SlideShare une entreprise Scribd logo
1  sur  36
May 21
Chapter 9:
Basics of Hypothesis Testing
In Chapter 9:
9.1 Null and Alternative Hypotheses
9.2 Test Statistic
9.3 P-Value
9.4 Significance Level
9.5 One-Sample z Test
9.6 Power and Sample Size
Terms Introduce in Prior Chapter
• Population  all possible values
• Sample  a portion of the population
• Statistical inference  generalizing from a
sample to a population with calculated degree
of certainty
• Two forms of statistical inference
– Hypothesis testing
– Estimation
• Parameter  a characteristic of population, e.g.,
population mean µ
• Statistic  calculated from data in the sample, e.g.,
sample mean ( )
x
Distinctions Between Parameters
and Statistics (Chapter 8 review)
Parameters Statistics
Source Population Sample
Notation Greek (e.g., μ) Roman (e.g., xbar)
Vary No Yes
Calculated No Yes
Sampling Distributions of a Mean
(Introduced in Ch 8)
The sampling distributions of a mean (SDM)
describes the behavior of a sampling mean
 
n
SE
SE
N
x
x
x



where
,
~
Hypothesis Testing
• Is also called significance testing
• Tests a claim about a parameter using
evidence (data in a sample
• The technique is introduced by
considering a one-sample z test
• The procedure is broken into four steps
• Each element of the procedure must be
understood
Hypothesis Testing Steps
A. Null and alternative hypotheses
B. Test statistic
C. P-value and interpretation
D. Significance level (optional)
§9.1 Null and Alternative
Hypotheses
• Convert the research question to null and
alternative hypotheses
• The null hypothesis (H0) is a claim of “no
difference in the population”
• The alternative hypothesis (Ha) claims
“H0 is false”
• Collect data and seek evidence against H0
as a way of bolstering Ha (deduction)
Illustrative Example: “Body Weight”
• The problem: In the 1970s, 20–29 year
old men in the U.S. had a mean μ body
weight of 170 pounds. Standard deviation
σ was 40 pounds. We test whether mean
body weight in the population now differs.
• Null hypothesis H0: μ = 170 (“no
difference”)
• The alternative hypothesis can be either
Ha: μ > 170 (one-sided test) or
Ha: μ ≠ 170 (two-sided test)
§9.2 Test Statistic
n
SE
H
SE
x
x
x







and
true
is
assuming
mean
population
where
z
0
0
0
stat
This is an example of a one-sample test of a
mean when σ is known. Use this statistic to
test the problem:
Illustrative Example: z statistic
• For the illustrative example, μ0 = 170
• We know σ = 40
• Take an SRS of n = 64. Therefore
• If we found a sample mean of 173, then
5
64
40



n
SEx

60
.
0
5
170
173
0
stat 




x
SE
x
z

Illustrative Example: z statistic
If we found a sample mean of 185, then
00
.
3
5
170
185
0
stat 




