SlideShare une entreprise Scribd logo
1  sur  212
Télécharger pour lire hors ligne
ĐỖ QUÝ HAI (CHỦ BIÊN) - NGUYỄN BÁ LỘC
TRẦN THANH PHONG - CAO ĐĂNG NGUYÊN
GGIIÁÁOO TTRRÌÌNNHH
HHÓÓAA SSIINNHH
NHÀ XUẤT BẢN ĐẠI HỌC HUẾ
3
Lời nói đầu
Hóa sinh học là khoa học nghiên cứu thành phần hóa học của cơ thể
sống và những quá trình chuyển hóa hóa học của các chất và năng lượng
trong quá trình hoạt động sống xảy ra trong cơ thể sinh vật. Là ngành khoa
học cơ bản, đồng thời cũng là một khoa học ứng dụng, là ngành khoa học
cơ sở cho các khoa học cơ bản quan trọng khác như công nghệ sinh học,
sinh học phân tử; hóa sinh học tác động lớn hay nói rộng hơn là mũi nhọn
để định hướng và giải quyết các vấn đề phục vụ cho nông, lâm, ngư
nghiệp, phục vụ cho y học... Chính vì vậy, hóa sinh học không chỉ là công
cụ của sinh học mà còn là công cụ của các chuyên ngành khác liên quan
đến sinh học như nông, lâm, ngư, y dược.
Giáo trình nhằm cung cấp cho sinh viên các ngành, chuyên ngành
liên quan đến sinh học trong Đại học Huế những kiến thức cơ bản về cấu
tạo và thành phần hóa học của các sinh chất, mối liên quan giữa cấu trúc
và chức năng, các quá trình chuyển hóa của chúng và năng lượng trong cơ
thể sinh vật.
Cuốn sách được biên soạn theo chương trình giáo dục đại học đã
được Đại học Huế phê duyệt, bởi tập thể tác giả của các trường Đại học
khoa học, sư phạm thuộc Đại học Huế. Sách cũng có thể dùng tài liệu
tham khảo cho sinh viên các trường khác, những người chuẩn bị thi tuyển
sau đại học cũng như các cán bộ nghiên cứu liên quan.
Các tác giả xin cảm ơn những đồng nghiệp đã góp nhiều ý kiến bổ
ích trong quá trình biên soạn. Đặc biệt các tác giả xin chân thành cám ơn
GS.TSKH Lê Doãn Diên - Giám đốc Trung tâm Tư vấn Đầu tư Nghiên
cứu phát triển Nông thôn Việt Nam (INCEDA), Chủ tịch Hội Hóa sinh
Việt Nam đã nhận phản biện và cho rất nhiều những lời khuyên quý báu
nhằm hoàn thiện giáo trình.
Với thời gian biên soạn và kinh nghiệm còn hạn chế, cuốn sách còn
chưa thật đầy đủ và chắc chắn không tránh khỏi nhiều thiếu sót. Chúng tôi
rất mong nhận được những ý kiến đóng góp của các bạn đồng nghiệp, sinh
viên và bạn đọc để lần xuất bản sau sẽ được hoàn thiện hơn.
Thay mặt các tác giả
Chủ biên
PGS.TS Đỗ Quý Hai
11
Mở đầu
1. Lịch sử, đối tượng, nhiệm vụ của hoá sinh
Ở thế kỷ XIX, khi mà hoá học phát triển như vũ bão, thì ở ranh
giới giữa sinh học và hoá học đã xuất hiện một lĩnh vực khoa học mới
nhằm nghiên cứu thành phần hoá học của cơ thể sống và những quá trình
chuyển hoá hoá học của các chất và của năng lượng trong quá trình hoạt
động sống xảy ra trong cơ thể của chúng. Lĩnh vực khoa học này được gọi
là hoá học sinh vật hoặc vắn tắt hơn- hoá sinh học (biochemistry).
Có thể nói rằng, hoá sinh học là một phần lĩnh vực của khoa học
cuộc sống. Nhiệm vụ của chúng nhằm nghiên cứu các hiện tượng sống
bằng các phương pháp hoá học.
Đây là một khoa học trẻ tuổi của thế kỷ XX đang trên đà phát triển
mạnh mẽ và đang xâm nhập vào nhiều lĩnh vực mũi nhọn của sinh vật học,
y học và nông học... Hoá sinh học mới trở thành một khoa học độc lập vào
nửa sau thế kỷ thứ XIX mặc dầu ngay từ thời thượng cổ con người đã làm
quen với nhiều quá trình hoá sinh học trong cuộc sống hàng ngày của họ
(nấu rượu, nướng bánh mì, thuộc da, làm dấm, tương, nước mắm...).
Tuy vậy chỉ mới gần đây, tất cả mọi quá trình sinh học này mới
được nghiên cứu một cách khoa học và được giải thích một cách đầy đủ.
Có thể nói, sự xuất hiện môn hoá sinh học là kết quả tất yếu của sự
phát triển và phối hợp giữa hoá học và sinh vật học.
Tính chất và phương hướng của hoá sinh học là nghiên cứu trên cơ
thể sống, tìm ý nghĩa chức phận của tất cả mọi thành phần, mọi sản phẩm
chuyển hoá, trên cơ sở đó, tìm hiểu sâu về:
- Mối liên quan giữa quá trình hoá học và sinh vật học.
- Mối liên quan giữa cấu trúc và chức năng sống của các cơ quan
trong cơ thể.
- Cơ chế điều hoà toàn bộ quá trình sống.
Tuỳ theo đối tượng nghiên cứu mà người ta phân chia hoá sinh học
thành hoá sinh động vật, hoá sinh thực vật, hoá sinh vi sinh vật và y hoá
sinh.
Trên mỗi đối tượng, hoá sinh nghiên cứu song song hai mặt "tĩnh"
và "động".
Việc nghiên cứu các chất có trong thành phần của cơ thể sinh vật
là nhiệm vụ của tĩnh hoá sinh. Tĩnh hoá sinh gắn liền rất mật thiết với hoá
học sinh hữu cơ. Đây chính là hóa sinh mô tả.
Còn việc nghiên cứu các chuyển hóa hoá học xảy ra trong quá
trình hoạt động sống của cơ thể nghĩa là nghiên cứu về mặt hoá học của sự
12
trao đổi chất trong mối liên quan với toàn bộ cơ thể và môi trường xung
quanh là nhiệm vụ của động hoá sinh.
Tĩnh hoá sinh và động hoá sinh liên quan với nhau rất chật chẽ -
việc nghiên cứu các quá trình hóa sinh học sẽ vô nghĩa nếu không có sự
nghiên cứu các chất tham gia trong các quá trình này.
Hoá sinh mô tả gắn liền với sự phát triển của hoá hữu cơ. Cuối thế
kỷ XVIII, đầu thế kỷ XIX, hàng loạt các hợp chất hữu cơ đã được tách ra
từ thực vật và từ các tổ chức động vật: citric acid, malic acid, tatric acid,
oxalic acid, urea và các alkaloid. Người ta đã xác nhận rằng trong thành
phần của tất cả các chất béo đều chứa glycerin. Trong thời gian này,
Lavoisier cũng đã giải thích được cơ chế hoá học của sự hô hấp và sự
cháy. Ông đã chứng minh rằng, lượng nhiệt do các cơ thể sống sản sinh ra
cũng bằng lượng nhiệt thu được khi đốt cháy các chất dinh dưỡng bên
ngoài cơ thể (khi hô hấp trong cơ thể, carbon và hydrogen bị oxy hóa từ
từ, quá trình này rất giống sự cháy bình thường).
Tiếp theo các công trình chiết xuất, tinh chế và phân tích các chất
hữu cơ là những công trình nghiên cứu tổng hợp các chất hữu cơ. Quan
điểm cho rằng, vật chất sống khác với vật chất không sống đã bị đánh đổ
hoàn toàn khi mà Wöhler vào năm 1828 đã điều chế được carbamid (urea)
bằng phương pháp nhân tạo từ các chất vô cơ. Phát minh của Wöhler là
bằng chứng cho rằng để tạo nên chất sống không cần thiết bất kỳ một
"lực" sống nào (vis vitalis) và như vậy đã mở đường hướng để cho hoá
sinh phát triển. (Thời kỳ này khoa học đi sâu vào sự sống đang bị khống
chế và kìm hãm bởi thuyết "hoạt lực" cho rằng các chất hữu cơ tham gia
vào cấu tạo của cơ thể sinh vật chỉ có thể tạo ra bởi một "đấng siêu tự
nhiên").
Trong suốt khoảng hai thế kỷ trước, sự phát triển của hoá sinh học
xảy ra tương đối chậm. Sự bắt đầu thật sự của hoá sinh học thường được
coi là vào năm 1866 khi Tübigen thành lập bộ môn hoá sinh đầu tiên dưới
sự lãnh đạo của Hoppe - Seyler (ở nước Đức). Số đầu tiên của tạp chí
mang tính chất hoá sinh học được ra mắt vào năm 1877 (Hoppe - Seyler's
Zeitschrift für physiologische Chemie). Tiền đề của nó là sự hoạt động của
Liebig ở Đức và trường phái hoá học hữu cơ của ông. Bằng cách sử dụng
các phương pháp nghiên cứu mới, Liebig đã xác định thành phần của
nhiều thực phẩm, đã chia các chất chứa trong thực phẩm thành protein,
glucid, lipid và đã xác định hàm lượng nitrogen trong protein. Sau những
công trình nghiên cứu của Pasteur về sự lên men, các nhà khoa học đã chú
ý nhiều đến bản chất enzyme vốn xúc tác cho các quá trình khác nhau
trong cơ thể sống. Nhiều công trình có giá trị khác, trong đó có công trình
của Fischer đã đi vào cấu trúc và tổng hợp glucid, lipid, amino acid và
13
protein, Pavlov trong thời gian này đã nghiên cứu các cơ chế enzyme và
Miescher thì nghiên cứu nucleic acid. Thời gian này người ta cũng đã phát
hiện ra vitamin.
Việc xác lập nên thành phần hoá học của thực vật, việc phát hiện
ra các enzyme và việc làm sáng tỏ vai trò của chúng trong sự trao đổi chất,
sự phát hiện ra vitamin và hormon, sự phát triển của hoá học về amino
acid và protein, về glucid, lipid đã tạo điều kiện cho việc hình thành động
hoá sinh và chính nhờ sự phát triển của động hoá sinh mà người ta đã xây
dựng được những quan điểm thống nhất về các quy luật chung của các quá
trình trao đổi chất và của những chuyển hoá năng lượng trong cơ thể sinh vật.
Ngày nay chúng ta biết rõ rằng, tất cả các chất xây dựng nên tế bào
sống, đều thay đổi không ngừng. Đặc trưng của sự sống là sự biến đổi hoá học.
Như vậy hoá sinh học hiện đại trước hết là động hoá sinh. Trước
tiên đó là những hiện tượng trao đổi chất, là sự chuyển hoá và phân giải
các chất dinh dưỡng nhằm thu nhận năng lượng hoá học cũng như để xây
dựng vật chất của tế bào. Các phản ứng hoá học này được xảy ra nhờ tác
dụng xúc tác của những enzyme, vì vậy việc nghiên cứu các enzyme
chiếm một phần quan trọng trong hoá sinh học.
Thứ đến thuộc về động hoá sinh là điều hoà hoá học. Điều này
được xảy ra trên con đường các sản phẩm trao đổi chất xác định, thường là
cùng với sự tham gia của những chất đặc biệt là hormon được tạo thành
trong các tuyến nội tiết.
Thứ ba thuộc về động hoá sinh là các quá trình hoá học được xảy
ra gắn liền với các cấu trúc và thực hiện các chức năng của các phần tử
cấu trúc.
Việc xác định trình tự của amino acid trong protein và cấu trúc
không gian của protein (Sanger, Perutz và Kendrew) cũng như cấu trúc
của nucleic acid (Chargaff, Watson và Crick) là bắt đầu một giai đoạn mới
trong sự phát triển của hoá sinh học tức là thời kỳ của sinh học phân tử.
Một điều rõ ràng là không thể tách riêng sinh học phân tử và hoá sinh học
ra khỏi nhau. Về cơ bản mà nói thì "sinh học phân tử" chỉ là tên mới,
nhưng là một phân ngành riêng của hoá sinh. Nó cố gắng làm sáng tỏ các
hiện tượng sống cơ bản trên cơ sở phân tử có nghĩa là trên cơ sở hoá sinh
học. Chính vì vậy theo quan niệm hiện đại thì hoá sinh học là khoa học
nghiên cứu cơ sở phân tử của sự sống.
2. Thành phần hoá học của cơ thể sống
Trong cơ thể sống, nước là thành phần quan trọng nhất. Trừ một số
mô hoặc loại tế bào (các hạt thực vật, các bào tử mô xương, mô mỡ),
lượng nước của chúng không đạt đến 80%, còn lượng nước của một số
sinh vật khác cũng vượt quá 90% (toàn bộ lượng nước của cơ thể con
14
người khoảng 50-70%). điều cần lưu ý là ở một số dạng sống bậc thấp, các
virus, các bào tử sống qua trạng thái khô héo hoàn toàn, song trong trạng
thái không có nước thì các hoạt động sống của chúng bị hoãn lại.
Từ các cơ sở trên chúng ta có thể nói rằng các quá trình hoá học
đặc trưng cho sự sống được xem như là những phản ứng tiến hành ở trong
môi trường nước.
Ngoài ra người ta đã phát hiện được hơn 60 nguyên tố có trong cơ
thể sống. Các nguyên tố này có trong cơ thể với những lượng rất khác
nhau. Một số được coi là những nguyên tố cần thiết để xây dựng cơ thể và
phục vụ cho sự phát triển bình thường của cơ thể; một số khác thì chức
năng sinh học của chúng chưa được biết rõ; số còn lại được coi như do sự
xâm nhập ngẫu nhiên. C H O N S P Cl Ca Mg K Na đều là những nguyên
tố rất cần thiết đối với cơ thể sống, 11 nguyên tố này chiếm gần 100%
khối lượng toàn phần của thực vật và động vật. Những nguyên tố ở dạng
vết được gọi là yếu tố vi lượng, vai trò quan trọng của chúng đối với cuộc
sống cũng dần dần được sáng tỏ đó là những ion kim loại nặng Co, Zn,
Mn, Mo; trong trường hợp các cơ thể động vật bậc cao còn có I, ở các cây
xanh thì có B. Cần nhớ rằng, trừ I và Mo, các nguyên tố đã được kể đến
đều nằm trong số 30 nguyên tố đầu của hệ thống tuần hoàn và hơn một
nửa các nguyên tố có số thứ tự đến 30 có vai trò sinh học quan trọng.
Nhiều hợp chất hữu cơ trước đây được coi như là riêng biệt thuộc
giới sinh vật, nay cũng đã được nghiên cứu, tổng hợp trong phòng thí
nghiệm. Đó là các protein, nucleic acid, glucid, lipid, enzyme và vitamin.
Đây là những chất chiếm vị trí hàng đầu trong sinh học và cũng chính là
đối tượng nghiên cứu chính của các chương trong giáo trình này.
3. Mối quan hệ của hoá sinh với các ngành khoa học của sinh
học, nông nghiệp và y học
Trong sinh học có nhiều ngành, nhưng nghiên cứu sinh học ngày
nay là nghiên cứu ở mức độ phân tử. Hoá sinh là khoa học nghiên cứu sự
sống ở mức độ phân tử, cho nên có thể nói bất cứ chuyên ngành nào của
sinh học như động vật học, thực vật học, vi khuẩn học, sinh lý học, tế bào
học, mô phôi học... đều cần phải trang bị kiến thức và kỹ thuật hoá sinh để
nghiên cứu khoa học chuyên ngành mình. Do đó khi nói đến các chuyên
ngành của sinh học hiện đại thì trước hết phải nói đến hoá sinh trong
những năm gần đây. Ngay cả công nghệ gen, công nghệ enzyme cũng
chính là lãnh địa của hoá sinh. Chẳng hạn đối với động vật, thực vật, vi
sinh vật, ngày nay muốn nghiên cứu phân loại chính xác các giống chủng
cũng phải dùng các chỉ tiêu phân tử một số protein, enzyme hay nucleic
acid trong ty lạp thể. Đối với nông nghiệp muốn tăng năng suất cây trồng
phải chú ý đến quá trình hoá sinh quang hợp, quá trình hoá sinh nảy mầm,
15
quá trình hoá sinh phát dục, quá trình chuyển hoá, sinh tổng hợp các chất
tạo nên hạt, quả, quá trình tác động hoá sinh của các cytokinin đến sự sinh
trưởng và phát triển của cây. Đối với vật nuôi cũng vậy, muốn có năng
suất thịt, sữa, trứng cao, người chăn nuôi phải hiểu được các quá trình hoá
sinh phát triển đến từng giai đoạn phát triển của con vật, đến từng bộ phận
cơ bắp, buồng trứng của chúng để có sự tác động mạnh mẽ. Đối với y
dược học, vấn đề chủ chốt nghiên cứu bệnh nguyên, bệnh lý, chẩn đoán và
điều trị bệnh cũng đều liên quan chặt chẽ đến hoá sinh, tức liên quan đến
sự thay đổi các phân tử bệnh lý xảy ra trong cơ thể và tìm những chất hoạt
tính sinh học có tác dụng phòng chống hoặc chữa khỏi bệnh.
Vì vậy có thể nói hoá sinh là gốc, là cơ bản để giúp hiểu sâu sắc
các khoa học khác của sinh học, nông nghiệp và y học.
4. Một số thành tựu nổi bật của hóa sinh trong thời gian gần đây
Trong quá trình phát triển của mình, nhiều ngành nhỏ của hoá sinh
đã ra đời.Về hoá sinh một số chức phận hệ thống quan trọng có hoá sinh
miễn dịch, hoá sinh di truyền, đặc biệt một ngành mới gần đây đã xuất
hiện đó là công nghệ hoá sinh. Các lĩnh vực nhỏ của hoá sinh đã đóng góp
một cách tích cực vào thành tích chung của hoá sinh. Nhiều giải thưởng
Nobel đã ghi công các kết quả nghiên cứu quan trọng, mở ra nhiều cánh
cửa mới cho sự phát triển của hoá sinh như hoá sinh của hệ thống miễn
dịch của Snell, Bena Cerraf và Dausset năm 1980. Cùng năm ấy Paul Berg
cũng được giải thưởng Nobel bởi công trình nghiên cứu gắn các mẫu
DNA. Năm 1981-1982, thành tựu tổng hợp gen α - interferon gồm 514 đôi
base bởi Leicester đã được thực hiện. Từ đó đến nay hàng loạt công trình
khác về nghiên cứu hoá sinh đã được áp dụng trong lĩnh vực khoa học.
Gần đây, năm 1997 giải thưởng Nobel y học trao cho Staley
Prusiner về công trình nghiên cứu prion, một khái niệm mới về "nhiễm
khuẩn", gây bệnh não thể xốp ở người và động vật. Prion (PrP) là protein
tồn tại hai dạng đồng phân alpha và bêta. Ở cơ thể khoẻ mạnh thì PrP có
dạng alpha còn khi cơ thể bị bệnh thì dạng alpha bị duỗi ra và xếp thành
các băng song song gọi là PrP bêta. Dạng này rất bền với enzyme tiêu hoá
và không bị phá huỷ ở nhiệt độ cao (đến 200o
C). Do vậy prion như là tác
nhân gây bệnh hoàn toàn mới được bổ sung vào danh sách những tác nhân
gây bệnh như virus, vi khuẩn, nấm. Công trình này đưa ra khái niệm bệnh
lý phân tử hoàn toàn mới trong sinh học và y học. Công trình không chỉ
phát hiện ra tác nhân gây bệnh xốp não mà còn đặt nền móng cho sự tìm
hiểu cơ chế mất trí liên quan đến bệnh già và bệnh Alzheimer, cũng như
đặt nguyên tắc chặt chẽ cho việc ghép các cơ quan phủ tạng của động vật
cho con người và thuốc men chế từ động vật dùng cho người.
16
TÀI LIỆU THAM KHẢO
Tài liệu tiếng Việt
1. Trần Thị Ân (chủ biên). 1979. Hóa sinh đại cương (tập I, II). NxB KH&KT.
Hà Nội.
2. Đái Duy Ban. 2005. Hóa sinh học và hóa sinh y học.Hóasinhhọc.1:8-13.
3. Phạm Thị Trân Châu, Trần Thị Áng. 2000. Hóa sinh học. Nxb Giáo dục. Hà
Nội.
4. Lê Doãn Diên. 1975. Hóa sinh thực vật. Nxb Nông nghiệp. Hà Nội
5. Nguyễn Tiến Thắng, Nguyễn Đình Huyên. 1998. Giáo trình sinh hóa hiện
đại. Nxb Giáo dục. Hà Nội.
6. Nguyễn Xuân Thắng, Đào Kim Chi, Phạm Quang Tùng, Nguyễn Văn
Đồng, 2004. Hóa sinh học. Nxb Y học, Hà Nội.
Tài liệu tiếng nước ngoài
1. Karlson. P., 1972. Biokémia. Medicina Könyv Kiadó Budapest.
2. Lehninger A.L., 2004. Principle of Biochemistry, 4th Edition. W.H Freeman.
3. Stryer L., 1981. Biochemistry. W.H.Freeman and company. San Francisco.
4. Straub .F. B. 1965. Biokémia. Medicina Könyv Kiadó Budapest.
17
Chương 1
Saccharide
Là hợp chất hữu cơ được tạo nên từ các nguyên tố: C, H, O có
công thức cấu tạo chung Cm(H2O)n, thường m = n. Do có công thức cấu
tạo như trên nên saccharide thường được gọi là carbohydrate - có nghĩa là
carbon ngậm nước.
Tuy nhiên có những saccharide có công thức cấu tạo không ứng
với công thức chung nói trên ví dụ: deoxyribose (C5H10O4).
Có những chất không phải là saccharide nhưng có công thức cấu
tạo phù hợp với công thức chung ở trên ví dụ : acetic acid (CH3COOH).
Saccharide là thành phần quan trọng trong mọi sinh vật .
Ở thực vật, saccharide chiếm từ 80 - 90% trọng lượng khô,
saccharide tham gia vào thành phân các mô nâng đỡ, ví dụ cellulose, hay
tích trữ dưới dạng thực phẩm dự trữ với lượng lớn, ví dụ tinh bột. Ở động vật,
hàm lượng saccharide thấp hơn nhiều, thường không quá 2%, ví dụ glycogen.
1.1. Monosaccharide
1.1.1. Cấu tạo và danh pháp
Là chất có chứa nhiều nhóm rượu và một nhóm khử oxy (nhóm khử là
nhóm carbonyl là aldehyde hay ketone).
- Nhóm khử là aldehyde ta có đường aldose và có công thức tổng quát:
CHO
(CHOH)n
CH2OH
- Nhóm khử là ketone ta có đường ketose có công thức tổng quát:
CH2OH
C= O
(CHOH)n
CH2OH
18
CHO - CH2OH được xem như là “monosaccharide”đơn giản nhất.
Trong thiên nhiên monosaccharide có chứa từ 2 đến 7 carbon và được
gọi tên theo số carbon (theo tiếng Hy Lạp) + ose
Ví dụ: monosaccharide có 3C gọi là triose. Tương tự ta có tetrose,
pentose, hexose, heptose.
1.1.2. Đồng phân quang học
Quy ước Fischer: Fischer là người đầu tiên nêu ra nguyên tắc biểu
diễn các monosaccharide bằng công thức hình chiếu của chúng. Theo đó:
hình chiếu của các nguyên tử carbon bất đối (C*) và các nguyên tử C khác
nằm trên một đường thẳng, nguyên tử C có số thứ tự nhỏ nhất có hình chiếu
nằm trên cùng. Còn các nhóm thế có hình chiếu ở bên phải hay bên trái.
Ví dụ : glyceraldehyde.
Vì glyceraldehyde có 1 C* nên theo quy tắc của Van’t Hoff có 2
đồng phân (N = 2n)
1CHO 1CHO
HO- 2C* -H H-2C*-OH D: -OH ở bên phải
L: -OH ở bên trái
3CH2OH 3CH2OH
L glyceraldehyde D glyceraldehyde.
Khi phân tử monosaccharide có nhiều C* thì công thức có dạng D
hay L được căn cứ vào vị trí nhóm OH của C* xa nhóm carbonyl nhất.
Ví dụ : CHO CHO
H-C-OH H-C-OH
HO-C-H HO-C-H
H-C-OH H-C-OH
H-C-OH HO-C-H
CH2OH CH2OH
D glucose L glucose
19
Chú ý: monosaccharide từ triose trở lên đều có C* trừ dihydoxy aceton
CH2OH
C = O
CH2OH
1.1.3. Công thức vòng của monosaccharide
Công thức thẳng theo Fischer như trình bày ở trên không phù hợp
với một số tính chất hoá học của chúng như: một số phản ứng hoá học
thường xảy ra với aldehyde không xảy ra đối với monosaccharide . Vì vậy
có thể nghĩ rằng nhóm -CHO trong monosaccharide còn tồn tại dưới dạng
cấu tạo riêng biệt nào đó.
Mặt khác: monosaccharide có thể tạo ether với methanol tạo thành
một hỗn hợp 2 đồng phân có cùng nhóm methoxy (- OCH3). Điều đó
chứng tỏ trong monosaccharide còn tồn tại một nhóm -OH đặc biệt.
Qua nghiên cứu Kolle cho thấy: số đồng phân thu được của
monosaccharide thực tế nhiều hơn số đồng phân tính theo công thức N=2n
, do
đó để giải thích các hiện tượng trên, Kolle cho rằng ngòai dạng thẳng
monosaccharide còn tồn tại ở dạng vòng.
Sự tạo thành dạng vòng xảy ra do tác dụng của nhóm -OH cùng
phân tử monosaccharide tạo thành dạng hemiacetal hay hemiketal.
20
Ví dụ : cấu tạo vòng của glucose xảy ra như sau:
Do sự tạo thành hemiacetal vòng mà C1 trở nên C*, nhóm -OH mới
được tạo ra ở C1 là -OH glucoside. Tương tự với ketose thì C2 trở nên C*,
nhóm -OH mới được tạo ra ở C2 là -OH glucoside khi tạo thành
hemiketal.
Cách biểu diễn công thức vòng như trên dựa vào nguyên tắc của
Haworth: C và cầu nối với oxy nằm trên một măt phẳng , các nhóm thế ở
công thức thẳng nằm ở bên phải thì ở công thức vòng nằm dưới măt phẳng và
ngược lại. Riêng các nhóm thế của C có nhóm OH dùng để tạo cầu nối oxy thì
theo quy tắc ngược lại.
1.1.4. Hiện tượng hổ biến của monosaccharide
Như ta thấy, không thể giải thích được tất cả các tính chất của
