SlideShare une entreprise Scribd logo
1  sur  48
Télécharger pour lire hors ligne
Nonexistence of some Griesmer codes
of dimension 4 over finite fields
Kazuki Kumegawa
Osaka Prefecture University
(joint work with T. Maruta)
Contents
1. Optimal linear codes problem
2. The geometric method
3. Proof of Theorem 2
4. Proof of Theorem 3
5. Remark
1. Optimal linear codes problem
Fq: the field of q elements
Fn
q = {(a1, · · · , an) | ai ∈ Fq}
An [n, k, d]q code C means a k-dimensional
subspace of Fn
q with minimum (Hamming)
weight d = d(C),
d(C) = min{wt(c) | c ∈ C, c = 0},
where wt(c) = |{i | ci = 0}| for c = (c1, · · · , cn).
The problem of optimizing one of the param-
eters n, k, d for given the other two is called
”optimal linear codes problem”.
Problem 1. Find nq(k, d), the smallest value
of n for which an [n, k, d]q code exists.
Problem 2. Find dq(n, k), the largest value
of d for which an [n, k, d]q code exists.
The Griesmer bound
nq(k, d) ≥ gq(k, d) :=
k−1
i=0





d
qi





where x is a smallest integer ≥ x.
A linear code attaining the Griesmer bound
is called a Griesmer code.
Griesmer codes are optimal.
Theorem 1 (Maruta 1997).
nq(4, d) ≥ gq(4, d) + 1
for 2q3 − rq2 − q + 1 ≤ d ≤ 2q3 − rq2
for q > r, r = 3, 4 and for q > 2(r − 1), r ≥ 5.
We prove
Theorem 2.
nq(4, d) ≥ gq(4, d) + 1
for 2q3 − rq2 − q + 1 ≤ d ≤ 2q3 − rq2
for 3 ≤ r ≤ q − q/p, q = ph with p prime.
We can improve the valid values of r
as follows:
valid values of r
q Thm 1 Thm 2
7 3,4 3,4,5,6
8 3,4 3,4
9 3,4,5 3,4,5,6
11 3,4,5,6 3, 4, · · · , 10
13 3,4,5,6,7 3, 4, · · · , 12
Theorem 3.
nq(4, d) = gq(4, d) + 1
for 2q3 − 3q2 − 2q + 1 ≤ d ≤ 2q3 − 3q2 − q for
q ≥ 7.
Theorem 4.
nq(4, d) ≥ gq(4, d) + 1
for q3/2 − q2 − 2q + 1 ≤ d ≤ q3/2 − q2 − q
for q = 2h, h ≥ 3.
2. The geometric method
PG(r, q): projective space of dim. r over Fq
j-flat: j-dim. projective subspace of PG(r, q)
When j = 0, 1, 2, r − 2, r − 1, a j-flat is called
point, line, plane, secundum, hyperplane (hp
for short), respectively.
Fj := the set of j-flats of PG(r, q)
θj := (qj+1−1)/(q−1) = qj +qj−1+· · ·+q+1
C : an [n, k, d]q code generated by G.
Since we would like to find nq(k, d),
we assume that G contains no all-zero-columns.
The columns of G can be considered as a
multiset of n points in Σ = PG(k − 1, q)
denoted also by C.
An i-point is a point of Σ which has mul-
tiplicity i in C. Denote by γ0 the maximum
multiplicity of a point from Σ in C and let Ci
be the set of i-points in Σ, 0 ≤ i ≤ γ0.
For ∀S ⊂ Σ we define the multiplicity of S
with respect to C, denoted by mC(S), as
mC(S) =
γ0
i=1
i·|S∩Ci|.
Then we obtain the partition
Σ = C0 ∪ C1 ∪ · · · ∪ Cγ0 such that
n = mC(Σ),
n − d = max{mC(π) | π ∈ Fk−2}.
Conversely such a partition of Σ as above
gives an [n, k, d]q code in the natural manner.
We define
γj = max{mC(∆) | ∆ ∈ Fj}, 0 ≤ j ≤ k − 2.
When C is Griesmer,
γj =
j
u=0