x
SE
x
z

Reasoning Behinµzstat
 
5
,
170
~ N
x
Sampling distribution of xbar
under H0: µ = 170 for n = 64 
§9.3 P-value
• The P-value answer the question: What is the
probability of the observed test statistic or one
more extreme when H0 is true?
• This corresponds to the AUC in the tail of the
Standard Normal distribution beyond the zstat.
• Convert z statistics to P-value :
For Ha: μ > μ0  P = Pr(Z > zstat) = right-tail beyond zstat
For Ha: μ < μ0  P = Pr(Z < zstat) = left tail beyond zstat
For Ha: μ μ0  P = 2 × one-tailed P-value
• Use Table B or software to find these
probabilities (next two slides).
One-sided P-value for zstat of 0.6
One-sided P-value for zstat of 3.0
Two-Sided P-Value
• One-sided Ha 
AUC in tail
beyond zstat
• Two-sided Ha 
consider potential
deviations in both
directions 
double the one-
sided P-value
Examples: If one-sided P
= 0.0010, then two-sided
P = 2 × 0.0010 = 0.0020.
If one-sided P = 0.2743,
then two-sided P = 2 ×
0.2743 = 0.5486.
Interpretation
• P-value answer the question: What is the
probability of the observed test statistic …
when H0 is true?
• Thus, smaller and smaller P-values
provide stronger and stronger evidence
against H0
• Small P-value  strong evidence
Interpretation
Conventions*
P > 0.10  non-significant evidence against H0
0.05 < P  0.10  marginally significant evidence
0.01 < P  0.05  significant evidence against H0
P  0.01  highly significant evidence against H0
Examples
P =.27  non-significant evidence against H0
P =.01  highly significant evidence against H0
* It is unwise to draw firm borders for “significance”
α-Level (Used in some situations)
• Let α ≡ probability of erroneously rejecting H0
• Set α threshold (e.g., let α = .10, .05, or
whatever)
• Reject H0 when P ≤ α
• Retain H0 when P > α
• Example: Set α = .10. Find P = 0.27  retain H0
• Example: Set α = .01. Find P = .001  reject H0
(Summary) One-Sample z Test
A. Hypothesis statements
H0: µ = µ0 vs.
Ha: µ ≠ µ0 (two-sided) or
Ha: µ < µ0 (left-sided) or
Ha: µ > µ0 (right-sided)
B. Test statistic
C. P-value: convert zstat to P value
D. Significance statement (usually not necessary)
n
SE
SE
x
x
x




 where
z 0
stat
§9.5 Conditions for z test
• σ known (not from data)
• Population approximately Normal or
large sample (central limit theorem)
• SRS (or facsimile)
• Data valid
The Lake Wobegon Example
“where all the children are above average”
• Let X represent Weschler Adult Intelligence
scores (WAIS)
• Typically, X ~ N(100, 15)
• Take SRS of n = 9 from Lake Wobegon
population
• Data  {116, 128, 125, 119, 89, 99, 105,
116, 118}
• Calculate: x-bar = 112.8
• Does sample mean provide strong evidence
that population mean μ > 100?
Example: “Lake Wobegon”
A. Hypotheses:
H0: µ = 100 versus
Ha: µ > 100 (one-sided)
Ha: µ ≠ 100 (two-sided)
B. Test statistic:
56
.
2
5
100
8
.
112
5
9
15
0
stat 







x
x
SE
x
z
n
SE


C. P-value: P = Pr(Z ≥ 2.56) = 0.0052
P =.0052  it is unlikely the sample came from this
null distribution  strong evidence against H0
• Ha: µ ≠100
• Considers random
deviations “up” and
“down” from μ0 tails
above and below ±zstat
• Thus, two-sided P
= 2 × 0.0052
= 0.0104
Two-Sided P-value: Lake Wobegon
§9.6 Power and Sample Size
Truth
Decision H0 true H0 false
Retain H0 Correct retention Type II error
Reject H0 Type I error Correct rejection
α ≡ probability of a Type I error
β ≡ Probability of a Type II error
Two types of decision errors:
Type I error = erroneous rejection of true H0
Type II error = erroneous retention of false H0
Power
• β ≡ probability of a Type II error
β = Pr(retain H0 | H0 false)
(the “|” is read as “given”)
• 1 – β “Power” ≡ probability of avoiding a
Type II error
1– β = Pr(reject H0 | H0 false)
Power of a z test
where
• Φ(z) represent the cumulative probability
of Standard Normal Z
• μ0 represent the population mean under
the null hypothesis
• μa represents the population mean under
the alternative hypothesis







 




 



 
n
z a |
|
1 0
1 2
Calculating Power: Example
A study of n = 16 retains H0: μ = 170 at α = 0.05
(two-sided); σ is 40. What was the power of test’s
conditions to identify a population mean of 190?
 