monosaccharide nếu ta chỉ thừa nhận một dạng cấu tạo nào đó của
monosaccharide. Nên người ta cho rằng các dạng cấu tạo đó có thể đã
chuyển hoá lẫn nhau.
β pyranose α pyranose
Dạng thẳng
β Furanose α Furanose
21
1.1.5. Tính chất của monosaccharide
1.1.5.1. Lý tính
Các monosaccharide tan trong nước, không tan trong dung môi
hữu cơ, có tính quay cực trừ biose vì không có C*.
1.1.5.2. Hoá tính
a. Monose là tác nhân khử
Trong môi trường kiềm, khử các ion kim loại nặng có hoá trị cao
thành ion có hóa trị thấp hay các ion kim loại thành kim loại.
Tính khử này do nhóm aldehyde hay nhóm ketone tạo ra và các
monose biến thành acid.
Ví dụ: Cu2+
bị biến đổi thành Cu+
trong phản ứng với thuốc thử
Fehling, Ag+
bị biến đổi thành Ag trong phản ứng tráng gương.
b. Phản ứng với các chất oxy hoá
Tuỳ thuộc vào chất oxy hoá:
- Chất oxy hoá nhẹ như nước brom đường aldose sẽ thành aldonic
acid, với ketose phản ứng không xảy ra.
- Chất oxy hoá mạnh như HNO3 đậm đặc có sự oxy hoá xảy ra ở 2
đầu cho ta di acid.
- Trường hợp đặc biệt nếu ta bảo vệ nhóm -OH glucoside bằng
cách methyl hóa hay acetyl hoá trước khi oxy hoá bằng nước brom, sản
phẩm tạo thành là uronic acid.
c. Phản ứng với chất khử
Dù dạng vòng chiếm tỷ lệ rất lớn trong thành phần, dạng thẳng
chiếm tỷ lệ nhỏ nhưng đủ để cho ta thấy rõ tính chất của một carbonyl thật
sự. Khi bị khử: monose sẽ biến thành polyalcohol.
d. Phản ứng tạo furfural
Dưới tác dụng của acid đậm đặc, các aldopentose tạo thành furfural
và aldohexose biến thành hydroxymethylfurfural. Các sản phẩm này khi
cho tác dụng với các phenol cho màu đặc trưng như: α naphthol cho vòng
màu tím (Molisch). Đây là phản ứng để phân biệt đường với các chất
khác. Nếu đường 5C sẽ cho màu xanh cẩm thạch với orcinol (Bial).
e. Phản ứng ester hoá
Các gốc rượucủa monose có khả năngkết hợp vớiacidđể tạo thànhester.
Các ester phosphate thường gặp là: Glucose-6-phosphate, fructose-
6-phosphate...
22
1.1.6. Các monose quan trọng
1.1.6.1. Pentose
1.1.6.2. Hexose
Các hexose quan trọng như:
* Glucose: còn gọi là dextrose vì làm quay mặt phẳng ánh sáng
phân cực về phía phải.
Phổ biến rộng rãi trong thực vật nhất là trong quả nho, nên còn gọi là
đường nho, trong máu người có 0.8 - 1,1 g/l, những người bị bệnh đái đường
có thể đến 2g/l. Các disaccharide quan trọng là saccharose, lactose, maltose và
các polysaccharide quan trọng là tinh bột, glycogen. Người ta sử dụng glucose
trong y học như chất tăng lực.
* D - Mannose: ít gặp ở trạng thái tự do, thường gặp trong
polysaccharride và glucoside
* D - Galactose: là thành phần của lactose có trong sữa còn gọi là
đường não tuỷ. Chúng là thành phần cấu tạo của raffinose, hemicellulose.
pectine...
* D - Fructose còn gọi là levulose vì làm quay mặt phẳng ánh sáng
phân cực về phía trái.
Fructose còn gọi là đường quả, có ở trạng thái tự do trong trái cây
chín và mật ong. Chúng là thành phần của disaccharide saccharose. Trong cơ
thể ta còn thấy ở dạng ester với phosphoric acid đóng vai trò quan trọng trong
trao đổi chất. Fructose có độ ngọt rất lớn, dạng α có độ ngọt bằng 1/3 dạng β.
23
24
1.2. Oligosaccharide
1.2.1. Disaccharide
Sự tạo thành disaccharide là do sự kết hợp của 2 monose cùng loại
hay khác loại nhờ liên kết glucosidic. Liên kết glucosidic có thể được tạo
thành giữa -OH glucoside của monose này với -OH glucoside của monose
kia, hay giữa một nhóm -OH glucoside của monose này với -OH ( không
phải -OH glucoside) của monose kia.
Disaccharide chỉ có tính khử khi ít nhất một trong 2 nhóm -OH
glucoside ở trạng thái tự do. Nghĩa là disaccharide sẽ không có tính khử
khi 2 nhóm -OH glucoside liên kết với nhau.
Các disaccharide quan trọng
* Maltose do 2 phân tử α- D-glucose liên kết với nhau ở vị trí C1 -
C4 tạo thành. Công thức cấu tạo:
Maltose có nhóm -OH glucoside ở trạng thái tự do nên có tính khử.
Maltose có nhiều trong mầm lúa và mạch nha (maltum) nên gọi nó là maltose.
* Lactose (đường sữa) do một phần tử β D-galactose liên kết với
một phân tử β D- glucose ở vị trí C1- C4.
* Saccharose do một phần tử α D-glucose liên kết với một phân tử
β D-fructose ở vị trí C1-C2. Do đó nó không có tính khử, còn gọi là đường
mía vì có nhiều trong mía. Dễ bị thủy phân khi đun nóng.
25
1.2.2. Trisaccharide
Là oligosaccharide có chứa 3 monosaccharide, phổ biến trong
thiên nhiên là raffinose. Công thức cấu tạo như sau: α-D-galactopyranosyl
1-2 α-D glucopyranosyl 1-2 β-D fructofuranose. Do có công thức như trên
nên không có tính khử oxy. Dễ bị thủy phân, dưới tác dụng của β
fructofuranosidase sẽ tạo thành fructose và melobiose với α galactosidase
sẽ tạo thành galactose và saccharose.
1.3. Polysaccharide
Còn gọi là glycan, tùy thành phần monose có trong polysaccharide
người ta chia chúng ra làm: homopolysaccharide (chỉ chứa một lọai
monosaccharide) và heteropolysaccharide (có ít nhất 2 lọai
monosaccharide).
26
Polysaccharide đóng vai trò quan trọng trong đời sống động vật,
thực vật. Một số polysaccharide thường gặp như tinh bột, glycogen,
cellulose...
1.3.1. Polysaccharide thực vật
1.3.1.1. Tinh bột
Là polysaccharide dự trữ của thực vật, do quang hợp tạo thành.
Trong củ và hạt có từ 40 đến 70% tinh bột, các thành phần khác của cây
xanh có it hơn và chiếm khoảng từ 4 đến 20%.
Tinh bột không hòa tan trong nước, đun nóng thì hạt tinh bột
phồng lên rất nhanh tạo thành dung dịch keo gọi là hồ tinh bột.
Tinh bột có cấu tạo gồm hai phần: amylose và amylopectin, ngoài
ra còn có khoảng 2% phospho dưới dạng ester. Tỷ lệ amylopectin/amylose
ở các đối tượng khác nhau là không giống nhau, tỷ lệ này ở gạo nếp là lớn
hơn gạo tẻ.
*Amylose
Chiếm 15 đến 25% lượng tinh bột, do nhiều gốc α D- glucose liên
kết với nhau thông qua C1-C4 tạo thành mạch thẳng không phân nhánh.
Trong không gian nó cuộn lại thành hình xoắn ốc và được giữ bền vững
nhờ các liên kết hydro. Theo một số tài liệu trong amylose còn có chứa
các α D- glucopyranose dạng thuyền.
Amylose bắt màu xanh với iodine, màu này mất đi khi đun nóng,
hiện màu trở lại khi nguội. Một đặc trưng hóa lý khác cần chú ý là nó bị
kết tủa bởi rượu butylic.
27
Hạt tinh bột trong lục lạp amylose
* Amylopectin
Cấu tạo do các phân tử α D- glucose liên kết với nhau, nhưng có
phân nhánh. Chổ phân nhánh là liên kết C1-C6 glucosidic.
28
1.3.1.2. Cellulose
Được cấu tạo bởi những phân tử β D-glucose liên kết với nhau
bằng liên kết 1-4 glucosidic.
Chúng là thành phần chủ yếu của vách tế bào thực vật. Đối với
người thì cellulose không có giá trị dinh dưỡng vì cellulose không bị thủy
phân trong ống tiêu hóa. Một số nghiên cứu cho thấy nó có vai trò trong
điều hòa tiêu hoá. Động vật ăn cỏ thủy phân được cellulose nhờ enzyme
cellulase.
Cellulose không tan trong nước, tan trong dung dịch Schweitzer.
Khi đun nóng với H2SO4, cellulose sẽ bị thủy phân thành các phân tử β
D-glucose.
Cellulose có dạng hình sợi dài, nhiều sợi kết hợp song song với
nhau thành chùm nhờ các liên kết hydro, mỗi chùm (micelle) chứa khỏang
60 phân tử cellulose. Giữa các chùm có những khoảng trống, khi hoá gỗ
khoảng trống này chứa đầy lignin và ta xem lớp lignin này như là một lớp
cement. Lignin là chất trùng hợp của coniferylic alcohol
Các gốc -OH của cellulose có thể tạo ester với acid ví dụ: tạo nitro
cellulose với HNO3 , tạo acetyl cellulose với CH3COOH.
29
1.3.1.3. Hemicellulose
Tên gọi chung cho lớp polysaccharide thường đi theo với cellulose
trong thực vật. Hemicellulose không tan trong nước, tan trong dung dịch
kiềm và thủy phân bằng acid dễ hơn cellulose.
Khi bị thủy phân hemicellulose tạo thành một hổn hợp gồm các
hexose và pentose hay chỉ một mình hexose mà thôi. Trong hemicellulose
khi monose nào chiếm đa số thì hemicellulose có tên tương ứng với
monose đó:
Xylose chiếm đa số thì hemicellulose có tên là Xylan,
Arabinose chiếm đa số thì hemicellulose có tên là Araban,
Galactose chiếm đa số thì hemicellulose có tên là Galactan...
Xylan có nhiều trong rơm rạ, trong một số cơ quan của thực vật,
galactose có nhiều trong rơm, gổ và các loại hạt.
1.3.1.4. Inulin
Là polysacchride dự trữ của thực vật có trọng lượng phân tử
khoảng 5000-6000, do những phân tử β D- fructose liên kết với nhau bằng
liên kết 1-2 và tận cùng bằng một phân tử saccharose. Inulin được tìm thấy
trong củ thược dược khoảng 40%. Người ta xử dụng inulin để sản xuất
fructose. Để xác định inulin người ta thủy phân nó và xác định bằng phản
ứng định tính Seliwanoff.
1.3.1.5. Pectin
Là loại polysaccharide có nhiều trong quả , củ và thân cây, thành
phần chính là galacturonic acid có nhóm -COOH bị methyl hóa. Người ta
sử dụng rộng rãi pectin trong sản xuất keo.
1.3.2. Polysaccharide động vật
1.3.2.1. Glycogen
Là polysaccharide dự trử ở động vật được tìm thấy trong gan và
cơ, hiện nay còn tìm thấy trong một số thực vật như ngô, nấm.
Có cấu tạo giống amylopectin nhưng phân nhánh nhiều hơn, bị
thuỷ phân bởi phosphorylase ( có coenzyme là pyrydoxal phosphate), để
cắt liên kết 1-6 cần enzyme debranching. Sản phẩm cuối cùng là các phân
tử glucose-1-P.
30
Phía ngoài glucose liên kết 1-6
Mạch chính hạt glycogen ở tế bào gan
1.3.2.2. Hyaluronic acid
Có công thức cấu tạo được lập lại từ đơn vị sau:
Hyaluronic acid có trọng lượng phân tử rất lớn, có thể lên đến
nhiều triệu, hyaluronic acid rất phổ biến và là thành phần quan trọng của
mô liên kết, được tìm thấy trong dịch khớp xương, trong thủy tinh thể mắt,
nó tác dụng như một lớp cement bảo vệ bên trong tế bào để chống lại sự
xâm nhập của vi khuẩn cũng như các chất lạ khác. Ở khớp xương nó làm
31
cho dịch có tính trơn giúp cử động khỏi bị đau. Hyaluronic acid bị thủy
phân bởi hyaluronidase, enzyme này được tìm thấy trong vi khuẩn gây
bệnh, trong tinh trùng. Hyaluronidase tạo dễ dàng cho tinh trùng đi vào
noãn của buồn trứng, mặt khác nó cũng là yếu tố giúp cho các chất khác
và vi khuẩn gây bệnh đi vào các mô trong cơ thể.
1.3.2.3. Chondroitin
Là heteropolysaccharide, thành phần không thể thiếu được ở mô
xương sụn.
1.3.2.4. Heparin
Heteropolysaccharide có tác dụng chống lại sự đông máu và ngăn
chặn sự biến đổi prothrombin thành thrombin.
GlcA2S hoặc IdoA2S
1.3.3. Một số polysaccharide phổ biến khác
1.3.3.1. Chitin
Là homopolysaccharide, có ở võ sò, ốc, các loại côn trùng và ở
nấm mốc. Nó có cấu tạo như sau:
32
1.3.3.2. Dextran
Được tìm thấy ở vi khuẩn và nấm men, cấu tạo mạch chính là α D-
glucose1-6, nhánh là α 1-3 và thỉnh thoảng có nhánh α1-2 hay α1-4. Do
có cấu tạo 1-6 nên đối với động vật, dextran không bị phân giãi hay bị
phân giãi rất chậm.
33
Dextran có độ dài và hình dạng giống albumin, người ta thường
dùng nhiệt để thủy phân không hoàn toàn dextran nhằm thay thế protein
của huyết tương , dung dịch 10% của nó hoàn toàn trong suốt. Trong công
nghệ người ta tổng hợp dextran và được gọi là sephadex để sử dụng trong
tách từng phần protein.
TÀI LIỆU THAM KHẢO
Tài liệu tiếng Việt
1. Phạm Thị Trân Châu, Trần thi Áng. 1999. Hoá sinh học, NXB Giáo dục,
Hà Nội.
2. Đỗ Quý Hai. 2004. Giáo trình Hóa sinh đại cương, Tài liệu lưu hành nội
bộ Trường ĐHKH Huế.
3. Trần Thanh Phong.2004. Giáo trình Hóa sinh đại cương, Tài liệu lưu
hành nội bộ Trường ĐHKH Huế.
4. Lê Ngọc Tú (chủ biên), Lê Văn Chứ, Đặng Thị Thu, Phạm Quốc Thăng
Nguyễn Thị Thịnh, Bùi Đức Hợi, Lưu Duẫn, Lê Doãn Diên, 2000. Hóa sinh
Công nghiệp, Nxb KH&KT, Hà Nội.
Tài liệu tiếng Anh
1. Gilbert H. F. 1992. Basic concepts in biochemistry, Copyright by the
Mcgraw- Hill companies, Inc.
2. Lehninger A. L. 2004. Principles of Biochemistry, 4th
Edition. W.H
Freeman.
34
Chương 2
Lipid
Cũng như saccharide, protein, lipid là chất hữu cơ phức tạp, ta có
thể định nghĩa như sau:
* Định nghĩa rộng: Lipid là chất tan được trong dung môi hữu cơ,
không tan trong nước, định nghĩa này không phản ánh hết tính chất của
các lipid vì:
- Có lipid không tan được trong dung môi hữu cơ như phospholipid
không tan trong aceton.
- Nhưng cũng có chất không phải lipid nhưng tan được trong dung
môi hữu cơ.
* Định nghĩa hẹp: Lipid là ester của rượu và acid béo. Tuy nhiên
có những lipid do acid béo liên kết với rượu bằng liên kết peptide.
* Định nghĩa dung hoà: Lipid là những chất chuyển hoá của acid
béo và tan được trong dung môi hữu cơ.
Lipid rất phổ biến ở động vật cũng như ở thực vật và tồn tại dưới 2
dạng mỡ nguyên sinh chất (dạng liên kết) và dạng dự trữ (dạng tự do).
- Mỡ nguyên sinh chất: thành phần của màng tế bào cũng như các
bào quan khác ví dụ: ty thể, lạp thể... dạng này không bị biến đổi ngay cả
khi con người bị bệnh béo phì hoặc bị đói.
- Dạng dự trữ (dạng tự do) có tác dụng cung cấp năng lượng cho cơ
thể, bảo vệ các nội quan, là dung môi cần thiết cho một số chất khác.
Căn cứ vào thành phần nguyên tố có mặt, người ta chia lipid ra làm 2 loại
* Lipid đơn giản: trong phân tử chỉ chứa C, H, O.
* Lipid phức tạp: ngoài C, H, O còn có một số nguyên tố khác
như N, P, S.
2.1. Lipid đơn giản
2.1.1. Glycerid
Glycerid là ester của rượu glycerol và acid béo, là mỡ dự trữ phổ
biến ở động vật và thực vật.
35
1- Stearoyl, 2- linoleoyl, 3-palmitoyl glycerol,
một triacylglycerol hỗn tạp
2.1.1.1. Glycerol
Là triol không màu, vị ngọt nhờn. Khi đốt glycerol hay lipid có
chứa glycerol với chất hút nước sẽ tạo acrolein có mùi khét.
2.1.1.2. Acid béo
Acid béo thường gặp là những acid béo có số carbon chẵn, mạch
thẳng, có thể no hay không no và chuỗi C xếp theo hình chữ chi.
Tuy nhiên cũng có những acid béo ngoài nhóm chức acid còn chứa
những nhóm chức khác như rượu, ketone, mạch carbon có vòng hay nhánh.
a. Acid béo chẵn, thẳng, no: CH3(CH2)nCOOH
C4 CH3 -(CH2)2 – COOH butylic acid có nhiều trong cơ.
C6 CH3 -(CH2)4 -COOH caproic acid có trong bơ, sữa dê.
C8 CH3 - (CH2)6-COOH caprylic acid có trong bơ, sữa dê.
C10 CH3-(CH2)8 –COOH capric acid có trong bơ, sữa dê.
36
C12 n=10 lauric acid có trong dầu dừa.
C14 n=12 myristic acid có trong dầu dừa.
C16 n=14 palmitic acid có trong dầu động vật,thực vật.
C18 n=16 stearic acid có trong dầu động vật,thực vật.
C20 n=18 arachidic acid có trong dầu lạc.
b. Acid béo chẵn, thẳng, không no
- Chứa một nối đôi (C’): 10 9
C’
16 (Δ9-10): CH3-(CH2)5 -CH = CH- (CH2)7–COOH
Palmitoleic acid : Tìm thấy trong dầu thực vật.
C’
18 (Δ9-10): CH3-(CH2)7 -CH = CH- (CH2)7 –COOH
Oleic acid: acid này có ba đồng phân.
C’
18 (Δ6-7): Petroselenic acid
C’
18 (Δ11-12): Vaccenic acid.
C’
18 (Δ12-13): Heparic acid
- Acid béo có 2 nối đôi (C’’):
C’’
18 (Δ9-10,12-13): Linoleic acid
CH3-(CH2)4 -CH = CH- CH2-CH=CH-(CH2)7-COOH
Cơ thể không tổng hợp được acid này mà lấy từ ngoài vào. Ngày
xưa người ta quan niệm acid này là vitamin và gọi là vitamin S. Nhưng
thực chất đó là một acid béo mà cơ thể cần với một lượng lớn.
- Acid béo có chứa 3 nối đôi (C’’’):
C18’’’((9-10,12-13,15-16): Linolenic acid, cơ thể không tổng hợp
được acid này.
- Acid béo có 4 nối đôi (C’’’’):
C20
’’’’
(Δ5-6,8-9,11-12,14-15): Arachidonic acid.
Ngoài ra còn có các acid béo có chứa nối ba nhưng không quan trọng.
c. Acid béo có chứa chức rượu
Thường gặp trong lipid phức tạp và chứa nhóm rượu gần chức acid
nên có tên là α- hydroxy...
α
R-CH-COOH
OH
37
Ví dụ: α - hydroxy lynoceric acid CH3 -(CH2 )21- CH-COOH
OH
Ricinoleic acid
CH3-(CH2)5 - CH - CH2 - CH = CH- (CH2)7 - COOH
10 9
OH
d. Gốc R trong phân tử acid có nhánh và có số C lẻ
Phocenic acid: CH3
CH3
CH – CH2 – COOH
Undecylonic acid : CH2 = CH - (CH2)8 - COOH
e. Acid béo có vòng
* Chaulmoogric acid: - (CH2)12 - COOH
* Sfe Crculic acid: H3 - CH2 - C = C - (CH2)7 - COOH
CH2
2.1.1.3. Tính chất của acid béo và triglyceride
* Tính chất vật lý:
a. Điểm tan chảy
Điểm tan chảy phụ thuộc vào số C của acid béo, acid béo có chuỗi
C dài thì điểm tan chảy cao và ngược lại. Nhưng acid béo có C lẻ có điểm
tan chảy thấp hơn acid béo có số C nhỏ hơn nó 1 đơn vị . Ngoài ra độ tan
chảy còn phụ thuộc vào số nối đôi trong phân tử acid béo, acid béo chứa
nhiều nối đôi thì điểm tan chảy càng thấp.
b. Độ sôi
Acid béo có chuỗi C dài thì độ sôi càng cao, thường áp dụng tính
chất này để tách các acid béo ra khỏi nhau.
c. Tính hoà tan
- Trong nước: acid béo có chuỗi C ngắn (4,6,8) dễ tan, C10 khó tan,
C12 không tan. Nếu acid béo ở dạng muối thì dễ hòa tan hơn.
- Trong dung môi hữu không phân cực như benzen, ether, ether
dầu hoả acid béo dễ tan.
38
- Trong dung môi hữu cơ phân cực như aceton, acid béo khó hoà
tan hay hoà tan rất ít.
* Tính chất hoá học:
a. Sự hydrogen hoá
Acid béo chưa no có thể kết hợp với H2 để tạo thành acid béo no
R - (CH2)n - CH =CH- (CH2)n - COOH + H2
R - (CH2)n -CH2 - CH2 - (CH2)n - COOH
Người ta dùng phản ứng này để chế tạo thực phẩm như margarin.
b. Sự halogen hoá
Acid béo không no kết hợp với các nguyên tố thuộc họ halogen (F,
Cl, Br, I) để tạo thành acid béo no.
R - (CH2)n - CH = CH- (CH2)n - COOH + I 2
R - (CH ) - CH - CH- (CH2)n - COOH2 n
I I
Có thể dùng phản ứng này để xác định số nối đôi trong phân tử
acid béo. Phản ứng dễ dàng hay khó xẩy ra tuỳ thuộc vào vị trí nối đôi đối
với nhóm carboxyl, nối đôi càng gần nhóm carboxyl phản ứng càng khó
xảy ra.
Để xác định số nối đôi người ta căn cứ vào chỉ số Iod.
Chỉ số Iod: Là số gam Iod cần thiết để tác dụng lên 100gam chất
béo. Do đó chỉ số iod càng lớn thì số nối đôi càng nhiều.
c. Sự thuỷ phân:
Ester nên khi thuỷ phân sẽ tạo thành rượu glycerol và acid béo.
Tác nhân thủy phân là acid, kiềm, nước hay enzyme.
* Thủy phân bằng nước cần nhiệt độ và áp suất cao.
* Thủy phân bằng kiềm: NaOH hay KOH
Chỉ số xà phòng hoá: số mg KOH cần thiết để trung hoà 1g chất béo
Do đó chỉ số xà phòng càng lớn thì độ dài mạch càng ngắn, nên
được dùng để xác định độ dài của mạch C.
Để xác định tính chất của chất béo người ta còn căn cứ vào một số
chỉ số khác như chỉ số acid.
Chỉ số acid: số mg KOH dùng để trung hoà tất cả acid béo tự do
có trong 1g chất béo.
39
* Thuỷ phân bằng enzyme: trong cơ thể lipid bị thuỷ phân bằng
enzyme lipase.
- Lipase dịch tràng tác dụng vào vị trí β.
- Lipase tụy tạng tác dụng vào vị trí α và α’.
d. Sự ôi hóa:
Dầu mỡ để lâu có mùi và vị khó chịu gọi là sự ôi hóa, một trong
những nguyên nhân gây ra là do oxy không khí kết hợp vào nối đôi tạo
thành peroxide. Nếu oxy kết hợp vào nguyên tử carbon đứng cạnh liên kết
đôi thì sẽ tạo thành hydrogen peroxide. Sau đó peroxide và hydrogen
peroxide sẽ bị phân giải để tạo thành aldehyde và ketone. Các aldehyde và
ketone này đều là những chất có mùi và vị khó chịu.
2.1.2. Cerid
Cũng là ester của rượu và acid béo, nhiệt độ thường ở thể rắn, có ở
động thực vật, ở thực vật nó thường tạo thành một lớp mỏng phủ lên lá,
thân, quả của cây. Công thức tổng quát:
R – O – CO – R
Rượu trong cerid là rượu cao phân tử, chỉ chứa một nhóm OH ,
mạnh C không phân nhánh, rất ít khi mạch C có vòng Ví dụ: Rượu
cetol:CH3 - (CH2)14-CH2OH.
Sáp ong, sáp cá voi (spermaceti) là ester của rượu cetol và
palmitic acid.
Ngoài ra trong sáp ong và sáp cá voi còn có rượu tự do, acid béo
tự do và hydrocarbon.
2.1.3. Sterid
Là ester của rượu sterol và acid béo. Rưọu sterol có vòng và trọng
lượng phân tử rất lớn, sterol tiêu biểu là cholesterol, acid mật. Acid béo
thường là palmitic, oleic, ricinoleic.
40
2.1.3.1.Cholesterol
Cholesterol bao gồm nhân phenanthrene kết hợp với cyclopentan
tạo thành cyclopentanoperhydrophenanthrene. Cholesterol có mang nhóm
rượu ở C3, nối đôi ở C5 - C6 và 2 gốc CH3 ở C10, C13 và một nhánh
isooctan ở C17.
Cholesterol chỉ có ở động vật, trong máu có khoảng 2.10-3
, có
nhiều trong óc, những mô ở lá lách, gan, da cũng có chứa cholesterol hay
các chất chuyển hoá của nó. Cholesterol đựơc tìm thấy đầu tiên ở sạn mật,
sạn mật là do sự dẫn mật đến ruột non bị nghẽn, mật chứa nhiều
cholesterol nên kết tủa lại thàng sạn mật. Cholesterol là chất quan trọng
trong sự sinh tổng hợp acid mật, vitamin D và nhiều chất khác.
Cholesterol + acid béo cholesterid
Trong thiên nhiên, các sterol ở trạng thái tự do nhiều hơn ở trạng
thái sterid. Ở cơ thể người, chỉ 10% sterol bị ester hóa tạo thành sterid. Tỷ
lệ sterol và sterid ở các mô khác nhau là không giống nhau.
* Lý tính của cholesterol: kết tinh dưới dạng vảy óng ánh như xà
cừ, dạng kết tinh cũng khác nhau tuỳ theo môi trường kết tinh.
* Hoá tính:
- Phản ứng với acid béo do nhóm -OH ở C3.
- Bị hydrogen hóa hay halogen hoá ở C5 - C6.
41
- Phản ứng màu:
+ Phản ứng Liebermann: Cholesterol cho màu xanh lục, màu này