d
qk−1−u





for 0 ≤ j ≤ k − 2.
A line l is an i-line if i = mc(l).
An i-plane, an i-secumdum, and an i-hp are
defined similarly.
ai := |{π ∈ Fk−2 | mC(π) = i}|. The list of
ai’s is the spectrum of C. Note that
ai = An−i/(q − 1) for 0 ≤ i ≤ n − d.
Let F be the multiset defined by
mF(S) =
γ0−1
i=0
(γ0 − i) · |S ∩ Ci| for ∀S ⊂ Σ.
F is an (f, m)-minihyper if
f = θk−1 − n,
m = min{mF(π) | π ∈ Fk−2}
= θk−2 − (n − d).
A set S of s points in PG(r, q), r ≥ 2, is called
an s-arc if no r + 1 points are on the same
hyperplane.
When q ≥ r, one can take a normal rational
curve as a (q + 1)-arc.
A set L of s (t−1)-flats in a t-flat Π is called
an s-arc of (t − 1)-flats in Π if L forms an
s-arc in the dual space Π∗ of Π.
3. Proof of Theorem 2
Theorem 2.
nq(4, d) ≥ gq(4, d) + 1
for 2q3 − rq2 − q + 1 ≤ d ≤ 2q3 − rq2
for 3 ≤ r ≤ q − q/p, q = ph with p prime.
We prove that there exists no [gq(4, d), 4, d]q
code for d = 2q3 −rq2 −q +1, 3 ≤ r ≤ q −q/p,
q = ph with p prime.
Let C be a putative Griesmer
[n = gq(4, d), 4, d = 2q3 − rq2 − q + 1]q code.
Since C is Griesmer,
n = 2q3 − (r − 2)θ2 − (q − 1),
γ0 = 2, γ1 = 2θ1 − r, γ2 = n − d = 2θ2 − rθ1
We define
γj = max{mC(∆) | ∆ ∈ Fj}, 0 ≤ j ≤ k − 2.
When C is Griesmer,
γj =
j
u=0





