SlideShare une entreprise Scribd logo
1  sur  1
Télécharger pour lire hors ligne
Karim OUERTANI, Samir SAOUDI, Mahmoud AMMAR
                                                                         institut Telecom / Telecom Bretagne, Signal & Communications
                                                                                                   Department
                                                                       Technopˆle de Brest-Iroise, CS 83818 - 29238 Brest Cedex, FRANCE
                                                                               o
                                                                                   E-mail: karim.ouertani@telecom-bretagne.eu


                                                                                                                                                                                5. Simulation Results
Summary— In this work a novel channel estimation scheme is proposed for a RAKE
receiver operating in a time varying multi-path channel. The approach is an extension
                                                                                                                                                          0

of the well known nonlinear interpolation channel estimator, which is based on inter-                                                                   10
                                                                                                                                                                                                                           RAKE CE

polating the channel estimates from pilot symbol sequence. The proposed technique                                                                                                                                          RAKE+Lagrange CE
                                                                                                                                                                                                                           RAKE PKC
                                                                                                                                                                                                                           RAKE+Lagrange PKC
manages to combine the obtained samples over one chip duration using a Lagrange                                                                         10
                                                                                                                                                          −1


interpolation filter, and thereby enhances the signal-to-noise ratio and improves the
quality of channel estimates. We also investigate optimal power assignment for the pi-
lot and data channels. Simulation results allowed us to pinpoint optimum pilot-to-data                                                                  10
                                                                                                                                                          −2



channel power ratio for the best bit error performance.




                                                                                                                                                  BER
                                                                                                                                                          −3
                                                                                                                                                        10

                            1. Correlation based channel estimation
                                                                                                                                                          −4
                                                                                                                                                        10




                                                                                                                                                          −5
                                                                                                                                                        10
                                                                                                                                                          −30             −25         −20           −15       −10                −5               0
                                                                                                                                                                                                   SNR(dB)


                                                                                                                                        Effect of imperfect channel estimation - K = 3 users.


                                                                                                         In the figure :

     Coherent RAKE block diagram with correlation based channel estimation.                              • ”PKC” refers to the Perfectly Known Channel simulation case.
                                                                                                         • ”CE” refers to the Channel Estimation simulation case.
• Conventional correlation based channel estimation with a RAKE receiver.                                                                               10
                                                                                                                                                          0

                                                                                                                                                                                                                           RAKE K=5
• The CDMA signal is spread to the chip rate with an SF-long Walsh code.                                                                                                                                                   RAKE K=3
                                                                                                                                                                                                                           RAKE+Lagrange K=5
                                                                                                                                                                                                                           RAKE+Lagrange K=3

• The spread signal is oversampled by an oversampling factor Ns = 4.                                                                                                                                                       RAKE+Lagrange K=1

                                                                                                                                                          −1
                                                                                                                                                        10
• The signal is transmitted through a multipath Rayleigh fading channel, with a channel
  response :
                                                        L
                                                                                                                                                  BER




                                                                                                                                                          −2

                                       Gk (i) =             gk,l(i)δ(iT − τk,l)                    (1)                                                  10


                                                    l=1

                                                                                                                                                          −3
                                                                                                                                                        10


                   2. Channel estimation with Lagrange prefiltering

                                                                                                                                                          −4
                                                                                                                                                        10
                                                                                              rd
• The Ns = 4 samples corresponding to one chip are input to a 3 order Lagrange                                                                            −30             −25         −20           −15
                                                                                                                                                                                                   SNR(dB)
                                                                                                                                                                                                              −10                −5               0



  interpolation filter [1],[2] to get an interpolated chip value estimates.                                   BER Vs SNR for conventional channel estimation (’RAKE’) and proposed
• Despreading process is performed with the interpolated chip estimates.                                        channel estimation (’RAKE+Lagrange’) - K=1, 3 and 5 users.
• The Lagrange interpolation filters are widely used in numerous applications : sampling
  rate conversion, digital communications, FIR filters design, etc.
                                                                                                                                                                                 6. Power Allocation

                                                                                                                     0
                                                                                                                    10
                                                                                                                                                                                     SNR = −16dB                     0
                                                                                                                                                                                                                   10
                                                                                                                                                                                     SNR = −12dB                                                                       50% of Power Applied to Pilot Symbol
                                                                                                                                                                                                                                                                       60% of Power Applied to Pilot Symbol




                                                                                                                                                                                                                     −1
                                                                                                                     −1                                                                                            10
                                                                                                                    10
                                                                                                              BER




                                                                                                                                                                                                             BER




                                                                                                                                                                                                                     −2
                                                                                                                                                                                                                   10


           Desired chip value interpolation by a 3rd order Lagrange filter.                                           −2
                                                                                                                    10




• The filter coefficients are obtained as follows,                                                                                                                                                                    10
                                                                                                                                                                                                                     −3




                                                                                                                     −3
                                                                                                                    10


                                                                                                                                                                                                                     −4
                                                                                                                          0   10   20     30      40            50   60         70   80     90                     10
                                                                                                                                                                                                                     −30   −28        −26   −24       −22    −20      −18     −16      −14       −12          −10
                                                                                                                                           % of Power Applied to Pilot Symbol                                                                               SNR(dB)

             N  d−k
    hd(p) =                   f or p = 0, 1, 2, ..., Ns              (2)                                     BER vs percentage of power applied to                                                                      BER performance with optimum
            k=0 p − k                                                                                                  pilot channel.                                                                                      pilot power allocation.