rất bền trong nhiều giờ, phản ứng này được dùng để xác định cholesterol ở
bệnh viện.
+ Phản ứng Salkowski: Cholesterol cho vành màu đỏ.
2.1.3.2. Acid mật:
Acid mật được tìm thấy trong động vật có vú gồm 3 dạng sau:
cholic acid, deoxycholic và chenodeoxycholic acid.
Acid mật là chất độc đối với người. Vì vậy trong mật, acid mật liên kết
với acetamin tạo thành một chất ít độc hơn.
Ngoài cholesterol và acid mật còn có các sterol khác cũng có
nguồn gốc động vật như hormone nang thượng thận, hormone tuyến sinh
dục, các sterol có nguồn gốc thực vật như ergosterol, stigmasterol...
2.2. Lipid phức tạp
Khác với lipid tự do có nhiệm vụ cung cấp năng lượng , hàm lượng
luôn thay đổi. Lipid phức tạp có nhiệm vụ tham gia xây dựng các cấu tử
của tế bào, hàm lượng không thay đổi hay rất ít thay đổi.
2.2.1. Glycerophospholipid (phosphatid)
Chúngtacóthể hìnhdungcấutạochungcủa glycerophospholipid nhưsau:
Glycerophospholipid là diester của phosphoric acid. Một phía
phosphoric acid liên kết với glycerol, phía kia liên kết với X. Tùy cấu tạo
của X ta có các loại glycerophospholipid khác nhau:
42
Lecithin: Lúc đó X là choline nên lecithin còn được gọi là choline
phosphatid
Lecithin có nhiều trong lòng đỏ trứng gà, trong đậu nành, trong
máu, trong các dây thần kinh. Qua cấu tạo ta nhận thấy nó gồm 2 phần
- Phần phân cực bao gồm phosphoric acid và base nitrogen ưa nước.
43
- Phần không phân cực bao gồm các gốc acid béo, rượu glycerol
ghét nước.
Do có cấu tạo như trên nên lecithin ở trong nước sẽ tạo thành dung
dịch gọi là dung dịch giả.
Nhờ đặc tính vừa ưa nước, vừa ghét nước mà hình như
phospholipid tham gia trong việc bảo đảm tính thấm một chiều của các
màng cấu trúc dưới tế bào.
Lecithin có thể bị thuỷ phân bằng acid, kiềm hay enzyme:
* Thuỷ phân bằng acid: tất cả liên kết ester đều bị cắt đứt.
* Thuỷ phân bằng kiềm: ta được acid béo ở dạng muối,
glycerophosphate và choline. Nhưng choline bị phân hủy để cho
trimetylamin. Với kiềm nhẹ chỉ có thể cắt liên kết ester giữa rượu và acid
béo.
* Thuỷ phân bằng enzyme: có 4 loại enzyme lecithinase A, B, C và
D tác động lên các liên kết ester khác nhau:
B
α CH2O - CO - R1
A
β CHO - CO - R2
C
OH
α’CH2O - PO D
Lecithinase A cắt liên kết ở vị trí β của lecithin cho acid béo và
lisolecithin.
Cephalin: Trong cấu tạo của cephalin X là colamine.
α CH2O-CO-R1
β CHO-CO- R2
O
α’CH2O-P = O
O-CH2- CH2 -H3N+
44
Tương tự lecithin, cephalin (X là ethanolamine) có cấu tao gồm hai
phần ưa nước và ghét nước,làthànhphầncủa dây thầnkinhvàcónhiều trong não.
Lisocephalin được tạo thành khi cắt liên kết ester ở vị trí β, cũng
có tính chất phá hủy hồng cầu như lisolecithin.
Serinphosphatid: Gọi là serinphosphatid khi X là serine.
Trong cơ thể: lecithin, cephalin, serinphosphatid thường gặp ở
dạng hổn hợp bởi có sự biến đổi tương hổ giữa serine, choline và
colamine.
2.2.2. Sphingophospholipid
Đây là lipid phức tạp, trong đó rượu đa nguyên tử là sphingosine.
Acid béo liên kết với rượu sphingosine bằng liên kết peptid. Tùy theo X ta
có các loại sphingophospholipid khác nhau
Acid béo
Sphingophospholipid quan trọng nhất là sphingomyelin, ở đây X
là: phosphocholine. Acid béo trong sphingomyelin là lignoceric, palmitic,
45
stearic hay nervonic. Sphingophospholipid là diaminophospholipid, khác
với phosphatid là monoaminophospholipid.
Sphingophospholipid không tan trong ethylic ether, dựa vào tính
chất này để tách chúng ra khỏi hỗn hợp lipid
2.2.3.Glycolipid
Glycolipid là lipid phức tạp không chứa phospho, trong thành phần
của chúng có chứa hexose, thường là galactose hay các dẫn xuất của
galactose, đôi khi là glucose. Thuộc nhóm này có MGDG, DGDG và
sulfolipid khá phổ biến trong lục lạp và các thành phần khác của tế bào ở lá.
6-Sulfo-6-deoxy-α-D-glucopyranosyldiacyglycerrol
(sulfolipid)
2.2.4. Sphingolipid
Cerebroside: trong phân tử cerebroside rượu sphingosine liên kết
với acid béo bằng liên kết peptide, với galactose (X) bằng liên kết
glucosidic.
46
Các cerebroside khác nhau về thành phần acid béo, có nhiều trong
mô thần kinh, hồng cầu, bạch cầu, tinh trùng…
Ganglyoside: cấu tạo giống cerebroside nhưng X là phức hợp
oligosaccharide
TÀI LIỆU THAM KHẢO
Tài liệu tiếng Việt
1. Phạm Thị Trân Châu, Trần thi Áng. 1999. Hoá sinh học, NXB Giáo dục,
Hà Nội.
2. Đỗ Quý Hai.2004. Giáo trình Hóa sinh đại cương, Tài liệu lưu hành nội
bộ Trường ĐHKH Huế.
3. Trần Thanh Phong.2004. Giáo trình Hóa sinh đại cương, Tài liệu lưu
hành nội bộ Trường ĐHKH Huế.
4. Lê Ngọc Tú (chủ biên), Lê Văn Chứ, Đặng Thị Thu, Phạm Quốc Thăng
Nguyễn Thị Thịnh, Bùi Đức Hợi, Lưu Duẫn, Lê Doãn Diên, 2000. Hóa sinh
Công nghiệp, Nxb KH&KT, Hà Nội.
Phức hợp
ologosaccharide
Acid béo
Tài liệu tiếng Anh
1. LehningerA.L. 2004. Principles of Biochemistry, 4th
Edition. W.H
Freeman.
2. Mead, Alfin-Slater, Howton & Popják. 1986. Lipids: Chemistry,
biochemistry and nutrion, Plenum, New York.
47
Chương 3
Protein
Protein là hợp chất hữu cơ có ý nghĩa quan trọng bậc nhất trong cơ
thể sống, về mặt số lượng, protein chiếm không dưới 50% trọng lượng khô
của tế bào; về thành phần cấu trúc, protein được tạo thành chủ yếu từ các
amino acid vốn được nối với nhau bằng liên kết peptide. Cho đến nay
người ta đã thu được nhiều loại protein ở dạng tinh thể và từ lâu cũng đã
nghiên cứu kỹ thành phần các nguyên tố hoá học và đã phát hiện được
rằng thông thường trong cấu trúc của protein gồm bốn nguyên tố chính là
C, H, O, N với tỷ lệ C ≈ 50%, H ≈ 7%, O ≈ 23% và N ≈ 16%. Đặc biệt tỷ
lệ N trong protein khá ổn định (lợi dụng tính chất này để định lượng
protein theo phương pháp Kjeldahl bằng cách tính lượng N rồi nhân với
6,25). Ngoài ra trong protein còn gặp một số nguyên tố khác như S ≈0-3%
và P, Fe, Zn, Cu...
Phân tử protein có cấu trúc, hình dạng và kích thước rất đa dạng,
khối lượng phân tử (MW) được tính bằng Dalton (1Dalton = 1/1000 kDa,
đọc là kiloDalton) của các loại protein thay đổi trong những giới hạn rất
rộng, thông thường từ hàng trăm cho đến hàng triệu. ví dụ: insulin có khối
lượng phân tử bằng 5.733; glutamat-dehydrogenase trong gan bò có khối
lượng phân tử bằng 1.000.000, v.v...
Từ lâu người ta đã biết rằng protein tham gia mọi hoạt động sống
trong cơ thể sinh vật, từ việc tham gia xây dưng tế bào, mô, tham gia hoạt
động xúc tác và nhiều chức năng sinh học khác. Ngày nay, khi hiểu rõ vai
trò to lớn của protein đối với cơ thể sống, người ta càng thấy rõ tính chất
duy vật và ý nghĩa của định nghĩa thiên tài của Engels P. “Sống là phương
thức tồn tại của những thể protein”. Với sự phát triển của khoa học, vai trò
và ý nghĩa của protein đối với sự sống càng được khẳng định. Cùng với
nucleic acid, protein là cơ sở vật chất của sự sống.
3.1. Amino acid
3.1.1 Cấu tạo chung
Amino acid là chất hữu cơ mà phân tử chứa ít nhất một nhóm
carboxyl (COOH) và ít nhất một nhóm amine (NH2), trừ proline chỉ có
nhóm NH (thực chất là một imino acid).
48
Trong phân tử amino acid đều có các nhóm COOH và NH2 gắn với
carbon ở vị trí α. Hầu hết các amino acid thu nhận được khi thuỷ phân
protein đều ở dạng L-α amino acid. Như vậy các protein chỉ khác nhau ở
mạch nhánh (thường được ký hiệu: R).
Hình: 3.1. Công thức cấu tạo chung của các amino acid
3.1.2. Phân loại amino acid
Hiện nay người ta phân loại amino acid theo nhiều kiểu khác nhau,
mỗi kiểu phân loại đều có ý nghĩa và mục đích riêng. Tuy nhiên, họ đều
dựa trên cấu tạo hoá học hoặc một số tính chất của gốc R. Ví dụ có người
chia các amino acid thành 2 nhóm chính là nhóm mạch thẳng và nhóm
mạch vòng.
Trong nhóm mạch thẳng lại tuỳ theo sự có mặt của số nhóm
carboxyl hay số nhóm amine mà chia ra thành các nhóm nhỏ, nhóm amino
acid trung tính (chứa một nhóm COOH và một nhóm NH2); nhóm amino
acid kiềm (chứa một nhóm COOH và hai nhóm NH2); nhóm amino acid
acid (chứa hai nhóm COOH và một nhóm NH ).2
Trong nhóm mạch vòng lại chia ra thành nhóm đồng vòng hay dị
vòng v.v...
Có người lại dựa vào tính phân cực của gốc R chia các amino acid
thành 4 nhóm: nhóm không phân cực hoặc kỵ nước, nhóm phân cực
nhưng không tích điện, nhóm tích điện dương và nhóm tích điện âm.
Tuy nhiên, hiện nay cách phân loại các amino acid đang được
nhiều người sử dụng nhất là dựa vào gốc R của amino acid và được chia
làm 5 nhóm:
Nhóm I. Gồm 7 amino acid có R không phân cực, kỵ nước, đó là:
glycine, alanine, proline, valine, leucine, isoleucine và methionine. (Hình 3.2)
49
Hình 3.2. Công thức cấu tạo của các amino acid nhóm I
Nhóm II. Gồm 3 amino acid có gốc R chứa nhân thơm, đó là
phenylalanine, tyrosine và tryptophan (Hình 3.3.)
Hình 3.3. Công thức cấu tạo của các amino acid nhóm II
50
Nhóm III. Gồm 5 amino acid có gốc R phân cực, không tích điện,
đó là serine, theonine, cysteine, aspargine và glutamine (Hình 3.4)
Hình: 3.4. Công thức cấu tạo của các amino acid nhóm III
Nhóm IV. Gồm 3 amino acid có R tích điện dương, đó là lysine,
histidine và arginine, trong phân tử chứa nhiều nhóm amin (hình 3.5).
Hình 3.5. Công thức cấu tạo các amino acid nhóm IV
51
Nhóm V. Gồm 2 amino acid có gốc R tích điện âm, đó là aspartate
và glutamate, trong phân tử chứa hai hóm carboxyl (hình 3.6).
Hình 3.6. Công thức cấu tạo của các amino acid nhóm V
3.1.3. Các amino acid thường gặp
Các amino acid thường gặp là những amino acid thường có mặt
trong thành phần của các loại protein. Chúng có khoảng 20 loại và được
thu nhận khi thuỷ phân protein. Các loại amino acid này có tên gọi, khối
lượng phân tử và ký hiệu được trình bày trên bảng 3.1.
3.1.4. Các amino acid không thể thay thế
Các amino acid được hình thành bằng nhiều con đường khác nhau.
Như đã biết, trong phân tử protein có khoảng 20 loại amino acid, tuy nhiên
trong cơ thể người và động vật không tổng hợp được tất cả các loại đó mà
phải đưa từ ngoài vào qua thức ăn. Những amino acid phải đưa từ ngoài
vào được gọi là các amino acid không thể thay thế. Người ta biết được có
khoảng 8-10 loại amino acid không thể thay thế bao gồm: Met, Val, Leu,
Ile, Thr,Phe, Trp, Lys, Arg và His và ngày nay người ta còn xem Cys cũng
là một amino acid không thể thay thế.
3.1.5. Các amino acid ít gặp
Ngoài các amino acid thường gặp ở trên, trong phân tử protein đôi
khi còn có một số amino acid khác, đó là những loại ít gặp. Các amino
acid này là dẫn xuất của những amino acid thường gặp như: trong phân tử
collagen có chứa 4-hydroxyproline là dẫn xuất của proline, 5-
hydroxylysine là dẫn xuất của lysine v.v...Mặt khác, mặc dù không có
trong cấu trúc protein, nhưng có hàng trăm loại amino acid khác cũng có
thể tồn tại ở dạng tự do hoặc liên kết với hợp chất khác trong các mô và tế
52
bào, chúng có thể là chất tiền thân hay là các sản phẩm trung gian của quá
trình chuyển hoá trong cơ thể.
Bảng 3.1. Các amino acid thường gặp
Tên amino
acid
Tên amino acid gọi theo danh
pháp hoá học
Tên
viết tắt
Ký
hiệu
Khối lượng
(MW)
Glycine Gly G 75α-aminoacetic acid
Alanine Ala A 89α-aminopropionic acid
Proline Pro P 115α-pyrolydilcarboxylic acid
Valine Val V 117α-aminoisovaleric acid
Leucine Leu L 131α-aminoisocaproic acid
Isoleucine Ile I 131α-amino-β-metylvaleric acid
Methionine Met M 149α-amino-γ-metylthiobutyric acid
Phenylalanine Phe F 165α-amino-β-phenylpropionic acid
Tyrosine Tyr Y 181α-amino-β-
hydroxyphenylpropionic acid
Tryptophan Trp W 204α-amino-β-indolylpropionic acid
Serine Ser S 105α-amino-β-hydoxypropionic acid
Threonine Thr T 119α-amino-β-hydroxybutiric acid
Cysteine Cys C 121α-amino-β-thiopropionic acid
Aspargine amid của aspartate Asn B 132
Glutamine amid của glutamate Gln Q 146
Lysine Lys K 146α,ε diaminocaproic acid
Histidine His H 155α-amino-β-imidazolpropionic acid
Arginine Arg R 174α-amino-δ-guanidinvaleric acid
Aspartate Asp D 133α-aminosuccinic acid
Glutamate Glu E 147α-aminoglutarate
3.1.6. Một số tính chất của amino acid
3.1.6.1. Màu sắc và mùi vị của amino acid
Các amino acid thường không màu, nhiều loại có vị ngọt kiểu
đường như glycine, alanine, valine, serine, histidine, tryptophan; một số
loại có vị đắng như isoleucine, arginine hoặc không có vị như leucine. Bột
53
ngọt hay còn gọi là mì chính là muối của natri với glutamic acid
(monosodium glutamate).
3.1.6.2. Tính tan của amino acid
Các amino acid thường dễ tan trong nước, các amino acid đều khó
tan trong alcohol và ether (trừ proline và hydroxyproline), chúng cũng dễ
hoà tan trong acid và kiềm loãng (trừ tyrosine).
3.1.6.3. Biểu hiện tính quang học của amino acid
Hình 3.7. Đồng phân lập thể của alanine
Các amino acid trong phân tử protein đều có ít nhất một carbon bất
đối (trừ glycine) vì thế nó đều có biểu hiện hoạt tính quang học, nghĩa
là có thể làm quay mặt phẳng của ánh sáng phân cực sang phải hoặc
sang trái. Quay phải được ký hiệu bằng dấu (+), quay trái được ký
hiệu bằng dấu (-). Góc quay đặc hiệu của amino acid phụ thuộc vào
pH của môi trường.
Tuỳ theo sự sắp xếp trong cấu trúc phân tử của các nhóm liên kết
với carbon bất đối mà các amino acid có cấu trúc dạng D hay L (hình 3.7)
gọi là đồng phân lập thể. Số đồng phân lập thể được tính theo 2n
(n là số
carbon bất đối)
Hầu hết các amino acid khác hấp thụ tia cực tím ở bước sóng (λ)
khoảng từ 220 - 280 nm. Đặc biệt cùng nồng độ 10-3
M, trong bước sóng
khoảng 280 nm, tryptophan hấp thụ ánh sáng cực tím mạnh nhất, gấp 4 lần
khả năng hấp thụ của tyrosine (hình 3.8) và phenylalanine là yếu nhất.
54
Phần lớn các protein đều chứa tyrosine nên người ta sử dụng tính chất này
để định lượng protein
Độ hấp phụ
λ - Bước sóng(nm)
Hình 3.8. Phổ hấp thụ ánh sáng cực tím của tryptophan và tyrosine
3.1.6.4. Tính lưỡng tính của amino acid
Trong phân tử amino acid có nhóm carboxyl -COOH nên có khả
năng nhường proton (H+
) thể hiện tính acid, mặt khác có nhóm amin- NH2
nên có khả năng nhận proton nên thể hiện tính base. Vì vậy amino acid có
tính chất lưỡng tính.
Trong môi trường acid, amino acid ở dạng cation (tích điện
dương), nếu tăng dần pH amino acid lần lượt nhường proton thứ nhất
chuyển qua dạng lưỡng cực (trung hoà về điện), và tiếp tục tăng pH amino
acid sẽ nhường proton thứ hai chuyển thành dang anion (tích điện âm). Vì
vậy đôi khi người ta coi nó như một di-acid.
cation lưỡng cực anion
Hình 3.9. Tính lưỡng tính của amino acid
55
Tương ứng với độ phân ly H+
của các nhóm COOH và NH3
+
có các
trị số pK1 và pK2 (biểu thị độ phân ly của các nhóm được 1/2). Từ đó trước
tiên chuyển sang dạng lưỡng tính và sau cùng chuyển thành dạng anion.
Độ phân ly của H+
Hình 3.10. Đường cong chuẩn độ của glycine nồng độ 1 M ở 25O
C
Người ta xác định được pH (pI= pH đẳng điện) = pK + pKi 1 2 / 2. Ví
dụ khi hoà tan glycine vào môi trường acid mạnh thì hầu như glycine đều
ở dạng cation. Nếu tăng dần lượng kiềm, thu được đường cong chuẩn độ.
Trên đường cong chuẩn độ thấy rằng glycine lần lượt nhường 2 proton
trước Tương đương độ phân ly của nhóm COOH được một nửa có trị số
pK +
= 2,34 và độ phân ly của NH được một nửa có trị số pK1 3 2= 9,60. Như
vậy ta có
2,34 + 9,60
pHi = = 5,97
2
56
Bảng: 3.2 Các trị số pK của các amino acid thường gặp
Các trị số pK pITên các
amino acid +
pK (của COOH) pK (của NH ) pK1 2 3 R(của R)
5,979,602,34Glycine
6,019,602,34Alanine
6,4810,961,99Proline
5,979,622,32Valine
5,989,602,36Leucine
6,029,682,36Isoleucine
5,749,212,28Methionine
5,489,131,83Phenylalanine
5,6610,079,112,20Tyrosine
5,899,392,38Tryptophan
5,689,152,21Serine
5,879,622,11Theonine
5,078,1810,281,96Cysteine
5,418,802,02Aspargine
5,659,132,17Glutamine
9,7410,538,952,18Lysine
7,596,009,171,83Histidine
10,7612,489,042,17Arginine
2,773,659,601,88Aspartate
3,224,259,672,19Glutamate
Mặt khác tại pK1 + 2 sự phân ly H+ -
của nhóm COO glycine là
99%, chỉ 1% ở dạng COOH và ở pK +
-2 dạng NH2 3 là 99%, chỉ 1% ở dạng
NH . Như vậy trong vùng pH từ pK + 2 đến pK2 1 2 -2, phân tử glycine chủ
yếu ở dạng lưỡng tính và kết quả ta có một vùng đẳng điện. Ngoài ra các
amino acid trong gốc R có thêm nhóm COOH hay NH2 sự phân ly của
chúng sẽ có thêm một trị số phân ly nữa-pKR (xem bảng 3.2).
3.1.7. Các phản ứng hoá học của amino acid
Các amino acid đều có nhóm NH và COOH liên kết với C2 α, vì vậy
chúng có những tính chất hoá học chung. Mặt khác các amino acid khác
nhau bởi gốc R, vì vậy chúng có những phản ứng riêng biệt. Người ta chia
các phản ứng hoá học của amino acid thành 3 nhóm:
57
- Phản ứng của gốc R
Do các amino acid có cấu tạo gốc R khác nhau, nên người ta có thể
dùng để xác định từng amino acid riêng rẽ nhờ phản ứng đặc trưng của nó,
ví dụ phản ứng oxy hoá khử do nhóm SH của cysteine, phản ứng tạo muối
do các nhóm COOH hay NH2 của glutamate hay lysine, phản ứng tạo
ester do nhóm OH của tyrosine v.v...
- Phản ứng chung
Là phản ứng có sự tham gia của cả hai nhóm α- COOH và α- NH2.
Tất cả các amino acid trong phân tử protein đều phản ứng với hợp chất
ninhydrin tạo thành phức chất màu xanh tím, riêng imino acid như proline tạo
thành màu vàng. Phản ứng được thực hiện qua một số bước như sau:
Dưới tác dụng của ninhydrin ở nhiệt độ cao, amino acid tạo thành
NH3, CO2 và aldehide, mạch polypeptide ngắn đi môt carbon; đồng thời
ninhydrin chuyển thành diceto oxy hindriden. Diceto oxy hindriden, NH3 mới
tạo thành tiếp tục phản ứng với một phân tử ninhydrin khác để tạo thành phức
chất màu xanh tím (hình 3.11)
Hình 3.11. Phản ứng của protein với ninhydrin
- Phản ứng riêng biệt
Có thể chia các phản ứng riêng biệt theo hai nhóm α- COOH và α- NH2
+ Các phản ứng của nhóm α- COOH. Ngoài các phản ứng của
nhóm COOH thông thường tạo ester, tạo amid, tạo muối ...thì nó còn có
những phản ứng đạc trưng khác như có thể bị khử thành hợp chất rượu
amino dưới sự xúc tác của NaBH4.
R-NH CH-COOH R-NH CH-CH OH2 2 2
Nhóm COOH có thể tạo thành phức aminoacyl-adenylate trong
phản ứng hoạt hoá amino acid để tổng hợp protein, hay có thể loại CO2
vốn gặp rất nhiều trong quá trình thoái hoá amino acid.
58
+ Các phản ứng của nhóm α- NH2. Nhiều phản ứng của nhóm amine
được dùng để định tính và định lượng các chỉ tiêu của amino acid như:
Để định lượng nitrogen của amino acid người ta cho phản ứng với
HNO để giải phóng N2 2.
R-CH-COOH R-CH-COOH
+ HNO OH + NNH + H O2 2 2 2
Để định lượng amino acid người ta cho phản ứng với aldehyde tạo
thành base schiff.
Để xác định amino acid đầu N-tận cùng người ta cho tác dụng với
2-4 dinitrofluobenzen (phản ứng Sanger) hay phenyliothiocyanate (phản
ứng Edman).
3.2. Peptide
3.2.1. Khái niệm chung
Peptide là những protein thường có cấu trúc đoạn ngắn khoảng từ hai
đến vài chục amino acid nối với nhau, có khối lượng phân tử thường dưới
6.000. Chúng có thể được tổng hợp trong tự nhiên hoặc được hình thành do sự
thoái hoá protein. Trong các peptide các amino acid được liên kết với nhau
thông qua liên kết peptide (hình 3.12).
Hình 3.12. Sự tạo thành liên kết peptide
Liên kết peptide có độ bền cao bởi cấu trúc của nó có 4 e'π, 2e'π
thuộc về liên kết C=O còn 2e'π thuộc về bộ đôi e' tự do của nguyên tử N.
Liên kết giữa C-N là liên kết phức tạp, nó có thể chuyển từ dạng ρ đến
59
dạng lai (trung gian) thì bị một phần ghép đôi của liên kết π (hình 3.13).
Người ta cho rằng tỷ lệ của liên kết kép này là khoảng 30% đối với liên
kết C-N và 70% với liên kết giữa C và O. Như vậy ở đầu của một chuỗi
peptide là amino acid có nhóm α -amine (α-NH2) tự do được gọi là đầu N-
tận cùng và đầu kia có nhóm α - carboxyl (α -COOH) tự do được gọi là
đầu C tận cùng. Liên kết peptide tạo nên bộ khung chính của chuỗi
polypeptide, còn các gốc R tạo nên mạch bên của chuỗi (hình 3.14)
Dạng cộng hoá trị ρ Dạng ion ρ+π
Dạng lai (hybrid)
Hình 3.13. Sự tồn tại các dạng của liên kết peptide
Mạch chính
Mạch bên
Hình 3.14. Mạch bên và khung của một chuỗi polypeptide
3.2.2. Các phương pháp xác định peptide
Ngoài phản ứng của nhóm NH2 và COOH đầu tận cùng, các gốc R
của peptide cũng cho những phản ứng màu đặc trưng của các amino acid
tự do tương ứng. Một trong những phản ứng màu đặc trưng nhất dành cho
liên kết peptide đó là phản ứng Biure, phản ứng này không xảy ra với
60
amino acid tự do và với dipeptide. Trong môi trường kiềm mạnh, liên kết
peptide phản ứng với CuSO4 tạo thành phức chất màu tím đỏ (hình 3.15.)
và có khả năng hấp thụ cực đại ở bước sóng 540 nm.
Đây là phản ứng được sử dụng rộng rãi để định lượng protein.
Phương pháp xác định protein theo Lowry cũng dựa trên nguyên tắc của