d
qk−1−u





for 0 ≤ j ≤ k − 2.
There exists an (n − d)-hp in Σ.
What is a code corresponding to a
(2θ2 − rθ1)-plane in Σ = PG(3, q)?
We investigate the geometric structure of a
(2θ2 − rθ1)-plane ∆ to find its spectrum.
3.1 The spectrum of a (2θ2 − rθ1)-plane
Lemma 1.
Let Π be an i-hp through a t-secundum δ.
For an (n − d)-hyperplane Π0 with
spectrum (τ0, · · · , τγk−3),
τt > 0 holds if i + q(n − d) − n − qt < q.
Lemma 2. Let Π be an i-hp through a
t-secundum δ. Then,
t ≤
i + q · (n − d) − n
q
If t = max{mc(δ ) | δ ⊂ Π, δ ∈ Fk−3}, then an
i-hp corresponds to an [i, k − 1, i − t]q code.
Let D be the multiset for a (2θ2 − rθ1)-plane
∆ in C. Since 2θ2 − γ2 = rθ1, 2θ1 − γ1 = r,
the multiset F obtained from two copies of
∆ with D deleted, say F = 2∆−D, forms an
(rθ1, r)-minihyper.
Lemma 3 (Hill-Ward, 2007).
Every (r(q +1), r)-minihyper in PG(2, q), q =
ph, p prime, with r ≤ q − q/p is a sum of r
lines.
By Lemma 3, F consists of r lines, say l1, · · · , lr
in PG(2, q), i.e., F = l1 + · · · + lr.
Since γ0 = 2, the set of lines {l1, · · · , lr}
forms an r-arc of lines.
Since m(li) = 2θ1 − θ1 − (r − 1) = q − r + 2
and m(l) = 2θ1 − r = γ1 for any line l in ∆
with l = li, we have the spectrum of ∆.
Lemma 4. The spectrum of an (n−d)-plane
is: (τq−r+2, τγ1) = (r, θ2 − r)
: 2-point
: 1-point
: 0-point
(2(2θ -
Let δ be an i-plane.
From Lemmas 2 and 4, we have
q − r + 2 ≤ i+q+r−3
q ,
i.e., q2 − (r − 1)q − (r − 3) ≤ i.
For i ≤ θ2, δ ∩ ∆ is a (q − r + 2)-line since δ
has no 2-point.
We have i ≤ θ2 − (r − 1).
Let i = q2 − uq − (r − 3) + s,
0 ≤ u ≤ r − 2, 0 ≤ s ≤ q − 1.
From Lemma 2, a t-line in the i-plane satis-
fies t ≤ q − u + 1.
If t = q−u+1, then i+q+r−3−qt = s ≤ q−1,
and γ2-plane contains a t-line by Lemma 1,
a contradiction. Hence t ≤ q − u.
Considering the lines in δ through a fixed
1-point of δ ∩ ∆,
i ≤ (q−u−1)q+q−r+2 = q2−uq−(r−2) < i,
a contradiction.
Hence i-planes remain only for
q2−(r−1)q−(r−3) ≤ i ≤ q2−(r−2)q−(r−2)
or γ2 − (q − 1) ≤ i ≤ γ2.
Suppose ai = 0 for all i ≤ θ2.
Then considering the planes through a given
(q − r + 2)-line on ∆, we have
n ≥ (γ2 − (q − 1) − (q − r + 2))q + γ2
= 2q3 − (r − 2)θ2 + q > n,
a contradiction.
Hence, by Lemma 4, we have
i≤θ2
ai ≥ r.
Lemma 5.
Let Π be an i-hp through a t-secundum δ.
Let cj be the number of j-hps through δ other
than Π. Then,
j cj = q,
j(γk−2−j)cj = i+qγk−2−n−qt. · · · · · · (cj)
On the other hand, if there exists an i-plane
with
i = q2 − (r − 1)q − (r − 3) + s, 0 ≤ s ≤ q − 1,
then any other j-plane satisfies
j ≥ γ2 − (q − 1)
since the coefiicient of cq2−(r−2)q−(r−2) is q2
and RHS of (cj) = i + q + r − 3 − qt < q2.
This implies
i≤θ2
ai ≤ 1, a contradiction.
For r = 3, Theorem 1 tells that
nq(4, d) ≥ gq(4, d) + 1 for
2q3 − 3q2 − q + 1 ≤ d ≤ 2q3 − 3q2 for q > 3.
Theorem 3.
nq(4, d) = gq(4, d) + 1 for
2q3 − 3q2 − 2q + 1 ≤ d ≤ 2q3 − 3q2 − q for
q ≥ 7.
We note that the values of d for r = 3 in
Thm 1 and the values of d in Thm 3 are
consecutive.
4. Proof of Theorem 3
Theorem 3.
nq(4, d) = gq(4, d) + 1
for 2q3 − 3q2 − 2q + 1 ≤ d ≤ 2q3 − 3q2 − q for
q ≥ 7.
It is known that n5(4, d) = g5(4, d) + 1.
We assume q ≥ 7.
We first give the construction of a
[gq(4, d) + 1, 4, d = 2q3 − 3q2 − 2q + 1]q code.
Let M be the multiset
M = 2 · PG(3, q) + P − (δ1 + δ2 + δ3 + l),
where P: a point, l: a line, δ1, δ2, δ3 : planes
satisfying δ1 ∩ δ2 ∩ δ3 = P and
l ∩ ((δ1 ∩ δ2) ∪ (δ1 ∩ δ3) ∪ (δ2 ∩ δ3)) = ∅.
before
puncturing
after
puncturing
Then, M gives a
[gq(4, d) + 1, 4, d = 2q3 − 3q2 − 2q + 1]q code.
Next, we prove the nonexistence of a
[gq(4, d), 4, d]q code for d = 2q3 −3q2 −2q +1,
q ≥ 7.
Let C be a putative Griesmer
[n = gq(4, d), 4, d = 2q3 − 3q2 − 2q + 1]q code.
Then n = 2q3 − q2 − 3q − 1,
γ0 = 2, γ1 = 2q − 1, γ2 = n − d = 2q2 − q − 2.
Lemma 6. (Kanazawa-Maruta, 2011)
The spectrum of an (n − d)-plane is:
(A) (τq−1, τ2q−2, τ2q−1) = (3, q + 1, q2 − 3) or
(B) (τq−2, τq−1, τ2q−2, τ2q−1) = (1, 2, q, q2−2).
From Lemmas 2 and 6, one can show that
ai = 0 for i /∈ {q2 − 3q − 1, · · ·, q2 − 2q − 5,
q2 − 2q − 1, · · ·, q2 − q − 4, q2 − 1, q2, q2 + q − 1,
2q2 − 3q − 1, · · ·, 2q2 − q − 2}.
We eliminate the possibility of an i-plane for
each i.
We first rule out a possible (q2−3q−1)-plane.
Suppose a (q2 − 3q − 1)-plane exists.
Lemma 7. The spectrum satisfies
(1)
n−d
i=0
ai = θk−1
(2)
n−d
i=1
iai = nθk−2
(3)
n−d
i=2
i
2
ai = n
2 θk−3 + qk−2
γ0
s=2
s
2
λs
From the equalities (1)-(3),
when γ0 ≤ 2, we have
n−d−1
i=0
(n − d − i)ai =
n − d
2
θk−1
−n(n − d − 1)θk−2 + n
2 θk−3 + qk−2λ2 · · · (4)
j
(2q2 − q − 2 − j)cj = i + q + 1 − qt · · · (cj)
We consider the maximum contribution of
(cj) with i = n − d to LHS of (4).
q-1
ex) q = 7
q2 − 3q − 1 = 27.
The spectrum (B) of an (n − d)-plane is
(τ5, τ6, τ12, τ13) = (1, 2, 7, 47).
the RHS of (cj) t-line
62 5
55 6
13 12
6 13
The maximum possible contributions of cj’s
to the LHS of (4) are
(c27, c89) = (1, 6) for t = 5.
(c76, c86, c89) = (4, 1, 2) for t = 6.
(c76, c89) = (1, 6) for t = 12.
(c83, c89) = (1, 6) for t = 13.
From (4), q2λ2 ≤ 8000 + 1891τ5
+(4·78+3)τ6+78τ12+15τ13,
i.e., λ2 ≤ 240.
Lemma 8. Let λs be the number of s-points
in PG(k − 1, q).
Then, λ2 = n − θk−1 + λ0 if γ0 = 2.
We have λ0 ≥ θk−2 − i if i < θk−2.
By Lemma 8,
λ2 ≥ 615 − 400 + (57 − 27) = 245,
a contradiction.
Hence, there exists no 27-plane.
If q is odd, we can show from (4) that
λ2 ≤ q3 − 5
2q2 + 5
2q + 9
4.
On the other hand, Lemma 8 yields
λ2 ≥ q3 − 2q2 − 1
2q + 3
2.
From q3 − 2q2 − 1
2q + 3
2 ≤ q3 − 5
2q2 + 5
2q + 9
4,
we have q ≤ 3 +
√
6, which contradicts q ≥ 7.
Hence aq2−3q−1 = 0.
We can also show aq2−3q−1 = 0 when q is
even.
Similarly, we can prove the nonexistence of
an i-plane for i /∈ {2q2 −3q−1, ···, 2q2 −q−2},
giving a contradiction by (4).
Hence nq(4, d) = gq(4, d) + 1
for 2q3 − 3q2 − 2q + 1 ≤ d ≤ 2q3 − 3q2 − q for
q ≥ 7.
5.Remark.
Thm 2 can be generalized to the following:
Theorem 5. nq(k, d) ≥ gq(k, d) + 1
for d1 − q + 1 ≤ d ≤ d1 = (k − 2)qk−1 − rqk−2
for k − 1 ≤ r ≤ q − q/p, q = ph with p prime.
Lemma 11 (Landjev-Vandendriessche, 2012).
Every (rθr−1, rθr−2)-minihyper in PG(r, q),
q = ph, p prime, r ≤ q − q/p is a sum of r hps.
References
[1] R. Hill and H. Ward, A geometric approach to classifying Griesmer codes,
Des. Codes Cryptogr., 44, 169–196, 2007.
[2] Y. Kageyama and T. Maruta, On the construction of optimal codes over
Fq, preprint.
[3] R. Kanazawa and T. Maruta, On optimal linear codes over F8, Electron.
J. Combin., 18, #P34, 27pp., 2011.
[4] I. Landjev and P. Vandendriessche, A study of (xvt, xvt−1)-minihypers in
PG(t, q), Journal of Combinatorial Theory, Series A 119, 1123-1131, 2012.
[5] T. Maruta, On the minimum length of q-ary linear codes of dimension
four, Discrete Math., 208/209, 427–435, 1999.
[6] T. Maruta, On the nonexistence of q-ary linear codes of dimension five,
Des. Codes Cryptogr., 22, 165-177, 2001.
[7] M. Takenaka, K. Okamoto and T. Maruta, On optimal non-projective
ternary linear codes, Discrete Math., 308, 842–854, 2008.