5160
.
0
04
.
0
40
16
|
190
170
|
96
.
1
|
|
1 0
1 2










 











 




 



 
n
z a
Reasoning Behind Power
• Competing sampling distributions
Top curve (next page) assumes H0 is true
Bottom curve assumes Ha is true
α is set to 0.05 (two-sided)
• We will reject H0 when a sample mean exceeds
189.6 (right tail, top curve)
• The probability of getting a value greater than
189.6 on the bottom curve is 0.5160,
corresponding to the power of the test
Sample Size Requirements
Sample size for one-sample z test:
where
1 – β ≡ desired power
α ≡ desired significance level (two-sided)
σ ≡ population standard deviation
Δ = μ0 – μa ≡ the difference worth detecting
 
2
2
1
1
2
2




 

 z
z
n
Example: Sample Size
Requirement
How large a sample is needed for a one-sample z
test with 90% power and α = 0.05 (two-tailed)
when σ = 40? Let H0: μ = 170 and Ha: μ = 190
(thus, Δ = μ0 − μa = 170 – 190 = −20)
Round up to 42 to ensure adequate power.
  99
.
41
20
)
96
.
1
28
.
1
(
40
2
2
2
2
2
1
1
2
2








 

 z
z
n
Illustration: conditions
for 90% power.

Contenu connexe

Tendances

Introduction to Bayesian Methods
Introduction to Bayesian MethodsIntroduction to Bayesian Methods
Introduction to Bayesian MethodsCorey Chivers
 
Statistics (1): estimation, Chapter 2: Empirical distribution and bootstrap
Statistics (1): estimation, Chapter 2: Empirical distribution and bootstrapStatistics (1): estimation, Chapter 2: Empirical distribution and bootstrap
Statistics (1): estimation, Chapter 2: Empirical distribution and bootstrapChristian Robert
 
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Christian Robert
 
Statistik 1 6 distribusi probabilitas normal
Statistik 1 6 distribusi probabilitas normalStatistik 1 6 distribusi probabilitas normal
Statistik 1 6 distribusi probabilitas normalSelvin Hadi
 
Probability Distributions for Discrete Variables
Probability Distributions for Discrete VariablesProbability Distributions for Discrete Variables
Probability Distributions for Discrete Variablesgetyourcheaton
 
Statistics lecture 6 (ch5)
Statistics lecture 6 (ch5)Statistics lecture 6 (ch5)
Statistics lecture 6 (ch5)jillmitchell8778
 
Chapter 1 random variables and probability distributions
Chapter 1   random variables and probability distributionsChapter 1   random variables and probability distributions
Chapter 1 random variables and probability distributionsAntonio F. Balatar Jr.
 
Statistics and probability pp
Statistics and  probability ppStatistics and  probability pp
Statistics and probability ppRuby Vidal
 
The normal distribution
The normal distributionThe normal distribution
The normal distributionShakeel Nouman
 
Data classification sammer
Data classification sammer Data classification sammer
Data classification sammer Sammer Qader
 
Statistics (1): estimation, Chapter 1: Models
Statistics (1): estimation, Chapter 1: ModelsStatistics (1): estimation, Chapter 1: Models
Statistics (1): estimation, Chapter 1: ModelsChristian Robert
 
Further Discrete Random Variables
Further Discrete Random VariablesFurther Discrete Random Variables
Further Discrete Random VariablesJJkedst
 
Discrete Probability Distributions
Discrete Probability DistributionsDiscrete Probability Distributions
Discrete Probability Distributionsmandalina landy
 
Discrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsDiscrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsBabasab Patil
 
Discrete Random Variables And Probability Distributions
Discrete Random Variables And Probability DistributionsDiscrete Random Variables And Probability Distributions
Discrete Random Variables And Probability DistributionsDataminingTools Inc
 

Tendances (20)

2018 MUMS Fall Course - Essentials of Bayesian Hypothesis Testing - Jim Berge...
2018 MUMS Fall Course - Essentials of Bayesian Hypothesis Testing - Jim Berge...2018 MUMS Fall Course - Essentials of Bayesian Hypothesis Testing - Jim Berge...
2018 MUMS Fall Course - Essentials of Bayesian Hypothesis Testing - Jim Berge...
 