phản ứng này bằng cách thêm thuốc thử Folin-Ciocalteau để làm tăng độ
nhạy của phản ứng sau khi đã thực hiện phản ứng biure, đồng thời dựa vào
các gốc Tyr, Try nhờ thuốc thử đó để tạo phức màu xanh da trời.
O-
O-
C =NH HN = C
HN O Cu O NH
C C
NH HN
Hình 3.15. Phức màu tím đỏ trong phản ứng Biure
Có một số phương pháp tách phân lập và xác định thành phần, số
lượng và trình tự amino acid trong peptide.
Về nguyên tắc chung các phương pháp tách phân lập và xác định
peptide về cơ bản cũng như đối với protein. Tuy nhiên peptide là những
đoạn ngắn của chuỗi polypeptide, vì thế có thể bỏ qua giai đoạn cắt chuỗi
polypeptide thành các peptide nhỏ mà có thể tách, phân lập ngay bằng
phương pháp điện di hay sắc ký để tách riêng từng peptide.
Sau khi đã tách riêng các peptide, tiến hành thuỷ phân hoàn toàn
thành các amio acid tự do, xác định các amino acid , amino acid đầu N-tận
cùng và amino acid đầu C-tận cùng. Các dữ liệu thu được qua sự phân tích
này sẽ được so sánh đối chiếu và tổng hợp lại.
Ví dụ, Puppy và Bodo đã phân tích một peptide của dịch khi thuỷ
phân Cytocrom C thu được các dữ kiện sau đây:
- Thành phần amino acid của peptide sau khi được thuỷ phân hoàn
toàn và tiến hành sắc ký là 2Cys, 1 Ala, 2 Glu, 1His, 1Thr, 1Val,và 1Lys.
61
- Dùng phương pháp Sanger xác định được amino acid đầu N-tận
cùng là Cys và phương pháp carboxypeptidase xác định được amino acid
đầu C - tận cùng là Lys.
- Cấu tạo của peptide nhỏ (bằng cách thuỷ phân từng phần ban đầu
và xác định các amino acid, amino acid đầu N - tận cùng và amino acid
đầu C - tận cùng của mỗi peptide nhỏ):
Cys- Ala Glu- Cys (Val- Glu)
Cys-(Ala,Glu) Cys- His Thr (Val, Glu)
Ala- Glu Glu (Cys, His) Glu- Lys
Thr (Val, Glu, Lys)
Tổng hợp các dữ kiên trên, họ đã xác định được trình tự các amino
acid của peptide nghiên cứu là:
H N-Cys-Ala-Glu-Cys-His-Thr-Val-Glu-Lys-COOH.2
Đây là nguyên tắc chung để xác định một trình tự trong peptide.
Tuy nhiên đối với những peptide dài, việc xác định rất phức tạp.
3.2.3. Các peptide thường gặp trong thiên nhiên
Trong tự nhiên tồn tại nhiều dạng peptide có chức phận quan trong
liên quan đến hoạt động sống của cơ thể như là các hormon, các chất
kháng sinh hay những chất tiền thân của tế bào vi khuẩn v.v... Bên cạnh
đó cũng có những peptide chức phận chưa rõ ràng, có những peptide là
sản phẩm thuỷ phân đang còn dang dở của protein. Trong phạm vi của
giáo trình này xin được giới thiệu một số peptide quan trọng,có nhiều ý
nghĩa đối với cho hoạt động sống của sinh vật.
3.2.3.1. Glutathion và các chất tương tự
Glutathion là một tripeptide γ-glutamyl-cysteyl-glycine có công
thức cấu tạo như sau:
CH SHNH2 2
HOOC-CH-CH -CH -CO-NH-CH-CO-NH-CH -COOH2 2 2
Trong cấu trúc của glutathion, nhóm SH của cysteine là nhóm hoạt
động, vì vậy người ta thường viết tắt chữ glutathion là G-SH. Đây là
glutathion dạng khử. Trong môi trường hoạt động glutathion có thể
62
nhường hydrogen (H) để thành dạng oxy hoá (GSSG) và ngược lại có thể
nhận H để thành dạng khử:
-2H
2GSH G-S-S-G
+2H
Nhờ phản ứng trên, glutathion đóng vai trò của một hệ thống oxy
hoá khử (vận chuyển hydrogen). Glutathion là một trong những peptide
nội bào phổ biến nhất, nó phân bố nhiều trong các mô và các cơ quan như:
gan, thận, lách, tim, phổi, hồng cầu v.v...
3.2.3.2. Các hormone sinh trưởng (HGH)
Hormone sinh trưởng của người (HGH-human growth hormone)
còn có tên gọi STH (somatotropin hormone) là một chuỗi polypeptide bao
gồm 191 amino acid có khối lượng phân tử 20.000. Trong cấu trúc có hai
cầu disulfua được tạo thành giữa amino acid 53 -165 và giữa amino acid
182-189. Hoạt động sinh học của HGH là ở chuỗi gồm 134 amino
acid. HGH có cấu tạo rất giống với hormon lactogen của rau thai
(85% amino acid giống nhau) và gần giống prolactin của người (32%
amino acid giống nhau).
Hormon sinh trưởng có tác dụng đối với sự tăng trưởng nói chung,
kích thích sự tạo sụn hơn là tạo xương, nó cũng là một hormon chuyển
hoá. Hormon sinh trưởng kích thích sự tổng hợp protein từ những amino
acid đã được vận chuyển dễ dàng vào trong tế bào nhờ chúng, và là
hormon gây tăng đường huyết, sinh đái tháo đường, đồng thời kích thích
sự thoái hoá lipid để đảm bảo nhu cầu về năng lượng cho cơ thể, gây tăng
acid béo tự do trong huyết tương.
Sự thiếu hụt HGH nếu xảy ra trước tuổi dậy thì sẽ dẫn đến chứng
người lùn, sự dư thừa HGH nếu xẩy ra trước tuổi dậy thì sẽ dẫn đến chứng
người khổng lồ, nếu xẩy ra sau tuổi dậy thì sẽ dẫn đến chứng người bị to
cực (phát triển chiều dày của đầu, xương và mặt).
63
3.2.3.3. Insulin
Từ 1953, Sanger (giải thưởng
Nobel 1958) đã nghiên cứu, tinh chế
và xác định hoàn toàn cấu trúc của
phân tử insulin. Phân tử insulin bao gồm
51 amino acid, có cấu trúc gồm 2 chuỗi
polypeptide, với khối lượng phân tử 5.700
chuỗi A có 21 amino acid, chuỗi B có 30
amino acid. Hai chuỗi được nối với nhau
bằng 2 cầu disulfua. Trong chuỗi A cũng
hình thành 1 cầu disulfua giữa amino acid
thứ 6 và amino acid thứ 11. Phần đặc hiệu
(đặc trưng của một loài) chỉ tập trung vào
các amino acid thứ 8-9-10, 12-14 của
chuỗi A và đặc biệt là amino acid thứ 30
của chuỗi B (hình 3.16).
Người ta cũng đã xác định được
cấu trúc ba chiều của insulin và thấy rằng
cấu trúc phân tử insulin được giử vững
bởi nhiều liên kết muối, liên kết hydro
và liên kết cầu disulphate giữa chuỗi A
và chuỗi B.
Insulin có tác dụng rõ nhất trong tất cả
các hormon của tuyến tuỵ, đặc biệt đối
với quá trình chuyển hoá glucid, nó có
tác dụng hạ đường huyết. Insulin còn
kích thích quá trình tổng hợp và ức chế
quá trình thoái hoá glycogen ở cơ, gan
và mô mỡ. Đặc biệt, insulin tăng cường
tổng hợp acid béo, protein và kích
thích sự đường phân. Tác dụng quan
trọng nhất của insulin là kích thích sự
thâm nhập glucose, một số ose, amino
acid trogn tế bào cơ và mỡ. Do vậy
insulin làm giảm lượng glucose trong
máu. Ngoài ra insulin cũng làm giảm
sự tân tạo glucose do làm giảm nồng
độ enzyme như pyruvat carboxylase và
fructose 1-6 diphosphatase.
Hình 3.16. Các amino acid của
chuỗi A và B ở insulin bò
64
3.2.3.4. Oxytocin, Vasopressin Vasotocin
Oxytocin là một peptide có 9 amino acid. Ở động vật có vú,
oxytocin chỉ khác ở sự thay đổi của 2 amino acid là: amino acid ở vị trí
thứ ba là isoleucine và amino acid vị trí thứ tám là leucine (bảng 3.3).
Vasopressin của loài ếch nhái có cấu trúc trung gian giữa vasopresin và
oxytocin của động vật có vú (amino acid thứ ba là isoleucin và amino acid
thứ tám là arginine và có tên là vasotocin). Vasopressin là một peptide có
cấu trúc gồm 9 amino acid. .
Bảng 3.3. So sánh cấu trúc hoá học giữa oxytocin và vasopressin của một số
loài động vật
1 2 3 4 5 6 7 8 9LysineVa- Lợn,
Cys-Tyr-Phe-Glu-Asn-Cys-Pro-Lys-Gly-NHVaso- Hà mã2
pressin
Phần lớn
động vật có
vú
So-
1 2 3 4 5 6 7 8 9Arginine
vasopressin Cys-Tyr-Phe-Glu-Asn-Cys-Pro-Arg-Gly-NH2
pres-
Động vật có
xương sống,
không có vú
1 2 3 4 5 6 7 8 9
Vasotocin
Cys-Tyr-Ile-Glu-Asn-Cys-Pro-Arg-Gly-NHsin 2
Động vật có
xương sống
có vú, chim
Oxytocin 1 2 3 4 5 6 7 8 9
Cys-Tyr-Ile-Glu-Asn-Cys-Pro-Leu-Gly-NH2
Phần lớn ở động vật có vú amino acid thứ 8 của vasopressin là
arginine (arg-vasopressin), trừ ở lợn và hà mã, amino acid thứ 8 là lysine (lys-
vasopressin). Oxytocin có tác dụng trên cơ trơn của tử cung và tuyến vú, gây
co khi tử cung sinh con và kích thích sự tiết sữa khi cho con bú.
Vasopressin có tác dụng chống lợi niệu, tăng cường tái hấp thu
nước ở thận, đồng thời làm co mạch, do đó có tác dụng tăng huyết áp.
3.3. Protein
3.3.1. Cấu trúc phân tử bậc 1, 2, 3, 4
Về mặt cấu trúc người ta phân biệt protein gồm bốn bậc: bậc I, bậc II,
bậc III và bậc IV (Hinh. 3.17)
65
Bậc I Bậc II Bậc III Bậc IV
Hình 3.17. Sơ đồ các bậc cấu trúc của protein
3.3.1.1. Cấu trúc bậc I
Cấu trúc bậc I biểu thị trình tự các gốc amino acid trong chuỗi
polypeptide, cấu trúc này được giữ vững bằng liên kết peptide (liên kết cộng
hóa trị). Cấu trúc bậc I là phiên bản của mã di truyền, việc xác định được cấu
trúc bậc I là cơ sở để tổng hợp nhân tạo protein bằng phương pháp hoá học
hoặc bằng kỹ thuật của công nghệ sinh học.
Hiện nay nhiều loại protein đã biết được trình tự các amino acid
trong chuỗi polypeptide như: ribonuclease là một protein có 124 amino
acid được nối với nhau thành một chuỗi, có 4 cầu disulfua (hình 3.18);
hemoglobin là protein có 4 chuỗi polypeptide, 2 chuỗi α ( mỗi chuỗi 141
amino acid) và 2 chuỗi β (mỗi chuỗi 146 amino acid); trypsinogen bò (229
amino acid); kimotrypsin bò (229 amino acid); alcol dehydrogenase ngựa
(374 amino acid); glutamate dehydrogenase bò (500 amino acid) v.v..
66
Hình 3.18. Cấu trúc bậc nhất của ribonuclesae của bò
3.3.1.2. Cấu trúc bậc II
Biểu thị sự xoắn của chuỗi polypeptide, là tương tác không gian giữa
các gốc amino acid ở gần nhau trong mạch polypeptide.
Xoắn α
Liên kết
hydrogen
Xoắn β
Hình 3.19. Các kiểu xuắn trong cấu trúc bậc II của protein
Nói cách khác, cấu trúc bậc II là dạng không gian cục bộ của từng
phần trong mạch polypeptide. Cấu trúc này được làm bền nhờ các liên kết
67
hydrogen được tạo thành giữa liên kết peptide ở kề gần nhau, cách nhau
những khoảng xác định. Theo Pauling và Cori (1951) cấu trúc bậc II của
protein bao gồm 2 kiểu chính là xoắn α và phiến gấp β.
Ở trong tóc người ta tìm thấy keratin là loại protein có hai dạng cấu
trúc: dạng α bình thường và dạng β duỗi thẳng.; cấu trúc phiến gấp β tìm thấy
trong fibroin của tơ. Cấu trúc xuắn α hiện nay được tìm thấy trong nhiều loại
protein khác nhau Mặt khác tỷ lệ % xoắn α trong các protein khác nhau cũng
thay đổi khá nhiều. Ví dụ trong hemoglobin và mioglobin là 75%; lysosyme là
35%; ribonuclease là 17% ..
Bảng 3.4. Số lượng xoắn α và phiến gấp β trong chuỗi đơn một số protein
Số gốc (%)
Protein (số gốc) Xoắn α Phiến gấp β
4514Chymotrypsin (247)
3526Ribonuclease (124)
1738Carboxypeptidase (397)
039Cytochrom C (104)
1240Lysosyme (129)
078Myoglobin (153)
Ngoài ra còn có kiểu xoắn collagen được tìm thấy trong phân tử
collagen (hình 3.20).
Hình 3.20. Cấu trúc kiểu xuắn collagen
68
Đơn vị cấu trúc của nó là tropocollagen bao gồm 3 mạch
polypeptide bện vào nhau thành một dây cáp siêu xoắn (vì mỗi mạch đơn
có cấu trúc xoắn, chiều cao của mỗi gốc xoắn trên trục siêu xoắn này là
2,9 anstron, một vòng xoắn là 3,3 gốc amino acid. Ba chuỗi polypeptide
trong “dây cáp” nối với nhau bằng các liên kết hydrogen.
3.3.1.3. Cấu trúc bậc III
Biểu thị sự xoắn và cuộn khúc của chuỗi polypeptide thành khối,
đặc trưng cho potein cầu, là tương tác không gian giữa các gốc amino acid
ở xa nhau trong chuỗi polypeptide. Trong nhiều protein hình cầu có chứa
các gốc Cys tạo nên liên kết disulfua giữa các gốc Cys xa nhau trong
chuỗi polypeptide làm cho chuỗi bị cuộn lại (xem myoglobin hình 3.21).
Ngoài ra cấu trúc bậc III còn được giữ vững bằng các loại liên kết khác
như Van der Waals, liên kết hydrogen, liên kết tĩnh điện giữa các gốc
amino acid v.v...
3.3.1.4. Cấu trúc bậc IV
Biểu thị sự kết hợp của các chuỗi có cấu trúc bậc III trong phân tử
protein. Hay nói cách khác, những phân tử protein có cấu trúc từ 2 hay
nhiều chuỗi protein hình cầu, tương tác với nhau trong không gian tạo nên
cấu trúc bậc IV. Mỗi một chuỗi polypeptide đó được gọi là một tiểu đơn vị
(subunit), chúng gắn với nhau nhờ các liên kết hydrogen, tương tác Van
der Waals giữa các nhóm phân bố trên bề mặt của các tiểu đợn vị để làm
bền cấu trúc bậc IV.
Myoglobin Hemoglobin
Hình 3.21. Cấu trúc bậc III của myoglobin và bậc IV của hemoglobin
(hemoglobin là protein có 4 chuỗi polypeptide2 chuỗi α và 2 chuỗi β;
myoglobin chỉ gồm một chuỗi polypeptide)
69
3.3.2. Một vài tính chất của protein
3.3.2.1. Tính chất lý-hoá của protein
- Tính tan của protein
Các loại protein khác nhau có khả năng hoà tan dễ dàng trong một
số loại dung môi nhất định, chẳng hạn như albumin dễ tan trong nước;
globulin dễ tan trong muối loãng; prolamin tan trong ethanol, glutelin chỉ
tan trong dung dịch kiềm hoặc acid loãng v.v...
- Tính ngậm nước của protein
Trong môi trường nước, protein kết hợp với nước trương lên trở
thành dạng keo, hay nói cách khác protein ở trạng thái hydrate hoá, các
phân tử nước bám vào các nhóm ưa nước trong phân tử protein như -NH2,
-COOH..., lớp áo nước bao quanh phân tử protein là một trong các yếu tố
làm bền vững cấu trúc, ngăn cách các phân tử protein không cho chúng
dính vào nhau để thành tủa.
- Độ nhớt của dung dịch protein
Khi protein hoà tan trong dung dịch, mỗi loại dung dịch của những
protein khác nhau có độ nhớt khác nhau (bảng 3.5). Người ta có thể lợi
dụng tính chất này để xác định khối lượng phân tử của protein (độ nhớt
càng cao thì khối lượng phân tử càng cao).
Bảng 3.5. Độ nhớt của một số protein
Nồng độ % Độ nhớt tương đối
Protein
(trong nước) (của nước =1)
4,543,0Gelatin
1,203,0Albumin trứng
14,28,0Gelatin
1,578,0Albumin trứng
- Hằng số điện môi của dung dịch protein
Khi thêm các dung môi hữu cơ trung tính như ethanol, aceton vào
dung dịch protein trong nước thì độ tan của protein giảm và protein sẽ kết
tủa do việc giảm mức độ hydrate hoá của các nhóm ion hoá của protein,
lớp áo mất nước, các phân tử protein kết hợp với nhau thành tủa. Như
vậy, hằng số điện môi của dung môi làm ngăn cản lực tĩnh điện giữa
các nhóm tích điện của protein và nước. Mối liên hệ đó được đặc
trưng bởi biểu thức:
70
L1 - l2
F =
2
Dr
Trong đó: D - hằng số điện môi của dung dịch
F- lực tĩnh điện giữa các ion tích điện
L1 , l - điện tích các ion, r - khoảng cách giữa các ion2
- Tính chất điện li của protein
Cũng như các amino acid, protein là chất điện li lưỡng tính vì trong
phân tử protein có nhiều nhóm phân cực mạnh (bên gốc R) của amino acid
ví dụ: nhóm COOH thứ hai của Asp, Glu; nhóm NH2 của Lys; nhóm OH
của Ser, Thr, Tyr v.v...Trạng thái tích điện của các nhóm này phụ thuộc
vào pH của môi trường. Ở một pH nào đó mà tổng điện tích (+) và điện
tích (-) của phân tử protein bằng không, phân tử protein không di chuyển
trong điện trường gọi là pHi (isoelectric - điểm đẳng điện) của protein.
Như vậy protein chứa nhiều Asp, Glu (amino acid có tính acid mạnh) thì
pHi ở trong vùng acid, ngược lại nhiều amino acid kiềm như Lys, Arg, His
thì pH ở trong vùng kiềm.i
Ở môi trường có pH < pHi , protein đa số là một cation, số điện
tích dương lớn hơn số điện tích âm. Ở pH > pHi phân tử protein thể hiện
tính acid, cho ion H+
, do đó số điện tích âm lớn hơn số điện tích dương,
protein là một đa anion, tích điện âm.
Bảng 3.5. Giá trị pHi của một số protein
Protein pH Protein pHi i
5,2Globulin sữa1,0Pepsin
6,8Hemoglobin4,6Albumin trứng
7,8Ribonuclease4,7Casein
10,5Trypsin4,9Albumin huyết thanh
10,6Cytochrom C4,9Gelatin
12,0Prolamin
Trong môi trường có pH = pHi của protein, protein dễ dàng kết tụ lại
với nhau vì thế người ta lợi dụng tính chất này để xác định pHi của protein
cũng như để kết tủa protein. Mặt khác do sự sai khác nhau về pHi giữa các
protein mà có thể điều chỉnh pH của môi trường để tách riêng các protein ra
khỏi hỗn hợp của chúng.
71
- Sự kết tủa bằng muối của dung dịch protein
Muối trung tính có ảnh hưởng rõ tới độ hoà tan của protein hình cầu:
với nồng độ thấp chúng làm hoà tan nhiều protein. Tác dụng đó không phụ
thuộc vào bản chất của muối trung tính, mà phụ thuộc vào nồng độ muối và số
điện tích của mỗi ion trong dung dịch, tức là phụ thuộc vào lực ion μ của dung
dịch (μ = 1/2 ∑ C1 Z1,
2
trong đó ∑ là ký hiệu của tổng, C1 là nồng độ của mỗi
ion, Z1 là điện tích của mỗi ion). Các muối có ion hoá trị 2 (MgCl2, MgSO4...)
làm tăng đáng kể độ tan của protein hơn các muối có ion hoá trị 1 (NaCl, NH4Cl,
KCl...). Khi tăng đáng kể nồng độ muối trung tính thì độ tan của protein bắt đầu
giảm và ở nồng độ muối rất cao, protein có thể bị kết tủa hoàn toàn.
Các protein khác nhau bị kết tủa ở những nồng độ muối trung tính
khác nhau. Người ta sử dụng tính chất này để chiết xuất và tách riêng protein
khỏi hỗn hợp. Đó là phương pháp diêm tích (kết tủa protein bằng muối). Thí
dụ dùng muối amonium sulfate 50% bảo hoà kết tủa globulin và dung dịch
amonium sulfate bảo hoà để kết tủa albumin từ huyết thanh.
- Biểu hiện quang học của protein
Cũng như nhiều chất hoá học khác, protein có khả năng hấp thụ và
bức xạ ánh sáng dưới dạng lượng tử hγ. Vì vậy có thể đo cường độ hấp thụ
của protein trong dung dịch hay còn gọi là mật độ quang thường ký hiệu bằng
chữ OD (Optical Density). Dựa trên tính chất đó người ta đã sản xuất ra các
loại máy quang phổ hấp thụ để phân tích protein. Nhìn chung protein đều có
khả năng hấp thụ ánh sáng trong vùng khả kiến (từ 350nm- 800nm) và vùng
tử ngoại (từ 320nm xuống tới 180nm).
Trong vùng ánh sáng khả kiến protein kết hợp với thuốc thử hấp thụ
mạnh nhất ở vùng ánh sáng đỏ 750nm (định lượng protein theo Lowry).
Đối với vùng tử ngoại dung dịch protein có khả năng hấp thụ ánh sáng
tử ngoại ở hai vùng bước sóng khác nhau: 180nm-220nm và 250nm - 300nm.
Ở bước sóng từ 180nm-220nm đó là vùng hấp thụ của liên kết peptide
trong protein, cực đại hấp thụ ở 190nm. Do liên kết peptide có nhiều trong
phân tử protein nên độ hấp thụ khá cao, cho phép định lượng tất cả các loại
protein với nồng độ thấp. Tuy nhiên vùng hấp thụ này của các liên kết peptide
trong protein có thể bị dịch về phía có bước sóng dài hơn khi có một số tạp
chất lẫn trong dung dịch protein. Mặt khác chính các tạp chất này cũng hấp thụ
ánh sáng tử ngoại ở vùng bước sóng 180nm-220nm. Vì thế trong thực tế
thường đo độ hấp thụ của dung dịch protein ở bước sóng 220nm-240nm.
Ở bước sóng từ 250nm-300nm là vùng hấp thụ các amino acid thơm
(Phe, Tyr, Trp) có trongphân tử protein hấp thụ cực đại ở 280nm. Có thể sử
dụng phương pháp đo độ hấp thụ của dung dịch protein ở bước sóng 280nm
72
để định tính và định lượng các protein có chứa các amino acid thơm. Hàm
lượng các amino acid thơm trong các protein khác nhau thay đổi khá nhiều, do
đó dung dịch của các protein khác nhau có nồng độ giống nhau có thể khác
nhau về độ hấp thụ ở bước sóng 280nm. Ngoài ra có nhiều chất khác trong
dung dịch cũng có ảnh hưởng đến độ hấp thụ protein. Vì vậy, các phương
pháp đo độ hấp thụ ở vùng ánh sáng tử ngoại thường được dung để định lượng
protein đã được tinh sạch hoặc để xác định protein trong các phân đoạn nhận
được khi sắc ký tách các protein qua cột.
- Kết tủa thuận nghịch và không thuận nghịch protein
Khi protein bị kết tủa đơn thuần bằng dung dịch muối trung tính có
nồng độ khác nhau hoặc bằng alcohol, acetone ở nhiệt độ thấp thì protein vẫn
giữ nguyên được mọi tính chất của nó kể cả tính chất sinh học và có thể hoà
tan trở lại gọi là kết tủa thuận nghịch. Các yếu tố kết tủa thuận nghịch được
dùng để thu nhận chế phẩm protein. Trong quá trình kết tủa thuận nghịch muối
trung tính vừa làm trung hoà điện vừa loại bỏ lớp vỏ hydrate hoá của protein,
còn dung môi hữu cơ vốn háo nước sẽ phá hủy lớp vỏ hydrate nhanh chóng.
Trong chế phẩm protein nhận được còn lẫn các chất đã dùng để kết tủa, cần sử
dụng phương pháp thích hợp để loại bỏ các chất này. Ví dụ có thể dùng
phương pháp thẩm tích để loại bỏ muối.
Ngược lại kết tủa không thuận nghịch là protein sau khi bị kết tủa
không thể phục hồi lại trạng thái ban đầu. Sự kết tủa này thường được sử dụng
để loại bỏ protein ra khỏi dung dịch, làm ngưng phản ứng của enzyme. Một
trong những yếu tố gây kết tủa không thuận nghịch đơn giản nhất là đun sôi
dung dịch protein (sẽ nói kỹ hơn trong phần biến tính protein ở sau).
- Các phản ứng hoá học của protein
Cũng như các amino acid và peptide, protein có các phản ứng hoá học
tương tự, đó là: phản ứng của các nhóm -COOH, -NH2, gốc R và phản ứng tạo
màu đặc trưng của liên kết peptide như phản ứng biure (xem chương 2 và 3. Ở
đây xin được giới thiệu thêm một số phản ứng màu đặc trưng khác, có ý nghĩa
quan trọng trong phát hiện protein và các gốc amio acid trong chuỗi
polypeptide.
+ Phản ứng với thuốc thử Folin-Ciocateau
Thuốc thử Folin-Ciocateau có chứa phosphomolipdic acid và
phosphovolframic acid các chất này làm tăng độ nhạy của phản ứng biure, mặt
khác phản ứng với gốc Tyr và Trp trong phân tử protein. Các gốc amino acid
này tham gia trong quá trình tạo phức chất màu xanh da trời.
+ Các phản ứng màu đặc trưng khác của protein
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai
Giao trinh hoa sinh  do quy hai

