recommendation. WWW 2019.
Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, Andrea Lodi.
Exact Combinatorial Optimization with Graph Convolutional Neural Networks.
NeurIPS 2019.
Lauri Hella, Matti Järvisalo, Antti Kuusisto, Juhana Laurinharju, Tuomo
Lempiäinen, Kerkko Luosto, Jukka Suomela, Jonni Virtema. Weak Models of
Distributed Computing, with Connections to Modal Logic. PODC 2012.
Jiayi Huang, Mostofa Patwary, Gregory Diamos. Coloring Big Graphs with
AlphaGoZero. arXiv 2019.
53 / 54 KYOTO UNIVERSITY
参考える文献:
Thomas N. Kipf, Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks. ICLR 2017.
Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman. On the Universality
of Invariant Networks. ICML 2019.
Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, Martin Grohe. Weisfeiler and Leman Go Neural: Higher-
order Graph Neural Networks. AAAI 2019.
Namyong Park, Andrey Kan, Xin Luna Dong, Tong Zhao, Christos Faloutsos.
Estimating Node Importance in Knowledge Graphs Using Graph Neural
Networks. KDD 2019.
54 / 54 KYOTO UNIVERSITY
参考える文献:
Ryoma Sato, Makoto Yamada, Hisashi Kashima. Approximation Ratios of Graph
Neural Networks for Combinatorial Problems. NeurIPS 2019.
Ryoma Sato, Makoto Yamada, Hisashi Kashima. Random Features Strengthen
Graph Neural Networks. arXiv 2020.
Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
Karsten M. Borgwardt. Weisfeiler-Lehman Graph Kernels. JMLR 2011.
Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
Yoshua Bengio. Graph Attention Networks. ICLR 2018.
Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. How Powerful are Graph
Neural Networks? ICLR 2019.