Talk 2
Talk 2Talk 2
Talk 2
 
Introduction to Bayesian Methods
Introduction to Bayesian MethodsIntroduction to Bayesian Methods
Introduction to Bayesian Methods
 
Statistics (1): estimation, Chapter 2: Empirical distribution and bootstrap
Statistics (1): estimation, Chapter 2: Empirical distribution and bootstrapStatistics (1): estimation, Chapter 2: Empirical distribution and bootstrap
Statistics (1): estimation, Chapter 2: Empirical distribution and bootstrap
 
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
Statistics (1): estimation Chapter 3: likelihood function and likelihood esti...
 
Statistik 1 6 distribusi probabilitas normal
Statistik 1 6 distribusi probabilitas normalStatistik 1 6 distribusi probabilitas normal
Statistik 1 6 distribusi probabilitas normal
 
Probability Distributions for Discrete Variables
Probability Distributions for Discrete VariablesProbability Distributions for Discrete Variables
Probability Distributions for Discrete Variables
 
Statistics lecture 6 (ch5)
Statistics lecture 6 (ch5)Statistics lecture 6 (ch5)
Statistics lecture 6 (ch5)
 
Chapter 1 random variables and probability distributions
Chapter 1   random variables and probability distributionsChapter 1   random variables and probability distributions
Chapter 1 random variables and probability distributions
 
Statistics and probability pp
Statistics and  probability ppStatistics and  probability pp
Statistics and probability pp
 
The normal distribution
The normal distributionThe normal distribution
The normal distribution
 
Data classification sammer
Data classification sammer Data classification sammer
Data classification sammer
 
Statistics (1): estimation, Chapter 1: Models
Statistics (1): estimation, Chapter 1: ModelsStatistics (1): estimation, Chapter 1: Models
Statistics (1): estimation, Chapter 1: Models
 
The Central Limit Theorem
The Central Limit TheoremThe Central Limit Theorem
The Central Limit Theorem
 
Further Discrete Random Variables
Further Discrete Random VariablesFurther Discrete Random Variables
Further Discrete Random Variables
 
Discrete Probability Distributions
Discrete Probability DistributionsDiscrete Probability Distributions
Discrete Probability Distributions
 
2018 MUMS Fall Course - Introduction to statistical and mathematical model un...
2018 MUMS Fall Course - Introduction to statistical and mathematical model un...2018 MUMS Fall Course - Introduction to statistical and mathematical model un...
2018 MUMS Fall Course - Introduction to statistical and mathematical model un...
 
Statistical Methods
Statistical MethodsStatistical Methods
Statistical Methods
 
Discrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec domsDiscrete and continuous probability distributions ppt @ bec doms
Discrete and continuous probability distributions ppt @ bec doms
 
Discrete Random Variables And Probability Distributions
Discrete Random Variables And Probability DistributionsDiscrete Random Variables And Probability Distributions
Discrete Random Variables And Probability Distributions
 

Similaire à Ppt1

hypothesisTestPPT.pptx
hypothesisTestPPT.pptxhypothesisTestPPT.pptx
hypothesisTestPPT.pptxdangwalakash07
 
Hypothesis testing1
Hypothesis testing1Hypothesis testing1
Hypothesis testing1HanaaBayomy
 
hypothesis test
 hypothesis test hypothesis test
hypothesis testUnsa Shakir
 
Lec12-Probability.ppt
Lec12-Probability.pptLec12-Probability.ppt
Lec12-Probability.pptakashok1v
 
Lec12-Probability.ppt
Lec12-Probability.pptLec12-Probability.ppt
Lec12-Probability.pptssuserc7c104
 
08 test of hypothesis large sample.ppt
08 test of hypothesis large sample.ppt08 test of hypothesis large sample.ppt
08 test of hypothesis large sample.pptPooja Sakhla
 
Hypothesis testing an introduction
Hypothesis testing an introductionHypothesis testing an introduction
Hypothesis testing an introductionGeetika Gulyani
 