Contenu connexe

Tendances

Báo cáo hóa sinh
Báo cáo hóa sinhBáo cáo hóa sinh
Báo cáo hóa sinhThao Truong
 
Bao cao thuc_hanh_hoa_sinh_ protein & vitamin
Bao cao thuc_hanh_hoa_sinh_ protein & vitaminBao cao thuc_hanh_hoa_sinh_ protein & vitamin
Bao cao thuc_hanh_hoa_sinh_ protein & vitaminĐức Anh
 
Trắc nghiệm sinh học đại cương
Trắc nghiệm sinh học đại cương Trắc nghiệm sinh học đại cương
Trắc nghiệm sinh học đại cương Thịnh NguyễnHuỳnh
 
LIÊN QUAN VÀ ĐIỀU HÒA CHUYỂN HÓA
LIÊN QUAN VÀ ĐIỀU HÒA CHUYỂN HÓALIÊN QUAN VÀ ĐIỀU HÒA CHUYỂN HÓA
LIÊN QUAN VÀ ĐIỀU HÒA CHUYỂN HÓASoM
 
Phuong phap phan tich dien the
Phuong phap phan tich dien thePhuong phap phan tich dien the
Phuong phap phan tich dien theNam Phan
 
Kết quả thực hành môn hóa sinh căn bản - HOT
Kết quả thực hành môn hóa sinh căn bản - HOTKết quả thực hành môn hóa sinh căn bản - HOT
Kết quả thực hành môn hóa sinh căn bản - HOTYenPhuong16
 
Chuỗi hô hấp tế bào
Chuỗi hô hấp tế bàoChuỗi hô hấp tế bào
Chuỗi hô hấp tế bàoPHANCHAULOAN88
 
Thực hành hoá sinh căn bản
Thực hành hoá sinh căn bảnThực hành hoá sinh căn bản
Thực hành hoá sinh căn bảnluanvantrust
 
Trải lời bài tập phần 1 (2012 2013)
Trải lời bài tập phần 1 (2012 2013)Trải lời bài tập phần 1 (2012 2013)
Trải lời bài tập phần 1 (2012 2013)Canh Dong Xanh
 
Bài giảng hóa học acid nucleic
Bài giảng hóa học acid nucleicBài giảng hóa học acid nucleic
Bài giảng hóa học acid nucleicLam Nguyen
 
Tổng hợp các câu trắc nghiệm vi sinh đại cương
Tổng hợp các câu trắc nghiệm vi sinh đại cươngTổng hợp các câu trắc nghiệm vi sinh đại cương
Tổng hợp các câu trắc nghiệm vi sinh đại cươngHuy Hoang
 
Phân tích và nhận biết các chất
Phân tích và nhận biết các chấtPhân tích và nhận biết các chất
Phân tích và nhận biết các chấtThai Nguyen Hoang
 
Sự hấp phụ khí và hơi trên chất hấp phụ rắn
Sự hấp phụ khí và hơi trên chất hấp phụ rắnSự hấp phụ khí và hơi trên chất hấp phụ rắn
Sự hấp phụ khí và hơi trên chất hấp phụ rắnljmonking
 

Tendances (20)

Báo cáo hóa sinh
Báo cáo hóa sinhBáo cáo hóa sinh
Báo cáo hóa sinh
 
Bao cao thuc_hanh_hoa_sinh_ protein & vitamin
Bao cao thuc_hanh_hoa_sinh_ protein & vitaminBao cao thuc_hanh_hoa_sinh_ protein & vitamin
Bao cao thuc_hanh_hoa_sinh_ protein & vitamin
 
Trắc nghiệm sinh học đại cương
Trắc nghiệm sinh học đại cương Trắc nghiệm sinh học đại cương
Trắc nghiệm sinh học đại cương
 
Dong phan.doc
Dong phan.docDong phan.doc
Dong phan.doc
 
Cong thuc dinh luong
Cong thuc dinh luongCong thuc dinh luong
Cong thuc dinh luong
 
LIÊN QUAN VÀ ĐIỀU HÒA CHUYỂN HÓA
LIÊN QUAN VÀ ĐIỀU HÒA CHUYỂN HÓALIÊN QUAN VÀ ĐIỀU HÒA CHUYỂN HÓA
LIÊN QUAN VÀ ĐIỀU HÒA CHUYỂN HÓA
 
Phan loai-thuc-vat
Phan loai-thuc-vatPhan loai-thuc-vat
Phan loai-thuc-vat
 
Phuong phap phan tich dien the
Phuong phap phan tich dien thePhuong phap phan tich dien the
Phuong phap phan tich dien the
 
Kết quả thực hành môn hóa sinh căn bản - HOT
Kết quả thực hành môn hóa sinh căn bản - HOTKết quả thực hành môn hóa sinh căn bản - HOT
Kết quả thực hành môn hóa sinh căn bản - HOT
 
Chuỗi hô hấp tế bào
Chuỗi hô hấp tế bàoChuỗi hô hấp tế bào
Chuỗi hô hấp tế bào
 
Thực hành hoá sinh căn bản
Thực hành hoá sinh căn bảnThực hành hoá sinh căn bản
Thực hành hoá sinh căn bản
 
Trải lời bài tập phần 1 (2012 2013)
Trải lời bài tập phần 1 (2012 2013)Trải lời bài tập phần 1 (2012 2013)
Trải lời bài tập phần 1 (2012 2013)
 
Bài giảng hóa học acid nucleic
Bài giảng hóa học acid nucleicBài giảng hóa học acid nucleic
Bài giảng hóa học acid nucleic
 
Tổng hợp các câu trắc nghiệm vi sinh đại cương
Tổng hợp các câu trắc nghiệm vi sinh đại cươngTổng hợp các câu trắc nghiệm vi sinh đại cương
Tổng hợp các câu trắc nghiệm vi sinh đại cương
 
Chương 7 lipid
Chương 7 lipidChương 7 lipid
Chương 7 lipid
 
Mô Thực Vật
Mô Thực VậtMô Thực Vật
Mô Thực Vật
 
Phân tích và nhận biết các chất
Phân tích và nhận biết các chấtPhân tích và nhận biết các chất
Phân tích và nhận biết các chất
 
Sự hấp phụ khí và hơi trên chất hấp phụ rắn
Sự hấp phụ khí và hơi trên chất hấp phụ rắnSự hấp phụ khí và hơi trên chất hấp phụ rắn
Sự hấp phụ khí và hơi trên chất hấp phụ rắn
 
bậc phản ứng
bậc phản ứngbậc phản ứng
bậc phản ứng
 
Hieu ung trong hop chat huu co
Hieu ung trong hop chat huu coHieu ung trong hop chat huu co
Hieu ung trong hop chat huu co
 