Contenu connexe

Tendances

1 s2.0-0012365 x81900017-main
1 s2.0-0012365 x81900017-main1 s2.0-0012365 x81900017-main
1 s2.0-0012365 x81900017-main
Bala Krishna
 
Csr2011 june15 11_00_sima
Csr2011 june15 11_00_simaCsr2011 june15 11_00_sima
Csr2011 june15 11_00_sima
CSR2011
 
The Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace EquationThe Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace Equation
Johnathan Gray
 
SMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionSMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last version
Lilyana Vankova
 
MinFill_Presentation
MinFill_PresentationMinFill_Presentation
MinFill_Presentation
Anna Lasota
 
My presentation all shortestpath
My presentation all shortestpathMy presentation all shortestpath
My presentation all shortestpath
Carlostheran
 

Tendances (20)

Boundedness of the Twisted Paraproduct
Boundedness of the Twisted ParaproductBoundedness of the Twisted Paraproduct
Boundedness of the Twisted Paraproduct
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Single source shortes path in dag
Single source shortes path in dagSingle source shortes path in dag
Single source shortes path in dag
 
Bellman ford
Bellman fordBellman ford
Bellman ford
 
Johnson's algorithm
Johnson's algorithmJohnson's algorithm
Johnson's algorithm
 
1 s2.0-0012365 x81900017-main
1 s2.0-0012365 x81900017-main1 s2.0-0012365 x81900017-main
1 s2.0-0012365 x81900017-main
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Csr2011 june15 11_00_sima
Csr2011 june15 11_00_simaCsr2011 june15 11_00_sima
Csr2011 june15 11_00_sima
 
A Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisA Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann Hypothesis
 
A Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann HypothesisA Proof of the Generalized Riemann Hypothesis
A Proof of the Generalized Riemann Hypothesis
 
The Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace EquationThe Fundamental Solution of an Extension to a Generalized Laplace Equation
The Fundamental Solution of an Extension to a Generalized Laplace Equation
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
 
Math
MathMath
Math
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
SMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last versionSMB_2012_HR_VAN_ST-last version
SMB_2012_HR_VAN_ST-last version
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
MinFill_Presentation
MinFill_PresentationMinFill_Presentation
MinFill_Presentation
 
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt AlgorithmString Matching with Finite Automata and Knuth Morris Pratt Algorithm
String Matching with Finite Automata and Knuth Morris Pratt Algorithm
 
Real numbers - Euclid’s Division Lemma for class 10th/grade X Maths 2014
Real numbers - Euclid’s Division Lemma for class 10th/grade X Maths 2014 Real numbers - Euclid’s Division Lemma for class 10th/grade X Maths 2014
Real numbers - Euclid’s Division Lemma for class 10th/grade X Maths 2014
 
My presentation all shortestpath
My presentation all shortestpathMy presentation all shortestpath
My presentation all shortestpath
 

En vedette

En vedette (6)