• N is the filter order, N = 3.                                                                           • The amount of power applied to the pilot signal was varried from 1 % to 90 %.
• d is the delay to be fractionally                                                                      • The optimum power allocation between the pilot channel and the data channel was
  approximated, D = 4 . Tc                                                                                 investigated under the assumption of constant total transmit power.
                                                                                                         • The lowest bit error rate is obtained for 60 % of the signal power applied to the pilot
• Structure of the interpolation scheme from the oversampled received signal frame :                       channel.

                   chip 0                       chip n                        chip SF−1
                                                                                          Pilot                                                                                      7. References
                                                                                                          [1] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine. Splitting the Unit
                                r(n)           r(n+1)       r(n+2)   r(n+3)                                   Delay, in IEEE Signal Processing Magazine, pages: 30-60, January 1996.
                       h(0)             h(1)       h(2)                       h(3)                        [2] E. Simona Lohan, M. Renfors Performance Analysis of the RAKE Receiver in
                                                                                                              the Presence of Multipath Delay Estimation Errors and Rician Fading Chan-
                                                                                                              nels, in European transactions on telecommunications, vol. 14, pages: 435-447, July
                                                                                                              2003.
                                                                                                          [3] M. Meyr, M. Moeneclaey, and S. A. Fechtel. Digital Communication Receivers
                                                                                                              : synchronization, channel estimation, and signal processing, Wiley series in
                                                    r(n+d)                                                    telecommunications and signal processing, Jhon Wiley & sons, 1998.
                            A 3rd order Lagrange interpolation filter.

Contenu connexe

En vedette

Hrm Od Presentation 6oct
Hrm Od Presentation 6octHrm Od Presentation 6oct
Hrm Od Presentation 6oct
junaidhr
 
Phishing-Email-Fraud-General
Phishing-Email-Fraud-GeneralPhishing-Email-Fraud-General
Phishing-Email-Fraud-General
Andrew Voorhies
 
¿Transformación es igual a globalización?
¿Transformación es igual a globalización?¿Transformación es igual a globalización?
¿Transformación es igual a globalización?
gueste7d3a2
 

En vedette (20)

Tom @ Leo's Academy
Tom @ Leo's AcademyTom @ Leo's Academy
Tom @ Leo's Academy
 
Hrm Od Presentation 6oct
Hrm Od Presentation 6octHrm Od Presentation 6oct
Hrm Od Presentation 6oct
 
Egger
EggerEgger
Egger
 
Pinterest for Nonprofits
Pinterest for NonprofitsPinterest for Nonprofits
Pinterest for Nonprofits
 
Joel Nickelsen “Growing Lean – The New Paradigm”
Joel Nickelsen  “Growing Lean – The New Paradigm”Joel Nickelsen  “Growing Lean – The New Paradigm”
Joel Nickelsen “Growing Lean – The New Paradigm”
 
OKSofás #sofalloween
OKSofás #sofalloweenOKSofás #sofalloween
OKSofás #sofalloween
 
Certa Servicios Periciales - Peritos de Seguros y Comisarios de Averías
Certa Servicios Periciales - Peritos de Seguros y Comisarios de AveríasCerta Servicios Periciales - Peritos de Seguros y Comisarios de Averías
Certa Servicios Periciales - Peritos de Seguros y Comisarios de Averías
 
Talking Social TV 2 with Ed Keller and Beth Rockwood
Talking Social TV 2 with Ed Keller and Beth RockwoodTalking Social TV 2 with Ed Keller and Beth Rockwood
Talking Social TV 2 with Ed Keller and Beth Rockwood
 
100705A3T5
100705A3T5100705A3T5
100705A3T5
 
Menfis Internet. Net Radar 2011
Menfis Internet. Net Radar 2011Menfis Internet. Net Radar 2011
Menfis Internet. Net Radar 2011
 
2011 antibody response pv msp200l
2011 antibody response pv msp200l2011 antibody response pv msp200l
2011 antibody response pv msp200l
 
Evangelización Urbana
Evangelización UrbanaEvangelización Urbana
Evangelización Urbana
 
reglamento seguridad
 reglamento seguridad reglamento seguridad
reglamento seguridad
 
Phishing-Email-Fraud-General
Phishing-Email-Fraud-GeneralPhishing-Email-Fraud-General
Phishing-Email-Fraud-General
 
Tcs annual report_2013-2014
Tcs annual report_2013-2014Tcs annual report_2013-2014
Tcs annual report_2013-2014
 
Cuando oímos un sonido
Cuando oímos un sonidoCuando oímos un sonido
Cuando oímos un sonido
 
El planteamiento de la evaluación
El planteamiento de la evaluaciónEl planteamiento de la evaluación
El planteamiento de la evaluación
 
Guía de Productos ECOWAY
Guía de Productos ECOWAYGuía de Productos ECOWAY
Guía de Productos ECOWAY
 
1era Exposición Muebles Carpinteros Bovril
1era Exposición Muebles Carpinteros Bovril1era Exposición Muebles Carpinteros Bovril
1era Exposición Muebles Carpinteros Bovril
 
¿Transformación es igual a globalización?
¿Transformación es igual a globalización?¿Transformación es igual a globalización?
¿Transformación es igual a globalización?
 