En vedette

Chuyển hóa glucid
Chuyển hóa glucidChuyển hóa glucid
Chuyển hóa glucidLam Nguyen
 
Tiểu luận tổng quan về enzyme amylase tài liệu, ebook, giáo trình
Tiểu luận tổng quan về enzyme amylase   tài liệu, ebook, giáo trìnhTiểu luận tổng quan về enzyme amylase   tài liệu, ebook, giáo trình
Tiểu luận tổng quan về enzyme amylase tài liệu, ebook, giáo trìnhPhạm AnhThư
 
Dinh Dưỡng - ĐHCT
Dinh Dưỡng - ĐHCTDinh Dưỡng - ĐHCT
Dinh Dưỡng - ĐHCTTS DUOC
 
Powerpoint
PowerpointPowerpoint
PowerpointTHT
 
Vai trò và nhu cầu các chất ding dưỡng
Vai trò và nhu cầu các chất ding dưỡngVai trò và nhu cầu các chất ding dưỡng
Vai trò và nhu cầu các chất ding dưỡngTu Sắc
 
Chương 5 quang hop
Chương 5 quang hopChương 5 quang hop
Chương 5 quang hopdoivaban93
 
Danh pháp trong hợp chất hữu cơ
Danh pháp trong hợp chất hữu cơDanh pháp trong hợp chất hữu cơ
Danh pháp trong hợp chất hữu cơTrần Đương
 
300 câu hỏi trắc nghiệm lý luận chính trị ( có đáp án )101 200
300 câu hỏi trắc nghiệm lý luận chính trị ( có đáp án )101 200300 câu hỏi trắc nghiệm lý luận chính trị ( có đáp án )101 200
300 câu hỏi trắc nghiệm lý luận chính trị ( có đáp án )101 200ghost243
 
Tieu luan collagen
Tieu luan collagen Tieu luan collagen
Tieu luan collagen Ca Nguyen
 
50174254 slide-hoa-sinh-cong-nghiệp-giảng-đường-hoa-dầu-đhbk-hn
50174254 slide-hoa-sinh-cong-nghiệp-giảng-đường-hoa-dầu-đhbk-hn50174254 slide-hoa-sinh-cong-nghiệp-giảng-đường-hoa-dầu-đhbk-hn
50174254 slide-hoa-sinh-cong-nghiệp-giảng-đường-hoa-dầu-đhbk-hnpnahuy
 
Chương 1 hóa học glucid
Chương 1 hóa học glucidChương 1 hóa học glucid
Chương 1 hóa học glucidLam Nguyen
 
90 cau trac nghiem hoa dai cuong cua thay Dang
90 cau trac nghiem hoa dai cuong cua thay Dang90 cau trac nghiem hoa dai cuong cua thay Dang
90 cau trac nghiem hoa dai cuong cua thay DangTrần Đương
 

En vedette (20)

glucid va bien doi sinh hoa
glucid va bien doi sinh hoaglucid va bien doi sinh hoa
glucid va bien doi sinh hoa
 
Lipid
LipidLipid
Lipid
 
Chuyển hóa glucid
Chuyển hóa glucidChuyển hóa glucid
Chuyển hóa glucid
 
Tiểu luận tổng quan về enzyme amylase tài liệu, ebook, giáo trình
Tiểu luận tổng quan về enzyme amylase   tài liệu, ebook, giáo trìnhTiểu luận tổng quan về enzyme amylase   tài liệu, ebook, giáo trình
Tiểu luận tổng quan về enzyme amylase tài liệu, ebook, giáo trình
 
Dinh Dưỡng - ĐHCT
Dinh Dưỡng - ĐHCTDinh Dưỡng - ĐHCT
Dinh Dưỡng - ĐHCT
 
Lipid
LipidLipid
Lipid
 
Casein
CaseinCasein
Casein
 
Powerpoint
PowerpointPowerpoint
Powerpoint
 
Vai trò và nhu cầu các chất ding dưỡng
Vai trò và nhu cầu các chất ding dưỡngVai trò và nhu cầu các chất ding dưỡng
Vai trò và nhu cầu các chất ding dưỡng
 
Chương 5 quang hop
Chương 5 quang hopChương 5 quang hop
Chương 5 quang hop
 
Danh pháp trong hợp chất hữu cơ
Danh pháp trong hợp chất hữu cơDanh pháp trong hợp chất hữu cơ
Danh pháp trong hợp chất hữu cơ
 
300 câu hỏi trắc nghiệm lý luận chính trị ( có đáp án )101 200
300 câu hỏi trắc nghiệm lý luận chính trị ( có đáp án )101 200300 câu hỏi trắc nghiệm lý luận chính trị ( có đáp án )101 200
300 câu hỏi trắc nghiệm lý luận chính trị ( có đáp án )101 200
 
Tieu luan collagen
Tieu luan collagen Tieu luan collagen
Tieu luan collagen
 
50174254 slide-hoa-sinh-cong-nghiệp-giảng-đường-hoa-dầu-đhbk-hn
50174254 slide-hoa-sinh-cong-nghiệp-giảng-đường-hoa-dầu-đhbk-hn50174254 slide-hoa-sinh-cong-nghiệp-giảng-đường-hoa-dầu-đhbk-hn
50174254 slide-hoa-sinh-cong-nghiệp-giảng-đường-hoa-dầu-đhbk-hn
 
Chương 1 hóa học glucid
Chương 1 hóa học glucidChương 1 hóa học glucid
Chương 1 hóa học glucid
 
Hoa sinh
Hoa sinhHoa sinh
Hoa sinh
 
90 cau trac nghiem hoa dai cuong cua thay Dang
90 cau trac nghiem hoa dai cuong cua thay Dang90 cau trac nghiem hoa dai cuong cua thay Dang
90 cau trac nghiem hoa dai cuong cua thay Dang
 
Hóa Sinh thực phẩm đại cương
Hóa Sinh thực phẩm đại cươngHóa Sinh thực phẩm đại cương
Hóa Sinh thực phẩm đại cương
 
Chất keo thực phẩm
Chất keo thực phẩmChất keo thực phẩm
Chất keo thực phẩm
 
Gf&sl lop ysi
Gf&sl lop ysiGf&sl lop ysi
Gf&sl lop ysi
 

Similaire à Giao trinh hoa sinh do quy hai

Giao trinh sinh ly thuc vat
Giao trinh sinh ly thuc vatGiao trinh sinh ly thuc vat
Giao trinh sinh ly thuc vatHuu Tho Nguyen
 
Giáo trình sinh lý học vật nuôi - Cao Văn;Hoàng Toàn Thắng.pdf
Giáo trình sinh lý học vật nuôi - Cao Văn;Hoàng Toàn Thắng.pdfGiáo trình sinh lý học vật nuôi - Cao Văn;Hoàng Toàn Thắng.pdf
Giáo trình sinh lý học vật nuôi - Cao Văn;Hoàng Toàn Thắng.pdfMan_Ebook
 
Giáo trình sinh lý học vật nuôi
Giáo trình sinh lý học vật nuôiGiáo trình sinh lý học vật nuôi
Giáo trình sinh lý học vật nuôinataliej4
 
Visinhvat daicuong 9001
Visinhvat daicuong 9001Visinhvat daicuong 9001
Visinhvat daicuong 9001KimLn1
 
Bai giang sinh hoc dai cuong
Bai giang sinh hoc dai cuongBai giang sinh hoc dai cuong
Bai giang sinh hoc dai cuongHóm Hỉnh Hoà
 
Giáo trình hình thái giải phẫu thực vật - Nguyễn Khoa Lân (Chủ biên);Nguyễn N...
Giáo trình hình thái giải phẫu thực vật - Nguyễn Khoa Lân (Chủ biên);Nguyễn N...Giáo trình hình thái giải phẫu thực vật - Nguyễn Khoa Lân (Chủ biên);Nguyễn N...
Giáo trình hình thái giải phẫu thực vật - Nguyễn Khoa Lân (Chủ biên);Nguyễn N...Man_Ebook
 
5677764_mini-world.pptx
5677764_mini-world.pptx5677764_mini-world.pptx
5677764_mini-world.pptxDeratVert
 
Thành phần hóa học của cơ thể sống - Sinh học đại cương
Thành phần hóa học của cơ thể sống - Sinh học đại cươngThành phần hóa học của cơ thể sống - Sinh học đại cương
Thành phần hóa học của cơ thể sống - Sinh học đại cươngVuKirikou
 
Sinh lý học
Sinh lý họcSinh lý học
Sinh lý họcTS DUOC
 
Tài liệu Sinh lý học
Tài liệu Sinh lý họcTài liệu Sinh lý học
Tài liệu Sinh lý họcĐiều Dưỡng
 
Giao trinh moi truong va con nguoi (le thi thanh mai)
Giao trinh moi truong va con nguoi (le thi thanh mai)Giao trinh moi truong va con nguoi (le thi thanh mai)
Giao trinh moi truong va con nguoi (le thi thanh mai)Pham Huy
 
Chuong 1 sinh ly te bao thuc vat
Chuong 1 sinh ly te bao thuc vatChuong 1 sinh ly te bao thuc vat
Chuong 1 sinh ly te bao thuc vatdoivaban93
 
BÀI GIẢNG HÓA SINH HỌC (BIOCHEMISTRY) Khoa Hóa và Môi trường TRƯỜNG ĐẠI HỌC T...
BÀI GIẢNG HÓA SINH HỌC (BIOCHEMISTRY) Khoa Hóa và Môi trường TRƯỜNG ĐẠI HỌC T...BÀI GIẢNG HÓA SINH HỌC (BIOCHEMISTRY) Khoa Hóa và Môi trường TRƯỜNG ĐẠI HỌC T...
BÀI GIẢNG HÓA SINH HỌC (BIOCHEMISTRY) Khoa Hóa và Môi trường TRƯỜNG ĐẠI HỌC T...Nguyen Thanh Tu Collection
 
Tóm tắt lý thuyết Sinh học 11.pdf
Tóm tắt lý thuyết Sinh học 11.pdfTóm tắt lý thuyết Sinh học 11.pdf
Tóm tắt lý thuyết Sinh học 11.pdfMan_Ebook
 
Tiếp cận sinh học cấu trúc hệ thống
Tiếp cận sinh học cấu trúc hệ thốngTiếp cận sinh học cấu trúc hệ thống
Tiếp cận sinh học cấu trúc hệ thốngbio52huevn
 

Similaire à Giao trinh hoa sinh do quy hai (20)

Giao trinh sinh ly thuc vat
Giao trinh sinh ly thuc vatGiao trinh sinh ly thuc vat
Giao trinh sinh ly thuc vat
 
Giáo trình sinh lý học vật nuôi - Cao Văn;Hoàng Toàn Thắng.pdf
Giáo trình sinh lý học vật nuôi - Cao Văn;Hoàng Toàn Thắng.pdfGiáo trình sinh lý học vật nuôi - Cao Văn;Hoàng Toàn Thắng.pdf
Giáo trình sinh lý học vật nuôi - Cao Văn;Hoàng Toàn Thắng.pdf
 
Giáo trình sinh lý học vật nuôi
Giáo trình sinh lý học vật nuôiGiáo trình sinh lý học vật nuôi
Giáo trình sinh lý học vật nuôi
 
Visinhvat daicuong 9001
Visinhvat daicuong 9001Visinhvat daicuong 9001
Visinhvat daicuong 9001
 
Tế bào học
Tế bào họcTế bào học
Tế bào học
 
Bai giang sinh hoc dai cuong
Bai giang sinh hoc dai cuongBai giang sinh hoc dai cuong
Bai giang sinh hoc dai cuong
 
Giáo trình hình thái giải phẫu thực vật - Nguyễn Khoa Lân (Chủ biên);Nguyễn N...
Giáo trình hình thái giải phẫu thực vật - Nguyễn Khoa Lân (Chủ biên);Nguyễn N...Giáo trình hình thái giải phẫu thực vật - Nguyễn Khoa Lân (Chủ biên);Nguyễn N...
Giáo trình hình thái giải phẫu thực vật - Nguyễn Khoa Lân (Chủ biên);Nguyễn N...
 
Giải phẫu
Giải phẫuGiải phẫu
Giải phẫu
 
5677764_mini-world.pptx
5677764_mini-world.pptx5677764_mini-world.pptx
5677764_mini-world.pptx
 
Ly sinh hoc
Ly sinh hocLy sinh hoc
Ly sinh hoc
 
Thành phần hóa học của cơ thể sống - Sinh học đại cương
Thành phần hóa học của cơ thể sống - Sinh học đại cươngThành phần hóa học của cơ thể sống - Sinh học đại cương
Thành phần hóa học của cơ thể sống - Sinh học đại cương
 
Bai mo dau
Bai mo dauBai mo dau
Bai mo dau
 
Sinh lý học
Sinh lý họcSinh lý học
Sinh lý học
 
Tài liệu Sinh lý học
Tài liệu Sinh lý họcTài liệu Sinh lý học
Tài liệu Sinh lý học
 
Giao trinh moi truong va con nguoi (le thi thanh mai)
Giao trinh moi truong va con nguoi (le thi thanh mai)Giao trinh moi truong va con nguoi (le thi thanh mai)
Giao trinh moi truong va con nguoi (le thi thanh mai)
 
[Noitiethoc.com]giao trinh vi sinh vat
[Noitiethoc.com]giao trinh vi sinh vat[Noitiethoc.com]giao trinh vi sinh vat
[Noitiethoc.com]giao trinh vi sinh vat
 
Chuong 1 sinh ly te bao thuc vat
Chuong 1 sinh ly te bao thuc vatChuong 1 sinh ly te bao thuc vat
Chuong 1 sinh ly te bao thuc vat
 
BÀI GIẢNG HÓA SINH HỌC (BIOCHEMISTRY) Khoa Hóa và Môi trường TRƯỜNG ĐẠI HỌC T...
BÀI GIẢNG HÓA SINH HỌC (BIOCHEMISTRY) Khoa Hóa và Môi trường TRƯỜNG ĐẠI HỌC T...BÀI GIẢNG HÓA SINH HỌC (BIOCHEMISTRY) Khoa Hóa và Môi trường TRƯỜNG ĐẠI HỌC T...
BÀI GIẢNG HÓA SINH HỌC (BIOCHEMISTRY) Khoa Hóa và Môi trường TRƯỜNG ĐẠI HỌC T...
 
Tóm tắt lý thuyết Sinh học 11.pdf
Tóm tắt lý thuyết Sinh học 11.pdfTóm tắt lý thuyết Sinh học 11.pdf
Tóm tắt lý thuyết Sinh học 11.pdf
 
Tiếp cận sinh học cấu trúc hệ thống
Tiếp cận sinh học cấu trúc hệ thốngTiếp cận sinh học cấu trúc hệ thống
Tiếp cận sinh học cấu trúc hệ thống
 