Fail meja su sukan
Fail meja su sukanFail meja su sukan
Fail meja su sukan
 
Advanced plc programming & scada system design
Advanced plc programming & scada system designAdvanced plc programming & scada system design
Advanced plc programming & scada system design
 
Organizational behavior ph 3 group project
Organizational behavior ph 3 group projectOrganizational behavior ph 3 group project
Organizational behavior ph 3 group project
 
KNOWLEDGE IS POWER
KNOWLEDGE IS POWERKNOWLEDGE IS POWER
KNOWLEDGE IS POWER
 
Nowledge is power
Nowledge is powerNowledge is power
Nowledge is power
 
CRM-Presenation
CRM-PresenationCRM-Presenation
CRM-Presenation
 

Similaire à Kumegawa russia

Números repunits de lehmer
Números repunits de lehmerNúmeros repunits de lehmer
Números repunits de lehmer
lenixez
 
Appendix b 2
Appendix b 2Appendix b 2
Appendix b 2
Loc Tran
 
Proof of Fermat's Last Theorem (Using 6 Methods)
Proof of Fermat's Last Theorem (Using 6 Methods)Proof of Fermat's Last Theorem (Using 6 Methods)
Proof of Fermat's Last Theorem (Using 6 Methods)
nikos mantzakouras
 

Similaire à Kumegawa russia (20)

Complex analysis notes
Complex analysis notesComplex analysis notes
Complex analysis notes
 
Números repunits de lehmer
Números repunits de lehmerNúmeros repunits de lehmer
Números repunits de lehmer
 
2-rankings of Graphs
2-rankings of Graphs2-rankings of Graphs
2-rankings of Graphs
 
MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化MLP輪読スパース8章 トレースノルム正則化
MLP輪読スパース8章 トレースノルム正則化
 
Appendix b 2
Appendix b 2Appendix b 2
Appendix b 2
 
lecture6.ppt
lecture6.pptlecture6.ppt
lecture6.ppt
 
Appendix b 2
Appendix b 2Appendix b 2
Appendix b 2
 
balakrishnan2004
balakrishnan2004balakrishnan2004
balakrishnan2004
 
Pairing scott
Pairing scottPairing scott
Pairing scott
 
Heuristics for counterexamples to the Agrawal Conjecture
Heuristics for counterexamples to the Agrawal ConjectureHeuristics for counterexamples to the Agrawal Conjecture
Heuristics for counterexamples to the Agrawal Conjecture
 
A Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's ConjectureA Proof of Twin primes and Golbach's Conjecture
A Proof of Twin primes and Golbach's Conjecture
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
 
mathematics part-2.docx
mathematics part-2.docxmathematics part-2.docx
mathematics part-2.docx
 
Maths05
Maths05Maths05
Maths05
 
Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...
 
Proof of Fermat's Last Theorem (Using 6 Methods)
Proof of Fermat's Last Theorem (Using 6 Methods)Proof of Fermat's Last Theorem (Using 6 Methods)
Proof of Fermat's Last Theorem (Using 6 Methods)
 
Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"Ivan Dimitrijević "Nonlocal cosmology"
Ivan Dimitrijević "Nonlocal cosmology"
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
Number Theory for Security
Number Theory for SecurityNumber Theory for Security
Number Theory for Security
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 

Dernier

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Dernier (20)

Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 

Kumegawa russia

  • 1. Nonexistence of some Griesmer codes of dimension 4 over finite fields Kazuki Kumegawa Osaka Prefecture University (joint work with T. Maruta)
  • 2. Contents 1. Optimal linear codes problem 2. The geometric method 3. Proof of Theorem 2 4. Proof of Theorem 3 5. Remark
  • 3. 1. Optimal linear codes problem Fq: the field of q elements Fn q = {(a1, · · · , an) | ai ∈ Fq} An [n, k, d]q code C means a k-dimensional subspace of Fn q with minimum (Hamming) weight d = d(C), d(C) = min{wt(c) | c ∈ C, c = 0}, where wt(c) = |{i | ci = 0}| for c = (c1, · · · , cn).
  • 4. The problem of optimizing one of the param- eters n, k, d for given the other two is called ”optimal linear codes problem”. Problem 1. Find nq(k, d), the smallest value of n for which an [n, k, d]q code exists. Problem 2. Find dq(n, k), the largest value of d for which an [n, k, d]q code exists.
  • 5. The Griesmer bound nq(k, d) ≥ gq(k, d) := k−1 i=0      d qi      where x is a smallest integer ≥ x. A linear code attaining the Griesmer bound is called a Griesmer code. Griesmer codes are optimal.
  • 6. Theorem 1 (Maruta 1997). nq(4, d) ≥ gq(4, d) + 1 for 2q3 − rq2 − q + 1 ≤ d ≤ 2q3 − rq2 for q > r, r = 3, 4 and for q > 2(r − 1), r ≥ 5. We prove Theorem 2. nq(4, d) ≥ gq(4, d) + 1 for 2q3 − rq2 − q + 1 ≤ d ≤ 2q3 − rq2 for 3 ≤ r ≤ q − q/p, q = ph with p prime.
  • 7. We can improve the valid values of r as follows: valid values of r q Thm 1 Thm 2 7 3,4 3,4,5,6 8 3,4 3,4 9 3,4,5 3,4,5,6 11 3,4,5,6 3, 4, · · · , 10 13 3,4,5,6,7 3, 4, · · · , 12
  • 8. Theorem 3. nq(4, d) = gq(4, d) + 1 for 2q3 − 3q2 − 2q + 1 ≤ d ≤ 2q3 − 3q2 − q for q ≥ 7. Theorem 4. nq(4, d) ≥ gq(4, d) + 1 for q3/2 − q2 − 2q + 1 ≤ d ≤ q3/2 − q2 − q for q = 2h, h ≥ 3.
  • 9. 2. The geometric method PG(r, q): projective space of dim. r over Fq j-flat: j-dim. projective subspace of PG(r, q) When j = 0, 1, 2, r − 2, r − 1, a j-flat is called point, line, plane, secundum, hyperplane (hp for short), respectively. Fj := the set of j-flats of PG(r, q) θj := (qj+1−1)/(q−1) = qj +qj−1+· · ·+q+1
  • 10. C : an [n, k, d]q code generated by G. Since we would like to find nq(k, d), we assume that G contains no all-zero-columns. The columns of G can be considered as a multiset of n points in Σ = PG(k − 1, q) denoted also by C.
  • 11. An i-point is a point of Σ which has mul- tiplicity i in C. Denote by γ0 the maximum multiplicity of a point from Σ in C and let Ci be the set of i-points in Σ, 0 ≤ i ≤ γ0. For ∀S ⊂ Σ we define the multiplicity of S with respect to C, denoted by mC(S), as mC(S) = γ0 i=1 i·|S∩Ci|.
  • 12. Then we obtain the partition Σ = C0 ∪ C1 ∪ · · · ∪ Cγ0 such that n = mC(Σ), n − d = max{mC(π) | π ∈ Fk−2}. Conversely such a partition of Σ as above gives an [n, k, d]q code in the natural manner.
  • 13. We define γj = max{mC(∆) | ∆ ∈ Fj}, 0 ≤ j ≤ k − 2. When C is Griesmer, γj = j u=0      d qk−1−u      for 0 ≤ j ≤ k − 2.
  • 14. A line l is an i-line if i = mc(l). An i-plane, an i-secumdum, and an i-hp are defined similarly. ai := |{π ∈ Fk−2 | mC(π) = i}|. The list of ai’s is the spectrum of C. Note that ai = An−i/(q − 1) for 0 ≤ i ≤ n − d.
  • 15. Let F be the multiset defined by mF(S) = γ0−1 i=0 (γ0 − i) · |S ∩ Ci| for ∀S ⊂ Σ. F is an (f, m)-minihyper if f = θk−1 − n, m = min{mF(π) | π ∈ Fk−2} = θk−2 − (n − d).
  • 16. A set S of s points in PG(r, q), r ≥ 2, is called an s-arc if no r + 1 points are on the same hyperplane. When q ≥ r, one can take a normal rational curve as a (q + 1)-arc. A set L of s (t−1)-flats in a t-flat Π is called an s-arc of (t − 1)-flats in Π if L forms an s-arc in the dual space Π∗ of Π.