Bayesian statistics using r intro
Bayesian statistics using r   introBayesian statistics using r   intro
Bayesian statistics using r introBayesLaplace1
 
슬로우캠퍼스: scikit-learn & 머신러닝 (강박사)
슬로우캠퍼스:  scikit-learn & 머신러닝 (강박사)슬로우캠퍼스:  scikit-learn & 머신러닝 (강박사)
슬로우캠퍼스: scikit-learn & 머신러닝 (강박사)마이캠퍼스
 
Bayesian decision making in clinical research
Bayesian decision making in clinical researchBayesian decision making in clinical research
Bayesian decision making in clinical researchBhaswat Chakraborty
 

Similaire à Ppt1 (20)

Nonparametric and Distribution- Free Statistics
Nonparametric and Distribution- Free Statistics Nonparametric and Distribution- Free Statistics
Nonparametric and Distribution- Free Statistics
 
hypothesisTestPPT.pptx
hypothesisTestPPT.pptxhypothesisTestPPT.pptx
hypothesisTestPPT.pptx
 
Hypothesis testing1
Hypothesis testing1Hypothesis testing1
Hypothesis testing1
 
Hmisiri nonparametrics book
Hmisiri nonparametrics bookHmisiri nonparametrics book
Hmisiri nonparametrics book
 
TEST OF SIGNIFICANCE.pptx
TEST OF SIGNIFICANCE.pptxTEST OF SIGNIFICANCE.pptx
TEST OF SIGNIFICANCE.pptx
 
Hypothesis
HypothesisHypothesis
Hypothesis
 
hypothesis test
 hypothesis test hypothesis test
hypothesis test
 
Lec12-Probability (1).ppt
Lec12-Probability (1).pptLec12-Probability (1).ppt
Lec12-Probability (1).ppt
 
Lec12-Probability.ppt
Lec12-Probability.pptLec12-Probability.ppt
Lec12-Probability.ppt
 
Lec12-Probability.ppt
Lec12-Probability.pptLec12-Probability.ppt
Lec12-Probability.ppt
 
Lec12-Probability.ppt
Lec12-Probability.pptLec12-Probability.ppt
Lec12-Probability.ppt
 
Hypothesis Testing Assignment Help
Hypothesis Testing Assignment HelpHypothesis Testing Assignment Help
Hypothesis Testing Assignment Help
 
Nonparametric and Distribution- Free Statistics _contd
Nonparametric and Distribution- Free Statistics _contdNonparametric and Distribution- Free Statistics _contd
Nonparametric and Distribution- Free Statistics _contd
 
08 test of hypothesis large sample.ppt
08 test of hypothesis large sample.ppt08 test of hypothesis large sample.ppt
08 test of hypothesis large sample.ppt
 
Hypothesis testing an introduction
Hypothesis testing an introductionHypothesis testing an introduction
Hypothesis testing an introduction
 
Testing of hypothesis
Testing of hypothesisTesting of hypothesis
Testing of hypothesis
 
Bayesian statistics using r intro
Bayesian statistics using r   introBayesian statistics using r   intro
Bayesian statistics using r intro
 
슬로우캠퍼스: scikit-learn & 머신러닝 (강박사)
슬로우캠퍼스:  scikit-learn & 머신러닝 (강박사)슬로우캠퍼스:  scikit-learn & 머신러닝 (강박사)
슬로우캠퍼스: scikit-learn & 머신러닝 (강박사)
 
Lec13_Bayes.pptx
Lec13_Bayes.pptxLec13_Bayes.pptx
Lec13_Bayes.pptx
 
Bayesian decision making in clinical research
Bayesian decision making in clinical researchBayesian decision making in clinical research
Bayesian decision making in clinical research
 

Plus de kalai75

Python ppt.pdf
Python ppt.pdfPython ppt.pdf
Python ppt.pdfkalai75
 
ppt final.pptx
ppt final.pptxppt final.pptx
ppt final.pptxkalai75
 
R Programming.pptx
R Programming.pptxR Programming.pptx
R Programming.pptxkalai75
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptxQ-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptxkalai75
 