Giao trinh hoa sinh do quy hai

  • 1. ĐỖ QUÝ HAI (CHỦ BIÊN) - NGUYỄN BÁ LỘC TRẦN THANH PHONG - CAO ĐĂNG NGUYÊN GGIIÁÁOO TTRRÌÌNNHH HHÓÓAA SSIINNHH NHÀ XUẤT BẢN ĐẠI HỌC HUẾ
  • 2. 3 Lời nói đầu Hóa sinh học là khoa học nghiên cứu thành phần hóa học của cơ thể sống và những quá trình chuyển hóa hóa học của các chất và năng lượng trong quá trình hoạt động sống xảy ra trong cơ thể sinh vật. Là ngành khoa học cơ bản, đồng thời cũng là một khoa học ứng dụng, là ngành khoa học cơ sở cho các khoa học cơ bản quan trọng khác như công nghệ sinh học, sinh học phân tử; hóa sinh học tác động lớn hay nói rộng hơn là mũi nhọn để định hướng và giải quyết các vấn đề phục vụ cho nông, lâm, ngư nghiệp, phục vụ cho y học... Chính vì vậy, hóa sinh học không chỉ là công cụ của sinh học mà còn là công cụ của các chuyên ngành khác liên quan đến sinh học như nông, lâm, ngư, y dược. Giáo trình nhằm cung cấp cho sinh viên các ngành, chuyên ngành liên quan đến sinh học trong Đại học Huế những kiến thức cơ bản về cấu tạo và thành phần hóa học của các sinh chất, mối liên quan giữa cấu trúc và chức năng, các quá trình chuyển hóa của chúng và năng lượng trong cơ thể sinh vật. Cuốn sách được biên soạn theo chương trình giáo dục đại học đã được Đại học Huế phê duyệt, bởi tập thể tác giả của các trường Đại học khoa học, sư phạm thuộc Đại học Huế. Sách cũng có thể dùng tài liệu tham khảo cho sinh viên các trường khác, những người chuẩn bị thi tuyển sau đại học cũng như các cán bộ nghiên cứu liên quan. Các tác giả xin cảm ơn những đồng nghiệp đã góp nhiều ý kiến bổ ích trong quá trình biên soạn. Đặc biệt các tác giả xin chân thành cám ơn GS.TSKH Lê Doãn Diên - Giám đốc Trung tâm Tư vấn Đầu tư Nghiên cứu phát triển Nông thôn Việt Nam (INCEDA), Chủ tịch Hội Hóa sinh Việt Nam đã nhận phản biện và cho rất nhiều những lời khuyên quý báu nhằm hoàn thiện giáo trình. Với thời gian biên soạn và kinh nghiệm còn hạn chế, cuốn sách còn chưa thật đầy đủ và chắc chắn không tránh khỏi nhiều thiếu sót. Chúng tôi rất mong nhận được những ý kiến đóng góp của các bạn đồng nghiệp, sinh viên và bạn đọc để lần xuất bản sau sẽ được hoàn thiện hơn. Thay mặt các tác giả Chủ biên PGS.TS Đỗ Quý Hai
  • 3. 11 Mở đầu 1. Lịch sử, đối tượng, nhiệm vụ của hoá sinh Ở thế kỷ XIX, khi mà hoá học phát triển như vũ bão, thì ở ranh giới giữa sinh học và hoá học đã xuất hiện một lĩnh vực khoa học mới nhằm nghiên cứu thành phần hoá học của cơ thể sống và những quá trình chuyển hoá hoá học của các chất và của năng lượng trong quá trình hoạt động sống xảy ra trong cơ thể của chúng. Lĩnh vực khoa học này được gọi là hoá học sinh vật hoặc vắn tắt hơn- hoá sinh học (biochemistry). Có thể nói rằng, hoá sinh học là một phần lĩnh vực của khoa học cuộc sống. Nhiệm vụ của chúng nhằm nghiên cứu các hiện tượng sống bằng các phương pháp hoá học. Đây là một khoa học trẻ tuổi của thế kỷ XX đang trên đà phát triển mạnh mẽ và đang xâm nhập vào nhiều lĩnh vực mũi nhọn của sinh vật học, y học và nông học... Hoá sinh học mới trở thành một khoa học độc lập vào nửa sau thế kỷ thứ XIX mặc dầu ngay từ thời thượng cổ con người đã làm quen với nhiều quá trình hoá sinh học trong cuộc sống hàng ngày của họ (nấu rượu, nướng bánh mì, thuộc da, làm dấm, tương, nước mắm...). Tuy vậy chỉ mới gần đây, tất cả mọi quá trình sinh học này mới được nghiên cứu một cách khoa học và được giải thích một cách đầy đủ. Có thể nói, sự xuất hiện môn hoá sinh học là kết quả tất yếu của sự phát triển và phối hợp giữa hoá học và sinh vật học. Tính chất và phương hướng của hoá sinh học là nghiên cứu trên cơ thể sống, tìm ý nghĩa chức phận của tất cả mọi thành phần, mọi sản phẩm chuyển hoá, trên cơ sở đó, tìm hiểu sâu về: - Mối liên quan giữa quá trình hoá học và sinh vật học. - Mối liên quan giữa cấu trúc và chức năng sống của các cơ quan trong cơ thể. - Cơ chế điều hoà toàn bộ quá trình sống. Tuỳ theo đối tượng nghiên cứu mà người ta phân chia hoá sinh học thành hoá sinh động vật, hoá sinh thực vật, hoá sinh vi sinh vật và y hoá sinh. Trên mỗi đối tượng, hoá sinh nghiên cứu song song hai mặt "tĩnh" và "động". Việc nghiên cứu các chất có trong thành phần của cơ thể sinh vật là nhiệm vụ của tĩnh hoá sinh. Tĩnh hoá sinh gắn liền rất mật thiết với hoá học sinh hữu cơ. Đây chính là hóa sinh mô tả. Còn việc nghiên cứu các chuyển hóa hoá học xảy ra trong quá trình hoạt động sống của cơ thể nghĩa là nghiên cứu về mặt hoá học của sự
  • 4. 12 trao đổi chất trong mối liên quan với toàn bộ cơ thể và môi trường xung quanh là nhiệm vụ của động hoá sinh. Tĩnh hoá sinh và động hoá sinh liên quan với nhau rất chật chẽ - việc nghiên cứu các quá trình hóa sinh học sẽ vô nghĩa nếu không có sự nghiên cứu các chất tham gia trong các quá trình này. Hoá sinh mô tả gắn liền với sự phát triển của hoá hữu cơ. Cuối thế kỷ XVIII, đầu thế kỷ XIX, hàng loạt các hợp chất hữu cơ đã được tách ra từ thực vật và từ các tổ chức động vật: citric acid, malic acid, tatric acid, oxalic acid, urea và các alkaloid. Người ta đã xác nhận rằng trong thành phần của tất cả các chất béo đều chứa glycerin. Trong thời gian này, Lavoisier cũng đã giải thích được cơ chế hoá học của sự hô hấp và sự cháy. Ông đã chứng minh rằng, lượng nhiệt do các cơ thể sống sản sinh ra cũng bằng lượng nhiệt thu được khi đốt cháy các chất dinh dưỡng bên ngoài cơ thể (khi hô hấp trong cơ thể, carbon và hydrogen bị oxy hóa từ từ, quá trình này rất giống sự cháy bình thường). Tiếp theo các công trình chiết xuất, tinh chế và phân tích các chất hữu cơ là những công trình nghiên cứu tổng hợp các chất hữu cơ. Quan điểm cho rằng, vật chất sống khác với vật chất không sống đã bị đánh đổ hoàn toàn khi mà Wöhler vào năm 1828 đã điều chế được carbamid (urea) bằng phương pháp nhân tạo từ các chất vô cơ. Phát minh của Wöhler là bằng chứng cho rằng để tạo nên chất sống không cần thiết bất kỳ một "lực" sống nào (vis vitalis) và như vậy đã mở đường hướng để cho hoá sinh phát triển. (Thời kỳ này khoa học đi sâu vào sự sống đang bị khống chế và kìm hãm bởi thuyết "hoạt lực" cho rằng các chất hữu cơ tham gia vào cấu tạo của cơ thể sinh vật chỉ có thể tạo ra bởi một "đấng siêu tự nhiên"). Trong suốt khoảng hai thế kỷ trước, sự phát triển của hoá sinh học xảy ra tương đối chậm. Sự bắt đầu thật sự của hoá sinh học thường được coi là vào năm 1866 khi Tübigen thành lập bộ môn hoá sinh đầu tiên dưới sự lãnh đạo của Hoppe - Seyler (ở nước Đức). Số đầu tiên của tạp chí mang tính chất hoá sinh học được ra mắt vào năm 1877 (Hoppe - Seyler's Zeitschrift für physiologische Chemie). Tiền đề của nó là sự hoạt động của Liebig ở Đức và trường phái hoá học hữu cơ của ông. Bằng cách sử dụng các phương pháp nghiên cứu mới, Liebig đã xác định thành phần của nhiều thực phẩm, đã chia các chất chứa trong thực phẩm thành protein, glucid, lipid và đã xác định hàm lượng nitrogen trong protein. Sau những công trình nghiên cứu của Pasteur về sự lên men, các nhà khoa học đã chú ý nhiều đến bản chất enzyme vốn xúc tác cho các quá trình khác nhau trong cơ thể sống. Nhiều công trình có giá trị khác, trong đó có công trình của Fischer đã đi vào cấu trúc và tổng hợp glucid, lipid, amino acid và
  • 5. 13 protein, Pavlov trong thời gian này đã nghiên cứu các cơ chế enzyme và Miescher thì nghiên cứu nucleic acid. Thời gian này người ta cũng đã phát hiện ra vitamin. Việc xác lập nên thành phần hoá học của thực vật, việc phát hiện ra các enzyme và việc làm sáng tỏ vai trò của chúng trong sự trao đổi chất, sự phát hiện ra vitamin và hormon, sự phát triển của hoá học về amino acid và protein, về glucid, lipid đã tạo điều kiện cho việc hình thành động hoá sinh và chính nhờ sự phát triển của động hoá sinh mà người ta đã xây dựng được những quan điểm thống nhất về các quy luật chung của các quá trình trao đổi chất và của những chuyển hoá năng lượng trong cơ thể sinh vật. Ngày nay chúng ta biết rõ rằng, tất cả các chất xây dựng nên tế bào sống, đều thay đổi không ngừng. Đặc trưng của sự sống là sự biến đổi hoá học. Như vậy hoá sinh học hiện đại trước hết là động hoá sinh. Trước tiên đó là những hiện tượng trao đổi chất, là sự chuyển hoá và phân giải các chất dinh dưỡng nhằm thu nhận năng lượng hoá học cũng như để xây dựng vật chất của tế bào. Các phản ứng hoá học này được xảy ra nhờ tác dụng xúc tác của những enzyme, vì vậy việc nghiên cứu các enzyme chiếm một phần quan trọng trong hoá sinh học. Thứ đến thuộc về động hoá sinh là điều hoà hoá học. Điều này được xảy ra trên con đường các sản phẩm trao đổi chất xác định, thường là cùng với sự tham gia của những chất đặc biệt là hormon được tạo thành trong các tuyến nội tiết. Thứ ba thuộc về động hoá sinh là các quá trình hoá học được xảy ra gắn liền với các cấu trúc và thực hiện các chức năng của các phần tử cấu trúc. Việc xác định trình tự của amino acid trong protein và cấu trúc không gian của protein (Sanger, Perutz và Kendrew) cũng như cấu trúc của nucleic acid (Chargaff, Watson và Crick) là bắt đầu một giai đoạn mới trong sự phát triển của hoá sinh học tức là thời kỳ của sinh học phân tử. Một điều rõ ràng là không thể tách riêng sinh học phân tử và hoá sinh học ra khỏi nhau. Về cơ bản mà nói thì "sinh học phân tử" chỉ là tên mới, nhưng là một phân ngành riêng của hoá sinh. Nó cố gắng làm sáng tỏ các hiện tượng sống cơ bản trên cơ sở phân tử có nghĩa là trên cơ sở hoá sinh học. Chính vì vậy theo quan niệm hiện đại thì hoá sinh học là khoa học nghiên cứu cơ sở phân tử của sự sống. 2. Thành phần hoá học của cơ thể sống Trong cơ thể sống, nước là thành phần quan trọng nhất. Trừ một số mô hoặc loại tế bào (các hạt thực vật, các bào tử mô xương, mô mỡ), lượng nước của chúng không đạt đến 80%, còn lượng nước của một số sinh vật khác cũng vượt quá 90% (toàn bộ lượng nước của cơ thể con
  • 6. 14 người khoảng 50-70%). điều cần lưu ý là ở một số dạng sống bậc thấp, các virus, các bào tử sống qua trạng thái khô héo hoàn toàn, song trong trạng thái không có nước thì các hoạt động sống của chúng bị hoãn lại. Từ các cơ sở trên chúng ta có thể nói rằng các quá trình hoá học đặc trưng cho sự sống được xem như là những phản ứng tiến hành ở trong môi trường nước. Ngoài ra người ta đã phát hiện được hơn 60 nguyên tố có trong cơ thể sống. Các nguyên tố này có trong cơ thể với những lượng rất khác nhau. Một số được coi là những nguyên tố cần thiết để xây dựng cơ thể và phục vụ cho sự phát triển bình thường của cơ thể; một số khác thì chức năng sinh học của chúng chưa được biết rõ; số còn lại được coi như do sự xâm nhập ngẫu nhiên. C H O N S P Cl Ca Mg K Na đều là những nguyên tố rất cần thiết đối với cơ thể sống, 11 nguyên tố này chiếm gần 100% khối lượng toàn phần của thực vật và động vật. Những nguyên tố ở dạng vết được gọi là yếu tố vi lượng, vai trò quan trọng của chúng đối với cuộc sống cũng dần dần được sáng tỏ đó là những ion kim loại nặng Co, Zn, Mn, Mo; trong trường hợp các cơ thể động vật bậc cao còn có I, ở các cây xanh thì có B. Cần nhớ rằng, trừ I và Mo, các nguyên tố đã được kể đến đều nằm trong số 30 nguyên tố đầu của hệ thống tuần hoàn và hơn một nửa các nguyên tố có số thứ tự đến 30 có vai trò sinh học quan trọng. Nhiều hợp chất hữu cơ trước đây được coi như là riêng biệt thuộc giới sinh vật, nay cũng đã được nghiên cứu, tổng hợp trong phòng thí nghiệm. Đó là các protein, nucleic acid, glucid, lipid, enzyme và vitamin. Đây là những chất chiếm vị trí hàng đầu trong sinh học và cũng chính là đối tượng nghiên cứu chính của các chương trong giáo trình này. 3. Mối quan hệ của hoá sinh với các ngành khoa học của sinh học, nông nghiệp và y học Trong sinh học có nhiều ngành, nhưng nghiên cứu sinh học ngày nay là nghiên cứu ở mức độ phân tử. Hoá sinh là khoa học nghiên cứu sự sống ở mức độ phân tử, cho nên có thể nói bất cứ chuyên ngành nào của sinh học như động vật học, thực vật học, vi khuẩn học, sinh lý học, tế bào học, mô phôi học... đều cần phải trang bị kiến thức và kỹ thuật hoá sinh để nghiên cứu khoa học chuyên ngành mình. Do đó khi nói đến các chuyên ngành của sinh học hiện đại thì trước hết phải nói đến hoá sinh trong những năm gần đây. Ngay cả công nghệ gen, công nghệ enzyme cũng chính là lãnh địa của hoá sinh. Chẳng hạn đối với động vật, thực vật, vi sinh vật, ngày nay muốn nghiên cứu phân loại chính xác các giống chủng cũng phải dùng các chỉ tiêu phân tử một số protein, enzyme hay nucleic acid trong ty lạp thể. Đối với nông nghiệp muốn tăng năng suất cây trồng phải chú ý đến quá trình hoá sinh quang hợp, quá trình hoá sinh nảy mầm,
  • 7. 15 quá trình hoá sinh phát dục, quá trình chuyển hoá, sinh tổng hợp các chất tạo nên hạt, quả, quá trình tác động hoá sinh của các cytokinin đến sự sinh trưởng và phát triển của cây. Đối với vật nuôi cũng vậy, muốn có năng suất thịt, sữa, trứng cao, người chăn nuôi phải hiểu được các quá trình hoá sinh phát triển đến từng giai đoạn phát triển của con vật, đến từng bộ phận cơ bắp, buồng trứng của chúng để có sự tác động mạnh mẽ. Đối với y dược học, vấn đề chủ chốt nghiên cứu bệnh nguyên, bệnh lý, chẩn đoán và điều trị bệnh cũng đều liên quan chặt chẽ đến hoá sinh, tức liên quan đến sự thay đổi các phân tử bệnh lý xảy ra trong cơ thể và tìm những chất hoạt tính sinh học có tác dụng phòng chống hoặc chữa khỏi bệnh. Vì vậy có thể nói hoá sinh là gốc, là cơ bản để giúp hiểu sâu sắc các khoa học khác của sinh học, nông nghiệp và y học. 4. Một số thành tựu nổi bật của hóa sinh trong thời gian gần đây Trong quá trình phát triển của mình, nhiều ngành nhỏ của hoá sinh đã ra đời.Về hoá sinh một số chức phận hệ thống quan trọng có hoá sinh miễn dịch, hoá sinh di truyền, đặc biệt một ngành mới gần đây đã xuất hiện đó là công nghệ hoá sinh. Các lĩnh vực nhỏ của hoá sinh đã đóng góp một cách tích cực vào thành tích chung của hoá sinh. Nhiều giải thưởng Nobel đã ghi công các kết quả nghiên cứu quan trọng, mở ra nhiều cánh cửa mới cho sự phát triển của hoá sinh như hoá sinh của hệ thống miễn dịch của Snell, Bena Cerraf và Dausset năm 1980. Cùng năm ấy Paul Berg cũng được giải thưởng Nobel bởi công trình nghiên cứu gắn các mẫu DNA. Năm 1981-1982, thành tựu tổng hợp gen α - interferon gồm 514 đôi base bởi Leicester đã được thực hiện. Từ đó đến nay hàng loạt công trình khác về nghiên cứu hoá sinh đã được áp dụng trong lĩnh vực khoa học. Gần đây, năm 1997 giải thưởng Nobel y học trao cho Staley Prusiner về công trình nghiên cứu prion, một khái niệm mới về "nhiễm khuẩn", gây bệnh não thể xốp ở người và động vật. Prion (PrP) là protein tồn tại hai dạng đồng phân alpha và bêta. Ở cơ thể khoẻ mạnh thì PrP có dạng alpha còn khi cơ thể bị bệnh thì dạng alpha bị duỗi ra và xếp thành các băng song song gọi là PrP bêta. Dạng này rất bền với enzyme tiêu hoá và không bị phá huỷ ở nhiệt độ cao (đến 200o C). Do vậy prion như là tác nhân gây bệnh hoàn toàn mới được bổ sung vào danh sách những tác nhân gây bệnh như virus, vi khuẩn, nấm. Công trình này đưa ra khái niệm bệnh lý phân tử hoàn toàn mới trong sinh học và y học. Công trình không chỉ phát hiện ra tác nhân gây bệnh xốp não mà còn đặt nền móng cho sự tìm hiểu cơ chế mất trí liên quan đến bệnh già và bệnh Alzheimer, cũng như đặt nguyên tắc chặt chẽ cho việc ghép các cơ quan phủ tạng của động vật cho con người và thuốc men chế từ động vật dùng cho người.
  • 8. 16 TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt 1. Trần Thị Ân (chủ biên). 1979. Hóa sinh đại cương (tập I, II). NxB KH&KT. Hà Nội. 2. Đái Duy Ban. 2005. Hóa sinh học và hóa sinh y học.Hóasinhhọc.1:8-13. 3. Phạm Thị Trân Châu, Trần Thị Áng. 2000. Hóa sinh học. Nxb Giáo dục. Hà Nội. 4. Lê Doãn Diên. 1975. Hóa sinh thực vật. Nxb Nông nghiệp. Hà Nội 5. Nguyễn Tiến Thắng, Nguyễn Đình Huyên. 1998. Giáo trình sinh hóa hiện đại. Nxb Giáo dục. Hà Nội. 6. Nguyễn Xuân Thắng, Đào Kim Chi, Phạm Quang Tùng, Nguyễn Văn Đồng, 2004. Hóa sinh học. Nxb Y học, Hà Nội. Tài liệu tiếng nước ngoài 1. Karlson. P., 1972. Biokémia. Medicina Könyv Kiadó Budapest. 2. Lehninger A.L., 2004. Principle of Biochemistry, 4th Edition. W.H Freeman. 3. Stryer L., 1981. Biochemistry. W.H.Freeman and company. San Francisco. 4. Straub .F. B. 1965. Biokémia. Medicina Könyv Kiadó Budapest.
  • 9. 17 Chương 1 Saccharide Là hợp chất hữu cơ được tạo nên từ các nguyên tố: C, H, O có công thức cấu tạo chung Cm(H2O)n, thường m = n. Do có công thức cấu tạo như trên nên saccharide thường được gọi là carbohydrate - có nghĩa là carbon ngậm nước. Tuy nhiên có những saccharide có công thức cấu tạo không ứng với công thức chung nói trên ví dụ: deoxyribose (C5H10O4). Có những chất không phải là saccharide nhưng có công thức cấu tạo phù hợp với công thức chung ở trên ví dụ : acetic acid (CH3COOH). Saccharide là thành phần quan trọng trong mọi sinh vật . Ở thực vật, saccharide chiếm từ 80 - 90% trọng lượng khô, saccharide tham gia vào thành phân các mô nâng đỡ, ví dụ cellulose, hay tích trữ dưới dạng thực phẩm dự trữ với lượng lớn, ví dụ tinh bột. Ở động vật, hàm lượng saccharide thấp hơn nhiều, thường không quá 2%, ví dụ glycogen. 1.1. Monosaccharide 1.1.1. Cấu tạo và danh pháp Là chất có chứa nhiều nhóm rượu và một nhóm khử oxy (nhóm khử là nhóm carbonyl là aldehyde hay ketone). - Nhóm khử là aldehyde ta có đường aldose và có công thức tổng quát: CHO (CHOH)n CH2OH - Nhóm khử là ketone ta có đường ketose có công thức tổng quát: CH2OH C= O (CHOH)n CH2OH
  • 10. 18 CHO - CH2OH được xem như là “monosaccharide”đơn giản nhất. Trong thiên nhiên monosaccharide có chứa từ 2 đến 7 carbon và được gọi tên theo số carbon (theo tiếng Hy Lạp) + ose Ví dụ: monosaccharide có 3C gọi là triose. Tương tự ta có tetrose, pentose, hexose, heptose. 1.1.2. Đồng phân quang học Quy ước Fischer: Fischer là người đầu tiên nêu ra nguyên tắc biểu diễn các monosaccharide bằng công thức hình chiếu của chúng. Theo đó: hình chiếu của các nguyên tử carbon bất đối (C*) và các nguyên tử C khác nằm trên một đường thẳng, nguyên tử C có số thứ tự nhỏ nhất có hình chiếu nằm trên cùng. Còn các nhóm thế có hình chiếu ở bên phải hay bên trái. Ví dụ : glyceraldehyde. Vì glyceraldehyde có 1 C* nên theo quy tắc của Van’t Hoff có 2 đồng phân (N = 2n) 1CHO 1CHO HO- 2C* -H H-2C*-OH D: -OH ở bên phải L: -OH ở bên trái 3CH2OH 3CH2OH L glyceraldehyde D glyceraldehyde. Khi phân tử monosaccharide có nhiều C* thì công thức có dạng D hay L được căn cứ vào vị trí nhóm OH của C* xa nhóm carbonyl nhất. Ví dụ : CHO CHO H-C-OH H-C-OH HO-C-H HO-C-H H-C-OH H-C-OH H-C-OH HO-C-H CH2OH CH2OH D glucose L glucose
  • 11. 19 Chú ý: monosaccharide từ triose trở lên đều có C* trừ dihydoxy aceton CH2OH C = O CH2OH 1.1.3. Công thức vòng của monosaccharide Công thức thẳng theo Fischer như trình bày ở trên không phù hợp với một số tính chất hoá học của chúng như: một số phản ứng hoá học thường xảy ra với aldehyde không xảy ra đối với monosaccharide . Vì vậy có thể nghĩ rằng nhóm -CHO trong monosaccharide còn tồn tại dưới dạng cấu tạo riêng biệt nào đó. Mặt khác: monosaccharide có thể tạo ether với methanol tạo thành một hỗn hợp 2 đồng phân có cùng nhóm methoxy (- OCH3). Điều đó chứng tỏ trong monosaccharide còn tồn tại một nhóm -OH đặc biệt. Qua nghiên cứu Kolle cho thấy: số đồng phân thu được của monosaccharide thực tế nhiều hơn số đồng phân tính theo công thức N=2n , do đó để giải thích các hiện tượng trên, Kolle cho rằng ngòai dạng thẳng monosaccharide còn tồn tại ở dạng vòng. Sự tạo thành dạng vòng xảy ra do tác dụng của nhóm -OH cùng phân tử monosaccharide tạo thành dạng hemiacetal hay hemiketal.
  • 12. 20 Ví dụ : cấu tạo vòng của glucose xảy ra như sau: Do sự tạo thành hemiacetal vòng mà C1 trở nên C*, nhóm -OH mới được tạo ra ở C1 là -OH glucoside. Tương tự với ketose thì C2 trở nên C*, nhóm -OH mới được tạo ra ở C2 là -OH glucoside khi tạo thành hemiketal. Cách biểu diễn công thức vòng như trên dựa vào nguyên tắc của Haworth: C và cầu nối với oxy nằm trên một măt phẳng , các nhóm thế ở công thức thẳng nằm ở bên phải thì ở công thức vòng nằm dưới măt phẳng và ngược lại. Riêng các nhóm thế của C có nhóm OH dùng để tạo cầu nối oxy thì theo quy tắc ngược lại. 1.1.4. Hiện tượng hổ biến của monosaccharide Như ta thấy, không thể giải thích được tất cả các tính chất của monosaccharide nếu ta chỉ thừa nhận một dạng cấu tạo nào đó của monosaccharide. Nên người ta cho rằng các dạng cấu tạo đó có thể đã chuyển hoá lẫn nhau. β pyranose α pyranose Dạng thẳng β Furanose α Furanose