  • 17. 3. Proof of Theorem 2 Theorem 2. nq(4, d) ≥ gq(4, d) + 1 for 2q3 − rq2 − q + 1 ≤ d ≤ 2q3 − rq2 for 3 ≤ r ≤ q − q/p, q = ph with p prime. We prove that there exists no [gq(4, d), 4, d]q code for d = 2q3 −rq2 −q +1, 3 ≤ r ≤ q −q/p, q = ph with p prime.
  • 18. Let C be a putative Griesmer [n = gq(4, d), 4, d = 2q3 − rq2 − q + 1]q code. Since C is Griesmer, n = 2q3 − (r − 2)θ2 − (q − 1), γ0 = 2, γ1 = 2θ1 − r, γ2 = n − d = 2θ2 − rθ1
  • 19. We define γj = max{mC(∆) | ∆ ∈ Fj}, 0 ≤ j ≤ k − 2. When C is Griesmer, γj = j u=0      d qk−1−u      for 0 ≤ j ≤ k − 2.
  • 20. There exists an (n − d)-hp in Σ. What is a code corresponding to a (2θ2 − rθ1)-plane in Σ = PG(3, q)? We investigate the geometric structure of a (2θ2 − rθ1)-plane ∆ to find its spectrum.
  • 21. 3.1 The spectrum of a (2θ2 − rθ1)-plane Lemma 1. Let Π be an i-hp through a t-secundum δ. For an (n − d)-hyperplane Π0 with spectrum (τ0, · · · , τγk−3), τt > 0 holds if i + q(n − d) − n − qt < q.
  • 22. Lemma 2. Let Π be an i-hp through a t-secundum δ. Then, t ≤ i + q · (n − d) − n q If t = max{mc(δ ) | δ ⊂ Π, δ ∈ Fk−3}, then an i-hp corresponds to an [i, k − 1, i − t]q code.
  • 23. Let D be the multiset for a (2θ2 − rθ1)-plane ∆ in C. Since 2θ2 − γ2 = rθ1, 2θ1 − γ1 = r, the multiset F obtained from two copies of ∆ with D deleted, say F = 2∆−D, forms an (rθ1, r)-minihyper. Lemma 3 (Hill-Ward, 2007). Every (r(q +1), r)-minihyper in PG(2, q), q = ph, p prime, with r ≤ q − q/p is a sum of r lines.
  • 24. By Lemma 3, F consists of r lines, say l1, · · · , lr in PG(2, q), i.e., F = l1 + · · · + lr. Since γ0 = 2, the set of lines {l1, · · · , lr} forms an r-arc of lines. Since m(li) = 2θ1 − θ1 − (r − 1) = q − r + 2 and m(l) = 2θ1 − r = γ1 for any line l in ∆ with l = li, we have the spectrum of ∆. Lemma 4. The spectrum of an (n−d)-plane is: (τq−r+2, τγ1) = (r, θ2 − r)
  • 25. : 2-point : 1-point : 0-point (2(2θ -
  • 26. Let δ be an i-plane. From Lemmas 2 and 4, we have q − r + 2 ≤ i+q+r−3 q , i.e., q2 − (r − 1)q − (r − 3) ≤ i. For i ≤ θ2, δ ∩ ∆ is a (q − r + 2)-line since δ has no 2-point. We have i ≤ θ2 − (r − 1).
  • 27. Let i = q2 − uq − (r − 3) + s, 0 ≤ u ≤ r − 2, 0 ≤ s ≤ q − 1. From Lemma 2, a t-line in the i-plane satis- fies t ≤ q − u + 1. If t = q−u+1, then i+q+r−3−qt = s ≤ q−1, and γ2-plane contains a t-line by Lemma 1, a contradiction. Hence t ≤ q − u.
  • 28. Considering the lines in δ through a fixed 1-point of δ ∩ ∆, i ≤ (q−u−1)q+q−r+2 = q2−uq−(r−2) < i, a contradiction. Hence i-planes remain only for q2−(r−1)q−(r−3) ≤ i ≤ q2−(r−2)q−(r−2) or γ2 − (q − 1) ≤ i ≤ γ2.
  • 29. Suppose ai = 0 for all i ≤ θ2. Then considering the planes through a given (q − r + 2)-line on ∆, we have n ≥ (γ2 − (q − 1) − (q − r + 2))q + γ2 = 2q3 − (r − 2)θ2 + q > n, a contradiction. Hence, by Lemma 4, we have i≤θ2 ai ≥ r.
  • 30. Lemma 5. Let Π be an i-hp through a t-secundum δ. Let cj be the number of j-hps through δ other than Π. Then, j cj = q, j(γk−2−j)cj = i+qγk−2−n−qt. · · · · · · (cj)
  • 31. On the other hand, if there exists an i-plane with i = q2 − (r − 1)q − (r − 3) + s, 0 ≤ s ≤ q − 1, then any other j-plane satisfies j ≥ γ2 − (q − 1) since the coefiicient of cq2−(r−2)q−(r−2) is q2 and RHS of (cj) = i + q + r − 3 − qt < q2. This implies i≤θ2 ai ≤ 1, a contradiction.
  • 32. For r = 3, Theorem 1 tells that nq(4, d) ≥ gq(4, d) + 1 for 2q3 − 3q2 − q + 1 ≤ d ≤ 2q3 − 3q2 for q > 3. Theorem 3. nq(4, d) = gq(4, d) + 1 for 2q3 − 3q2 − 2q + 1 ≤ d ≤ 2q3 − 3q2 − q for q ≥ 7. We note that the values of d for r = 3 in Thm 1 and the values of d in Thm 3 are consecutive.
  • 33. 4. Proof of Theorem 3 Theorem 3. nq(4, d) = gq(4, d) + 1 for 2q3 − 3q2 − 2q + 1 ≤ d ≤ 2q3 − 3q2 − q for q ≥ 7. It is known that n5(4, d) = g5(4, d) + 1. We assume q ≥ 7.