Lec1cgu13updated.ppt
Lec1cgu13updated.pptLec1cgu13updated.ppt
Lec1cgu13updated.pptkalai75
 
Cloud and Bid data Dr.VK.pdf
Cloud and Bid data Dr.VK.pdfCloud and Bid data Dr.VK.pdf
Cloud and Bid data Dr.VK.pdfkalai75
 
2 ppt.pptx
2 ppt.pptx2 ppt.pptx
2 ppt.pptxkalai75
 
COA Precourse.docx
COA Precourse.docxCOA Precourse.docx
COA Precourse.docxkalai75
 
print.pptx
print.pptxprint.pptx
print.pptxkalai75
 
Linear algebra
Linear algebraLinear algebra
Linear algebrakalai75
 
Applications of data mining in bioinformatics
Applications of data mining in bioinformaticsApplications of data mining in bioinformatics
Applications of data mining in bioinformaticskalai75
 
Atal trivandrum academy
Atal trivandrum academyAtal trivandrum academy
Atal trivandrum academykalai75
 
Atal trivandrum academy
Atal trivandrum academyAtal trivandrum academy
Atal trivandrum academykalai75
 

Plus de kalai75 (13)

Python ppt.pdf
Python ppt.pdfPython ppt.pdf
Python ppt.pdf
 
ppt final.pptx
ppt final.pptxppt final.pptx
ppt final.pptx
 
R Programming.pptx
R Programming.pptxR Programming.pptx
R Programming.pptx
 
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptxQ-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
Q-Step_WS_06112019_Data_Analysis_and_visualisation_with_Python.pptx
 
Lec1cgu13updated.ppt
Lec1cgu13updated.pptLec1cgu13updated.ppt
Lec1cgu13updated.ppt
 
Cloud and Bid data Dr.VK.pdf
Cloud and Bid data Dr.VK.pdfCloud and Bid data Dr.VK.pdf
Cloud and Bid data Dr.VK.pdf
 
2 ppt.pptx
2 ppt.pptx2 ppt.pptx
2 ppt.pptx
 
COA Precourse.docx
COA Precourse.docxCOA Precourse.docx
COA Precourse.docx
 
print.pptx
print.pptxprint.pptx
print.pptx
 
Linear algebra
Linear algebraLinear algebra
Linear algebra
 
Applications of data mining in bioinformatics
Applications of data mining in bioinformaticsApplications of data mining in bioinformatics
Applications of data mining in bioinformatics
 
Atal trivandrum academy
Atal trivandrum academyAtal trivandrum academy
Atal trivandrum academy
 
Atal trivandrum academy
Atal trivandrum academyAtal trivandrum academy
Atal trivandrum academy
 

Dernier

CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 

Dernier (20)

CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 

Ppt1

  • 1. May 21 Chapter 9: Basics of Hypothesis Testing
  • 2. In Chapter 9: 9.1 Null and Alternative Hypotheses 9.2 Test Statistic 9.3 P-Value 9.4 Significance Level 9.5 One-Sample z Test 9.6 Power and Sample Size
  • 3. Terms Introduce in Prior Chapter • Population  all possible values • Sample  a portion of the population • Statistical inference  generalizing from a sample to a population with calculated degree of certainty • Two forms of statistical inference – Hypothesis testing – Estimation • Parameter  a characteristic of population, e.g., population mean µ • Statistic  calculated from data in the sample, e.g., sample mean ( ) x
  • 4. Distinctions Between Parameters and Statistics (Chapter 8 review) Parameters Statistics Source Population Sample Notation Greek (e.g., μ) Roman (e.g., xbar) Vary No Yes Calculated No Yes
  • 5.
  • 6. Sampling Distributions of a Mean (Introduced in Ch 8) The sampling distributions of a mean (SDM) describes the behavior of a sampling mean   n SE SE N x x x    where , ~
  • 7. Hypothesis Testing • Is also called significance testing • Tests a claim about a parameter using evidence (data in a sample • The technique is introduced by considering a one-sample z test • The procedure is broken into four steps • Each element of the procedure must be understood
  • 8. Hypothesis Testing Steps A. Null and alternative hypotheses B. Test statistic C. P-value and interpretation D. Significance level (optional)
  • 9. §9.1 Null and Alternative Hypotheses • Convert the research question to null and alternative hypotheses • The null hypothesis (H0) is a claim of “no difference in the population” • The alternative hypothesis (Ha) claims “H0 is false” • Collect data and seek evidence against H0 as a way of bolstering Ha (deduction)
  • 10. Illustrative Example: “Body Weight” • The problem: In the 1970s, 20–29 year old men in the U.S. had a mean μ body weight of 170 pounds. Standard deviation σ was 40 pounds. We test whether mean body weight in the population now differs. • Null hypothesis H0: μ = 170 (“no difference”) • The alternative hypothesis can be either Ha: μ > 170 (one-sided test) or Ha: μ ≠ 170 (two-sided test)
  • 11. §9.2 Test Statistic n SE H SE x x x        and true is assuming mean population where z 0 0 0 stat This is an example of a one-sample test of a mean when σ is known. Use this statistic to test the problem:
  • 12. Illustrative Example: z statistic • For the illustrative example, μ0 = 170 • We know σ = 40 • Take an SRS of n = 64. Therefore • If we found a sample mean of 173, then 5 64 40    n SEx  60 . 0 5 170 173 0 stat      x SE x z 
  • 13. Illustrative Example: z statistic If we found a sample mean of 185, then 00 . 3 5 170 185 0 stat      x SE x z 
  • 14. Reasoning Behinµzstat   5 , 170 ~ N x Sampling distribution of xbar under H0: µ = 170 for n = 64 
  • 15. §9.3 P-value • The P-value answer the question: What is the probability of the observed test statistic or one more extreme when H0 is true? • This corresponds to the AUC in the tail of the Standard Normal distribution beyond the zstat. • Convert z statistics to P-value : For Ha: μ > μ0  P = Pr(Z > zstat) = right-tail beyond zstat For Ha: μ < μ0  P = Pr(Z < zstat) = left tail beyond zstat For Ha: μ μ0  P = 2 × one-tailed P-value • Use Table B or software to find these probabilities (next two slides).
  • 16. One-sided P-value for zstat of 0.6
  • 17. One-sided P-value for zstat of 3.0
  • 18. Two-Sided P-Value • One-sided Ha  AUC in tail beyond zstat • Two-sided Ha  consider potential deviations in both directions  double the one- sided P-value Examples: If one-sided P = 0.0010, then two-sided P = 2 × 0.0010 = 0.0020. If one-sided P = 0.2743, then two-sided P = 2 × 0.2743 = 0.5486.
  • 19. Interpretation • P-value answer the question: What is the probability of the observed test statistic … when H0 is true? • Thus, smaller and smaller P-values provide stronger and stronger evidence against H0 • Small P-value  strong evidence