Poster KOBE

  • 1. Karim OUERTANI, Samir SAOUDI, Mahmoud AMMAR institut Telecom / Telecom Bretagne, Signal & Communications Department Technopˆle de Brest-Iroise, CS 83818 - 29238 Brest Cedex, FRANCE o E-mail: karim.ouertani@telecom-bretagne.eu 5. Simulation Results Summary— In this work a novel channel estimation scheme is proposed for a RAKE receiver operating in a time varying multi-path channel. The approach is an extension 0 of the well known nonlinear interpolation channel estimator, which is based on inter- 10 RAKE CE polating the channel estimates from pilot symbol sequence. The proposed technique RAKE+Lagrange CE RAKE PKC RAKE+Lagrange PKC manages to combine the obtained samples over one chip duration using a Lagrange 10 −1 interpolation filter, and thereby enhances the signal-to-noise ratio and improves the quality of channel estimates. We also investigate optimal power assignment for the pi- lot and data channels. Simulation results allowed us to pinpoint optimum pilot-to-data 10 −2 channel power ratio for the best bit error performance. BER −3 10 1. Correlation based channel estimation −4 10 −5 10 −30 −25 −20 −15 −10 −5 0 SNR(dB) Effect of imperfect channel estimation - K = 3 users. In the figure : Coherent RAKE block diagram with correlation based channel estimation. • ”PKC” refers to the Perfectly Known Channel simulation case. • ”CE” refers to the Channel Estimation simulation case. • Conventional correlation based channel estimation with a RAKE receiver. 10 0 RAKE K=5 • The CDMA signal is spread to the chip rate with an SF-long Walsh code. RAKE K=3 RAKE+Lagrange K=5 RAKE+Lagrange K=3 • The spread signal is oversampled by an oversampling factor Ns = 4. RAKE+Lagrange K=1 −1 10 • The signal is transmitted through a multipath Rayleigh fading channel, with a channel response : L BER −2 Gk (i) = gk,l(i)δ(iT − τk,l) (1) 10 l=1 −3 10 2. Channel estimation with Lagrange prefiltering −4 10 rd • The Ns = 4 samples corresponding to one chip are input to a 3 order Lagrange −30 −25 −20 −15 SNR(dB) −10 −5 0 interpolation filter [1],[2] to get an interpolated chip value estimates. BER Vs SNR for conventional channel estimation (’RAKE’) and proposed • Despreading process is performed with the interpolated chip estimates. channel estimation (’RAKE+Lagrange’) - K=1, 3 and 5 users. • The Lagrange interpolation filters are widely used in numerous applications : sampling rate conversion, digital communications, FIR filters design, etc. 6. Power Allocation 0 10 SNR = −16dB 0 10 SNR = −12dB 50% of Power Applied to Pilot Symbol 60% of Power Applied to Pilot Symbol −1 −1 10 10 BER BER −2 10 Desired chip value interpolation by a 3rd order Lagrange filter. −2 10 • The filter coefficients are obtained as follows, 10 −3 −3 10 −4 0 10 20 30 40 50 60 70 80 90 10 −30 −28 −26 −24 −22 −20 −18 −16 −14 −12 −10 % of Power Applied to Pilot Symbol SNR(dB) N d−k hd(p) = f or p = 0, 1, 2, ..., Ns (2) BER vs percentage of power applied to BER performance with optimum k=0 p − k pilot channel. pilot power allocation. • N is the filter order, N = 3. • The amount of power applied to the pilot signal was varried from 1 % to 90 %. • d is the delay to be fractionally • The optimum power allocation between the pilot channel and the data channel was approximated, D = 4 . Tc investigated under the assumption of constant total transmit power. • The lowest bit error rate is obtained for 60 % of the signal power applied to the pilot • Structure of the interpolation scheme from the oversampled received signal frame : channel. chip 0 chip n chip SF−1 Pilot 7. References [1] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine. Splitting the Unit r(n) r(n+1) r(n+2) r(n+3) Delay, in IEEE Signal Processing Magazine, pages: 30-60, January 1996. h(0) h(1) h(2) h(3) [2] E. Simona Lohan, M. Renfors Performance Analysis of the RAKE Receiver in the Presence of Multipath Delay Estimation Errors and Rician Fading Chan- nels, in European transactions on telecommunications, vol. 14, pages: 435-447, July 2003. [3] M. Meyr, M. Moeneclaey, and S. A. Fechtel. Digital Communication Receivers : synchronization, channel estimation, and signal processing, Wiley series in r(n+d) telecommunications and signal processing, Jhon Wiley & sons, 1998. A 3rd order Lagrange interpolation filter.