  • 34. We first give the construction of a [gq(4, d) + 1, 4, d = 2q3 − 3q2 − 2q + 1]q code. Let M be the multiset M = 2 · PG(3, q) + P − (δ1 + δ2 + δ3 + l), where P: a point, l: a line, δ1, δ2, δ3 : planes satisfying δ1 ∩ δ2 ∩ δ3 = P and l ∩ ((δ1 ∩ δ2) ∪ (δ1 ∩ δ3) ∪ (δ2 ∩ δ3)) = ∅.
  • 36. Then, M gives a [gq(4, d) + 1, 4, d = 2q3 − 3q2 − 2q + 1]q code. Next, we prove the nonexistence of a [gq(4, d), 4, d]q code for d = 2q3 −3q2 −2q +1, q ≥ 7.
  • 37. Let C be a putative Griesmer [n = gq(4, d), 4, d = 2q3 − 3q2 − 2q + 1]q code. Then n = 2q3 − q2 − 3q − 1, γ0 = 2, γ1 = 2q − 1, γ2 = n − d = 2q2 − q − 2. Lemma 6. (Kanazawa-Maruta, 2011) The spectrum of an (n − d)-plane is: (A) (τq−1, τ2q−2, τ2q−1) = (3, q + 1, q2 − 3) or (B) (τq−2, τq−1, τ2q−2, τ2q−1) = (1, 2, q, q2−2).
  • 38. From Lemmas 2 and 6, one can show that ai = 0 for i /∈ {q2 − 3q − 1, · · ·, q2 − 2q − 5, q2 − 2q − 1, · · ·, q2 − q − 4, q2 − 1, q2, q2 + q − 1, 2q2 − 3q − 1, · · ·, 2q2 − q − 2}. We eliminate the possibility of an i-plane for each i. We first rule out a possible (q2−3q−1)-plane.
  • 39. Suppose a (q2 − 3q − 1)-plane exists. Lemma 7. The spectrum satisfies (1) n−d i=0 ai = θk−1 (2) n−d i=1 iai = nθk−2 (3) n−d i=2 i 2 ai = n 2 θk−3 + qk−2 γ0 s=2 s 2 λs
  • 40. From the equalities (1)-(3), when γ0 ≤ 2, we have n−d−1 i=0 (n − d − i)ai = n − d 2 θk−1 −n(n − d − 1)θk−2 + n 2 θk−3 + qk−2λ2 · · · (4) j (2q2 − q − 2 − j)cj = i + q + 1 − qt · · · (cj) We consider the maximum contribution of (cj) with i = n − d to LHS of (4).
  • 41. q-1
  • 42. ex) q = 7 q2 − 3q − 1 = 27. The spectrum (B) of an (n − d)-plane is (τ5, τ6, τ12, τ13) = (1, 2, 7, 47). the RHS of (cj) t-line 62 5 55 6 13 12 6 13
  • 43. The maximum possible contributions of cj’s to the LHS of (4) are (c27, c89) = (1, 6) for t = 5. (c76, c86, c89) = (4, 1, 2) for t = 6. (c76, c89) = (1, 6) for t = 12. (c83, c89) = (1, 6) for t = 13. From (4), q2λ2 ≤ 8000 + 1891τ5 +(4·78+3)τ6+78τ12+15τ13, i.e., λ2 ≤ 240.
  • 44. Lemma 8. Let λs be the number of s-points in PG(k − 1, q). Then, λ2 = n − θk−1 + λ0 if γ0 = 2. We have λ0 ≥ θk−2 − i if i < θk−2. By Lemma 8, λ2 ≥ 615 − 400 + (57 − 27) = 245, a contradiction. Hence, there exists no 27-plane.
  • 45. If q is odd, we can show from (4) that λ2 ≤ q3 − 5 2q2 + 5 2q + 9 4. On the other hand, Lemma 8 yields λ2 ≥ q3 − 2q2 − 1 2q + 3 2. From q3 − 2q2 − 1 2q + 3 2 ≤ q3 − 5 2q2 + 5 2q + 9 4, we have q ≤ 3 + √ 6, which contradicts q ≥ 7. Hence aq2−3q−1 = 0.
  • 46. We can also show aq2−3q−1 = 0 when q is even. Similarly, we can prove the nonexistence of an i-plane for i /∈ {2q2 −3q−1, ···, 2q2 −q−2}, giving a contradiction by (4). Hence nq(4, d) = gq(4, d) + 1 for 2q3 − 3q2 − 2q + 1 ≤ d ≤ 2q3 − 3q2 − q for q ≥ 7.
  • 47. 5.Remark. Thm 2 can be generalized to the following: Theorem 5. nq(k, d) ≥ gq(k, d) + 1 for d1 − q + 1 ≤ d ≤ d1 = (k − 2)qk−1 − rqk−2 for k − 1 ≤ r ≤ q − q/p, q = ph with p prime. Lemma 11 (Landjev-Vandendriessche, 2012). Every (rθr−1, rθr−2)-minihyper in PG(r, q), q = ph, p prime, r ≤ q − q/p is a sum of r hps.
  • 48. References [1] R. Hill and H. Ward, A geometric approach to classifying Griesmer codes, Des. Codes Cryptogr., 44, 169–196, 2007. [2] Y. Kageyama and T. Maruta, On the construction of optimal codes over Fq, preprint. [3] R. Kanazawa and T. Maruta, On optimal linear codes over F8, Electron. J. Combin., 18, #P34, 27pp., 2011. [4] I. Landjev and P. Vandendriessche, A study of (xvt, xvt−1)-minihypers in PG(t, q), Journal of Combinatorial Theory, Series A 119, 1123-1131, 2012. [5] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math., 208/209, 427–435, 1999. [6] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr., 22, 165-177, 2001. [7] M. Takenaka, K. Okamoto and T. Maruta, On optimal non-projective ternary linear codes, Discrete Math., 308, 842–854, 2008.