  • 20. Interpretation Conventions* P > 0.10  non-significant evidence against H0 0.05 < P  0.10  marginally significant evidence 0.01 < P  0.05  significant evidence against H0 P  0.01  highly significant evidence against H0 Examples P =.27  non-significant evidence against H0 P =.01  highly significant evidence against H0 * It is unwise to draw firm borders for “significance”
  • 21. α-Level (Used in some situations) • Let α ≡ probability of erroneously rejecting H0 • Set α threshold (e.g., let α = .10, .05, or whatever) • Reject H0 when P ≤ α • Retain H0 when P > α • Example: Set α = .10. Find P = 0.27  retain H0 • Example: Set α = .01. Find P = .001  reject H0
  • 22. (Summary) One-Sample z Test A. Hypothesis statements H0: µ = µ0 vs. Ha: µ ≠ µ0 (two-sided) or Ha: µ < µ0 (left-sided) or Ha: µ > µ0 (right-sided) B. Test statistic C. P-value: convert zstat to P value D. Significance statement (usually not necessary) n SE SE x x x      where z 0 stat
  • 23. §9.5 Conditions for z test • σ known (not from data) • Population approximately Normal or large sample (central limit theorem) • SRS (or facsimile) • Data valid
  • 24. The Lake Wobegon Example “where all the children are above average” • Let X represent Weschler Adult Intelligence scores (WAIS) • Typically, X ~ N(100, 15) • Take SRS of n = 9 from Lake Wobegon population • Data  {116, 128, 125, 119, 89, 99, 105, 116, 118} • Calculate: x-bar = 112.8 • Does sample mean provide strong evidence that population mean μ > 100?
  • 25. Example: “Lake Wobegon” A. Hypotheses: H0: µ = 100 versus Ha: µ > 100 (one-sided) Ha: µ ≠ 100 (two-sided) B. Test statistic: 56 . 2 5 100 8 . 112 5 9 15 0 stat         x x SE x z n SE  
  • 26. C. P-value: P = Pr(Z ≥ 2.56) = 0.0052 P =.0052  it is unlikely the sample came from this null distribution  strong evidence against H0
  • 27. • Ha: µ ≠100 • Considers random deviations “up” and “down” from μ0 tails above and below ±zstat • Thus, two-sided P = 2 × 0.0052 = 0.0104 Two-Sided P-value: Lake Wobegon
  • 28. §9.6 Power and Sample Size Truth Decision H0 true H0 false Retain H0 Correct retention Type II error Reject H0 Type I error Correct rejection α ≡ probability of a Type I error β ≡ Probability of a Type II error Two types of decision errors: Type I error = erroneous rejection of true H0 Type II error = erroneous retention of false H0
  • 29. Power • β ≡ probability of a Type II error β = Pr(retain H0 | H0 false) (the “|” is read as “given”) • 1 – β “Power” ≡ probability of avoiding a Type II error 1– β = Pr(reject H0 | H0 false)
  • 30. Power of a z test where • Φ(z) represent the cumulative probability of Standard Normal Z • μ0 represent the population mean under the null hypothesis • μa represents the population mean under the alternative hypothesis                     n z a | | 1 0 1 2
  • 31. Calculating Power: Example A study of n = 16 retains H0: μ = 170 at α = 0.05 (two-sided); σ is 40. What was the power of test’s conditions to identify a population mean of 190?   5160 . 0 04 . 0 40 16 | 190 170 | 96 . 1 | | 1 0 1 2                                     n z a
  • 32. Reasoning Behind Power • Competing sampling distributions Top curve (next page) assumes H0 is true Bottom curve assumes Ha is true α is set to 0.05 (two-sided) • We will reject H0 when a sample mean exceeds 189.6 (right tail, top curve) • The probability of getting a value greater than 189.6 on the bottom curve is 0.5160, corresponding to the power of the test
  • 33.
  • 34. Sample Size Requirements Sample size for one-sample z test: where 1 – β ≡ desired power α ≡ desired significance level (two-sided) σ ≡ population standard deviation Δ = μ0 – μa ≡ the difference worth detecting   2 2 1 1 2 2         z z n
  • 35. Example: Sample Size Requirement How large a sample is needed for a one-sample z test with 90% power and α = 0.05 (two-tailed) when σ = 40? Let H0: μ = 170 and Ha: μ = 190 (thus, Δ = μ0 − μa = 170 – 190 = −20) Round up to 42 to ensure adequate power.   99 . 41 20 ) 96 . 1 28 . 1 ( 40 2 2 2 2 2 1 1 2 2             z z n

Notes de l'éditeur

  1. 5/3/2021
  2. 5/3/2021
  3. 5/3/2021
  4. 5/3/2021
  5. 5/3/2021
  6. 5/3/2021
  7. 5/3/2021
  8. 5/3/2021