  • 13. 21 1.1.5. Tính chất của monosaccharide 1.1.5.1. Lý tính Các monosaccharide tan trong nước, không tan trong dung môi hữu cơ, có tính quay cực trừ biose vì không có C*. 1.1.5.2. Hoá tính a. Monose là tác nhân khử Trong môi trường kiềm, khử các ion kim loại nặng có hoá trị cao thành ion có hóa trị thấp hay các ion kim loại thành kim loại. Tính khử này do nhóm aldehyde hay nhóm ketone tạo ra và các monose biến thành acid. Ví dụ: Cu2+ bị biến đổi thành Cu+ trong phản ứng với thuốc thử Fehling, Ag+ bị biến đổi thành Ag trong phản ứng tráng gương. b. Phản ứng với các chất oxy hoá Tuỳ thuộc vào chất oxy hoá: - Chất oxy hoá nhẹ như nước brom đường aldose sẽ thành aldonic acid, với ketose phản ứng không xảy ra. - Chất oxy hoá mạnh như HNO3 đậm đặc có sự oxy hoá xảy ra ở 2 đầu cho ta di acid. - Trường hợp đặc biệt nếu ta bảo vệ nhóm -OH glucoside bằng cách methyl hóa hay acetyl hoá trước khi oxy hoá bằng nước brom, sản phẩm tạo thành là uronic acid. c. Phản ứng với chất khử Dù dạng vòng chiếm tỷ lệ rất lớn trong thành phần, dạng thẳng chiếm tỷ lệ nhỏ nhưng đủ để cho ta thấy rõ tính chất của một carbonyl thật sự. Khi bị khử: monose sẽ biến thành polyalcohol. d. Phản ứng tạo furfural Dưới tác dụng của acid đậm đặc, các aldopentose tạo thành furfural và aldohexose biến thành hydroxymethylfurfural. Các sản phẩm này khi cho tác dụng với các phenol cho màu đặc trưng như: α naphthol cho vòng màu tím (Molisch). Đây là phản ứng để phân biệt đường với các chất khác. Nếu đường 5C sẽ cho màu xanh cẩm thạch với orcinol (Bial). e. Phản ứng ester hoá Các gốc rượucủa monose có khả năngkết hợp vớiacidđể tạo thànhester. Các ester phosphate thường gặp là: Glucose-6-phosphate, fructose- 6-phosphate...
  • 14. 22 1.1.6. Các monose quan trọng 1.1.6.1. Pentose 1.1.6.2. Hexose Các hexose quan trọng như: * Glucose: còn gọi là dextrose vì làm quay mặt phẳng ánh sáng phân cực về phía phải. Phổ biến rộng rãi trong thực vật nhất là trong quả nho, nên còn gọi là đường nho, trong máu người có 0.8 - 1,1 g/l, những người bị bệnh đái đường có thể đến 2g/l. Các disaccharide quan trọng là saccharose, lactose, maltose và các polysaccharide quan trọng là tinh bột, glycogen. Người ta sử dụng glucose trong y học như chất tăng lực. * D - Mannose: ít gặp ở trạng thái tự do, thường gặp trong polysaccharride và glucoside * D - Galactose: là thành phần của lactose có trong sữa còn gọi là đường não tuỷ. Chúng là thành phần cấu tạo của raffinose, hemicellulose. pectine... * D - Fructose còn gọi là levulose vì làm quay mặt phẳng ánh sáng phân cực về phía trái. Fructose còn gọi là đường quả, có ở trạng thái tự do trong trái cây chín và mật ong. Chúng là thành phần của disaccharide saccharose. Trong cơ thể ta còn thấy ở dạng ester với phosphoric acid đóng vai trò quan trọng trong trao đổi chất. Fructose có độ ngọt rất lớn, dạng α có độ ngọt bằng 1/3 dạng β.
  • 15. 23
  • 16. 24 1.2. Oligosaccharide 1.2.1. Disaccharide Sự tạo thành disaccharide là do sự kết hợp của 2 monose cùng loại hay khác loại nhờ liên kết glucosidic. Liên kết glucosidic có thể được tạo thành giữa -OH glucoside của monose này với -OH glucoside của monose kia, hay giữa một nhóm -OH glucoside của monose này với -OH ( không phải -OH glucoside) của monose kia. Disaccharide chỉ có tính khử khi ít nhất một trong 2 nhóm -OH glucoside ở trạng thái tự do. Nghĩa là disaccharide sẽ không có tính khử khi 2 nhóm -OH glucoside liên kết với nhau. Các disaccharide quan trọng * Maltose do 2 phân tử α- D-glucose liên kết với nhau ở vị trí C1 - C4 tạo thành. Công thức cấu tạo: Maltose có nhóm -OH glucoside ở trạng thái tự do nên có tính khử. Maltose có nhiều trong mầm lúa và mạch nha (maltum) nên gọi nó là maltose. * Lactose (đường sữa) do một phần tử β D-galactose liên kết với một phân tử β D- glucose ở vị trí C1- C4. * Saccharose do một phần tử α D-glucose liên kết với một phân tử β D-fructose ở vị trí C1-C2. Do đó nó không có tính khử, còn gọi là đường mía vì có nhiều trong mía. Dễ bị thủy phân khi đun nóng.
  • 17. 25 1.2.2. Trisaccharide Là oligosaccharide có chứa 3 monosaccharide, phổ biến trong thiên nhiên là raffinose. Công thức cấu tạo như sau: α-D-galactopyranosyl 1-2 α-D glucopyranosyl 1-2 β-D fructofuranose. Do có công thức như trên nên không có tính khử oxy. Dễ bị thủy phân, dưới tác dụng của β fructofuranosidase sẽ tạo thành fructose và melobiose với α galactosidase sẽ tạo thành galactose và saccharose. 1.3. Polysaccharide Còn gọi là glycan, tùy thành phần monose có trong polysaccharide người ta chia chúng ra làm: homopolysaccharide (chỉ chứa một lọai monosaccharide) và heteropolysaccharide (có ít nhất 2 lọai monosaccharide).
  • 18. 26 Polysaccharide đóng vai trò quan trọng trong đời sống động vật, thực vật. Một số polysaccharide thường gặp như tinh bột, glycogen, cellulose... 1.3.1. Polysaccharide thực vật 1.3.1.1. Tinh bột Là polysaccharide dự trữ của thực vật, do quang hợp tạo thành. Trong củ và hạt có từ 40 đến 70% tinh bột, các thành phần khác của cây xanh có it hơn và chiếm khoảng từ 4 đến 20%. Tinh bột không hòa tan trong nước, đun nóng thì hạt tinh bột phồng lên rất nhanh tạo thành dung dịch keo gọi là hồ tinh bột. Tinh bột có cấu tạo gồm hai phần: amylose và amylopectin, ngoài ra còn có khoảng 2% phospho dưới dạng ester. Tỷ lệ amylopectin/amylose ở các đối tượng khác nhau là không giống nhau, tỷ lệ này ở gạo nếp là lớn hơn gạo tẻ. *Amylose Chiếm 15 đến 25% lượng tinh bột, do nhiều gốc α D- glucose liên kết với nhau thông qua C1-C4 tạo thành mạch thẳng không phân nhánh. Trong không gian nó cuộn lại thành hình xoắn ốc và được giữ bền vững nhờ các liên kết hydro. Theo một số tài liệu trong amylose còn có chứa các α D- glucopyranose dạng thuyền. Amylose bắt màu xanh với iodine, màu này mất đi khi đun nóng, hiện màu trở lại khi nguội. Một đặc trưng hóa lý khác cần chú ý là nó bị kết tủa bởi rượu butylic.
  • 19. 27 Hạt tinh bột trong lục lạp amylose * Amylopectin Cấu tạo do các phân tử α D- glucose liên kết với nhau, nhưng có phân nhánh. Chổ phân nhánh là liên kết C1-C6 glucosidic.
  • 20. 28 1.3.1.2. Cellulose Được cấu tạo bởi những phân tử β D-glucose liên kết với nhau bằng liên kết 1-4 glucosidic. Chúng là thành phần chủ yếu của vách tế bào thực vật. Đối với người thì cellulose không có giá trị dinh dưỡng vì cellulose không bị thủy phân trong ống tiêu hóa. Một số nghiên cứu cho thấy nó có vai trò trong điều hòa tiêu hoá. Động vật ăn cỏ thủy phân được cellulose nhờ enzyme cellulase. Cellulose không tan trong nước, tan trong dung dịch Schweitzer. Khi đun nóng với H2SO4, cellulose sẽ bị thủy phân thành các phân tử β D-glucose. Cellulose có dạng hình sợi dài, nhiều sợi kết hợp song song với nhau thành chùm nhờ các liên kết hydro, mỗi chùm (micelle) chứa khỏang 60 phân tử cellulose. Giữa các chùm có những khoảng trống, khi hoá gỗ khoảng trống này chứa đầy lignin và ta xem lớp lignin này như là một lớp cement. Lignin là chất trùng hợp của coniferylic alcohol Các gốc -OH của cellulose có thể tạo ester với acid ví dụ: tạo nitro cellulose với HNO3 , tạo acetyl cellulose với CH3COOH.
  • 21. 29 1.3.1.3. Hemicellulose Tên gọi chung cho lớp polysaccharide thường đi theo với cellulose trong thực vật. Hemicellulose không tan trong nước, tan trong dung dịch kiềm và thủy phân bằng acid dễ hơn cellulose. Khi bị thủy phân hemicellulose tạo thành một hổn hợp gồm các hexose và pentose hay chỉ một mình hexose mà thôi. Trong hemicellulose khi monose nào chiếm đa số thì hemicellulose có tên tương ứng với monose đó: Xylose chiếm đa số thì hemicellulose có tên là Xylan, Arabinose chiếm đa số thì hemicellulose có tên là Araban, Galactose chiếm đa số thì hemicellulose có tên là Galactan... Xylan có nhiều trong rơm rạ, trong một số cơ quan của thực vật, galactose có nhiều trong rơm, gổ và các loại hạt. 1.3.1.4. Inulin Là polysacchride dự trữ của thực vật có trọng lượng phân tử khoảng 5000-6000, do những phân tử β D- fructose liên kết với nhau bằng liên kết 1-2 và tận cùng bằng một phân tử saccharose. Inulin được tìm thấy trong củ thược dược khoảng 40%. Người ta xử dụng inulin để sản xuất fructose. Để xác định inulin người ta thủy phân nó và xác định bằng phản ứng định tính Seliwanoff. 1.3.1.5. Pectin Là loại polysaccharide có nhiều trong quả , củ và thân cây, thành phần chính là galacturonic acid có nhóm -COOH bị methyl hóa. Người ta sử dụng rộng rãi pectin trong sản xuất keo. 1.3.2. Polysaccharide động vật 1.3.2.1. Glycogen Là polysaccharide dự trử ở động vật được tìm thấy trong gan và cơ, hiện nay còn tìm thấy trong một số thực vật như ngô, nấm. Có cấu tạo giống amylopectin nhưng phân nhánh nhiều hơn, bị thuỷ phân bởi phosphorylase ( có coenzyme là pyrydoxal phosphate), để cắt liên kết 1-6 cần enzyme debranching. Sản phẩm cuối cùng là các phân tử glucose-1-P.
  • 22. 30 Phía ngoài glucose liên kết 1-6 Mạch chính hạt glycogen ở tế bào gan 1.3.2.2. Hyaluronic acid Có công thức cấu tạo được lập lại từ đơn vị sau: Hyaluronic acid có trọng lượng phân tử rất lớn, có thể lên đến nhiều triệu, hyaluronic acid rất phổ biến và là thành phần quan trọng của mô liên kết, được tìm thấy trong dịch khớp xương, trong thủy tinh thể mắt, nó tác dụng như một lớp cement bảo vệ bên trong tế bào để chống lại sự xâm nhập của vi khuẩn cũng như các chất lạ khác. Ở khớp xương nó làm
  • 23. 31 cho dịch có tính trơn giúp cử động khỏi bị đau. Hyaluronic acid bị thủy phân bởi hyaluronidase, enzyme này được tìm thấy trong vi khuẩn gây bệnh, trong tinh trùng. Hyaluronidase tạo dễ dàng cho tinh trùng đi vào noãn của buồn trứng, mặt khác nó cũng là yếu tố giúp cho các chất khác và vi khuẩn gây bệnh đi vào các mô trong cơ thể. 1.3.2.3. Chondroitin Là heteropolysaccharide, thành phần không thể thiếu được ở mô xương sụn. 1.3.2.4. Heparin Heteropolysaccharide có tác dụng chống lại sự đông máu và ngăn chặn sự biến đổi prothrombin thành thrombin. GlcA2S hoặc IdoA2S 1.3.3. Một số polysaccharide phổ biến khác 1.3.3.1. Chitin Là homopolysaccharide, có ở võ sò, ốc, các loại côn trùng và ở nấm mốc. Nó có cấu tạo như sau:
  • 24. 32 1.3.3.2. Dextran Được tìm thấy ở vi khuẩn và nấm men, cấu tạo mạch chính là α D- glucose1-6, nhánh là α 1-3 và thỉnh thoảng có nhánh α1-2 hay α1-4. Do có cấu tạo 1-6 nên đối với động vật, dextran không bị phân giãi hay bị phân giãi rất chậm.
  • 25. 33 Dextran có độ dài và hình dạng giống albumin, người ta thường dùng nhiệt để thủy phân không hoàn toàn dextran nhằm thay thế protein của huyết tương , dung dịch 10% của nó hoàn toàn trong suốt. Trong công nghệ người ta tổng hợp dextran và được gọi là sephadex để sử dụng trong tách từng phần protein. TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt 1. Phạm Thị Trân Châu, Trần thi Áng. 1999. Hoá sinh học, NXB Giáo dục, Hà Nội. 2. Đỗ Quý Hai. 2004. Giáo trình Hóa sinh đại cương, Tài liệu lưu hành nội bộ Trường ĐHKH Huế. 3. Trần Thanh Phong.2004. Giáo trình Hóa sinh đại cương, Tài liệu lưu hành nội bộ Trường ĐHKH Huế. 4. Lê Ngọc Tú (chủ biên), Lê Văn Chứ, Đặng Thị Thu, Phạm Quốc Thăng Nguyễn Thị Thịnh, Bùi Đức Hợi, Lưu Duẫn, Lê Doãn Diên, 2000. Hóa sinh Công nghiệp, Nxb KH&KT, Hà Nội. Tài liệu tiếng Anh 1. Gilbert H. F. 1992. Basic concepts in biochemistry, Copyright by the Mcgraw- Hill companies, Inc. 2. Lehninger A. L. 2004. Principles of Biochemistry, 4th Edition. W.H Freeman.
  • 26. 34 Chương 2 Lipid Cũng như saccharide, protein, lipid là chất hữu cơ phức tạp, ta có thể định nghĩa như sau: * Định nghĩa rộng: Lipid là chất tan được trong dung môi hữu cơ, không tan trong nước, định nghĩa này không phản ánh hết tính chất của các lipid vì: - Có lipid không tan được trong dung môi hữu cơ như phospholipid không tan trong aceton. - Nhưng cũng có chất không phải lipid nhưng tan được trong dung môi hữu cơ. * Định nghĩa hẹp: Lipid là ester của rượu và acid béo. Tuy nhiên có những lipid do acid béo liên kết với rượu bằng liên kết peptide. * Định nghĩa dung hoà: Lipid là những chất chuyển hoá của acid béo và tan được trong dung môi hữu cơ. Lipid rất phổ biến ở động vật cũng như ở thực vật và tồn tại dưới 2 dạng mỡ nguyên sinh chất (dạng liên kết) và dạng dự trữ (dạng tự do). - Mỡ nguyên sinh chất: thành phần của màng tế bào cũng như các bào quan khác ví dụ: ty thể, lạp thể... dạng này không bị biến đổi ngay cả khi con người bị bệnh béo phì hoặc bị đói. - Dạng dự trữ (dạng tự do) có tác dụng cung cấp năng lượng cho cơ thể, bảo vệ các nội quan, là dung môi cần thiết cho một số chất khác. Căn cứ vào thành phần nguyên tố có mặt, người ta chia lipid ra làm 2 loại * Lipid đơn giản: trong phân tử chỉ chứa C, H, O. * Lipid phức tạp: ngoài C, H, O còn có một số nguyên tố khác như N, P, S. 2.1. Lipid đơn giản 2.1.1. Glycerid Glycerid là ester của rượu glycerol và acid béo, là mỡ dự trữ phổ biến ở động vật và thực vật.
  • 27. 35 1- Stearoyl, 2- linoleoyl, 3-palmitoyl glycerol, một triacylglycerol hỗn tạp 2.1.1.1. Glycerol Là triol không màu, vị ngọt nhờn. Khi đốt glycerol hay lipid có chứa glycerol với chất hút nước sẽ tạo acrolein có mùi khét. 2.1.1.2. Acid béo Acid béo thường gặp là những acid béo có số carbon chẵn, mạch thẳng, có thể no hay không no và chuỗi C xếp theo hình chữ chi. Tuy nhiên cũng có những acid béo ngoài nhóm chức acid còn chứa những nhóm chức khác như rượu, ketone, mạch carbon có vòng hay nhánh. a. Acid béo chẵn, thẳng, no: CH3(CH2)nCOOH C4 CH3 -(CH2)2 – COOH butylic acid có nhiều trong cơ. C6 CH3 -(CH2)4 -COOH caproic acid có trong bơ, sữa dê. C8 CH3 - (CH2)6-COOH caprylic acid có trong bơ, sữa dê. C10 CH3-(CH2)8 –COOH capric acid có trong bơ, sữa dê.
  • 28. 36 C12 n=10 lauric acid có trong dầu dừa. C14 n=12 myristic acid có trong dầu dừa. C16 n=14 palmitic acid có trong dầu động vật,thực vật. C18 n=16 stearic acid có trong dầu động vật,thực vật. C20 n=18 arachidic acid có trong dầu lạc. b. Acid béo chẵn, thẳng, không no - Chứa một nối đôi (C’): 10 9 C’ 16 (Δ9-10): CH3-(CH2)5 -CH = CH- (CH2)7–COOH Palmitoleic acid : Tìm thấy trong dầu thực vật. C’ 18 (Δ9-10): CH3-(CH2)7 -CH = CH- (CH2)7 –COOH Oleic acid: acid này có ba đồng phân. C’ 18 (Δ6-7): Petroselenic acid C’ 18 (Δ11-12): Vaccenic acid. C’ 18 (Δ12-13): Heparic acid - Acid béo có 2 nối đôi (C’’): C’’ 18 (Δ9-10,12-13): Linoleic acid CH3-(CH2)4 -CH = CH- CH2-CH=CH-(CH2)7-COOH Cơ thể không tổng hợp được acid này mà lấy từ ngoài vào. Ngày xưa người ta quan niệm acid này là vitamin và gọi là vitamin S. Nhưng thực chất đó là một acid béo mà cơ thể cần với một lượng lớn. - Acid béo có chứa 3 nối đôi (C’’’): C18’’’((9-10,12-13,15-16): Linolenic acid, cơ thể không tổng hợp được acid này. - Acid béo có 4 nối đôi (C’’’’): C20 ’’’’ (Δ5-6,8-9,11-12,14-15): Arachidonic acid. Ngoài ra còn có các acid béo có chứa nối ba nhưng không quan trọng. c. Acid béo có chứa chức rượu Thường gặp trong lipid phức tạp và chứa nhóm rượu gần chức acid nên có tên là α- hydroxy... α R-CH-COOH OH
  • 29. 37 Ví dụ: α - hydroxy lynoceric acid CH3 -(CH2 )21- CH-COOH OH Ricinoleic acid CH3-(CH2)5 - CH - CH2 - CH = CH- (CH2)7 - COOH 10 9 OH d. Gốc R trong phân tử acid có nhánh và có số C lẻ Phocenic acid: CH3 CH3 CH – CH2 – COOH Undecylonic acid : CH2 = CH - (CH2)8 - COOH e. Acid béo có vòng * Chaulmoogric acid: - (CH2)12 - COOH * Sfe Crculic acid: H3 - CH2 - C = C - (CH2)7 - COOH CH2 2.1.1.3. Tính chất của acid béo và triglyceride * Tính chất vật lý: a. Điểm tan chảy Điểm tan chảy phụ thuộc vào số C của acid béo, acid béo có chuỗi C dài thì điểm tan chảy cao và ngược lại. Nhưng acid béo có C lẻ có điểm tan chảy thấp hơn acid béo có số C nhỏ hơn nó 1 đơn vị . Ngoài ra độ tan chảy còn phụ thuộc vào số nối đôi trong phân tử acid béo, acid béo chứa nhiều nối đôi thì điểm tan chảy càng thấp. b. Độ sôi Acid béo có chuỗi C dài thì độ sôi càng cao, thường áp dụng tính chất này để tách các acid béo ra khỏi nhau. c. Tính hoà tan - Trong nước: acid béo có chuỗi C ngắn (4,6,8) dễ tan, C10 khó tan, C12 không tan. Nếu acid béo ở dạng muối thì dễ hòa tan hơn. - Trong dung môi hữu không phân cực như benzen, ether, ether dầu hoả acid béo dễ tan.
  • 30. 38 - Trong dung môi hữu cơ phân cực như aceton, acid béo khó hoà tan hay hoà tan rất ít. * Tính chất hoá học: a. Sự hydrogen hoá Acid béo chưa no có thể kết hợp với H2 để tạo thành acid béo no R - (CH2)n - CH =CH- (CH2)n - COOH + H2 R - (CH2)n -CH2 - CH2 - (CH2)n - COOH Người ta dùng phản ứng này để chế tạo thực phẩm như margarin. b. Sự halogen hoá Acid béo không no kết hợp với các nguyên tố thuộc họ halogen (F, Cl, Br, I) để tạo thành acid béo no. R - (CH2)n - CH = CH- (CH2)n - COOH + I 2 R - (CH ) - CH - CH- (CH2)n - COOH2 n I I Có thể dùng phản ứng này để xác định số nối đôi trong phân tử acid béo. Phản ứng dễ dàng hay khó xẩy ra tuỳ thuộc vào vị trí nối đôi đối với nhóm carboxyl, nối đôi càng gần nhóm carboxyl phản ứng càng khó xảy ra. Để xác định số nối đôi người ta căn cứ vào chỉ số Iod. Chỉ số Iod: Là số gam Iod cần thiết để tác dụng lên 100gam chất béo. Do đó chỉ số iod càng lớn thì số nối đôi càng nhiều. c. Sự thuỷ phân: Ester nên khi thuỷ phân sẽ tạo thành rượu glycerol và acid béo. Tác nhân thủy phân là acid, kiềm, nước hay enzyme. * Thủy phân bằng nước cần nhiệt độ và áp suất cao. * Thủy phân bằng kiềm: NaOH hay KOH Chỉ số xà phòng hoá: số mg KOH cần thiết để trung hoà 1g chất béo Do đó chỉ số xà phòng càng lớn thì độ dài mạch càng ngắn, nên được dùng để xác định độ dài của mạch C. Để xác định tính chất của chất béo người ta còn căn cứ vào một số chỉ số khác như chỉ số acid. Chỉ số acid: số mg KOH dùng để trung hoà tất cả acid béo tự do có trong 1g chất béo.
  • 31. 39 * Thuỷ phân bằng enzyme: trong cơ thể lipid bị thuỷ phân bằng enzyme lipase. - Lipase dịch tràng tác dụng vào vị trí β. - Lipase tụy tạng tác dụng vào vị trí α và α’. d. Sự ôi hóa: Dầu mỡ để lâu có mùi và vị khó chịu gọi là sự ôi hóa, một trong những nguyên nhân gây ra là do oxy không khí kết hợp vào nối đôi tạo thành peroxide. Nếu oxy kết hợp vào nguyên tử carbon đứng cạnh liên kết đôi thì sẽ tạo thành hydrogen peroxide. Sau đó peroxide và hydrogen peroxide sẽ bị phân giải để tạo thành aldehyde và ketone. Các aldehyde và ketone này đều là những chất có mùi và vị khó chịu. 2.1.2. Cerid Cũng là ester của rượu và acid béo, nhiệt độ thường ở thể rắn, có ở động thực vật, ở thực vật nó thường tạo thành một lớp mỏng phủ lên lá, thân, quả của cây. Công thức tổng quát: R – O – CO – R Rượu trong cerid là rượu cao phân tử, chỉ chứa một nhóm OH , mạnh C không phân nhánh, rất ít khi mạch C có vòng Ví dụ: Rượu cetol:CH3 - (CH2)14-CH2OH. Sáp ong, sáp cá voi (spermaceti) là ester của rượu cetol và palmitic acid. Ngoài ra trong sáp ong và sáp cá voi còn có rượu tự do, acid béo tự do và hydrocarbon. 2.1.3. Sterid Là ester của rượu sterol và acid béo. Rưọu sterol có vòng và trọng lượng phân tử rất lớn, sterol tiêu biểu là cholesterol, acid mật. Acid béo thường là palmitic, oleic, ricinoleic.
  • 32. 40 2.1.3.1.Cholesterol Cholesterol bao gồm nhân phenanthrene kết hợp với cyclopentan tạo thành cyclopentanoperhydrophenanthrene. Cholesterol có mang nhóm rượu ở C3, nối đôi ở C5 - C6 và 2 gốc CH3 ở C10, C13 và một nhánh isooctan ở C17. Cholesterol chỉ có ở động vật, trong máu có khoảng 2.10-3 , có nhiều trong óc, những mô ở lá lách, gan, da cũng có chứa cholesterol hay các chất chuyển hoá của nó. Cholesterol đựơc tìm thấy đầu tiên ở sạn mật, sạn mật là do sự dẫn mật đến ruột non bị nghẽn, mật chứa nhiều cholesterol nên kết tủa lại thàng sạn mật. Cholesterol là chất quan trọng trong sự sinh tổng hợp acid mật, vitamin D và nhiều chất khác. Cholesterol + acid béo cholesterid Trong thiên nhiên, các sterol ở trạng thái tự do nhiều hơn ở trạng thái sterid. Ở cơ thể người, chỉ 10% sterol bị ester hóa tạo thành sterid. Tỷ lệ sterol và sterid ở các mô khác nhau là không giống nhau. * Lý tính của cholesterol: kết tinh dưới dạng vảy óng ánh như xà cừ, dạng kết tinh cũng khác nhau tuỳ theo môi trường kết tinh. * Hoá tính: - Phản ứng với acid béo do nhóm -OH ở C3. - Bị hydrogen hóa hay halogen hoá ở C5 - C6.
  • 33. 41 - Phản ứng màu: + Phản ứng Liebermann: Cholesterol cho màu xanh lục, màu này rất bền trong nhiều giờ, phản ứng này được dùng để xác định cholesterol ở bệnh viện. + Phản ứng Salkowski: Cholesterol cho vành màu đỏ. 2.1.3.2. Acid mật: Acid mật được tìm thấy trong động vật có vú gồm 3 dạng sau: cholic acid, deoxycholic và chenodeoxycholic acid. Acid mật là chất độc đối với người. Vì vậy trong mật, acid mật liên kết với acetamin tạo thành một chất ít độc hơn. Ngoài cholesterol và acid mật còn có các sterol khác cũng có nguồn gốc động vật như hormone nang thượng thận, hormone tuyến sinh dục, các sterol có nguồn gốc thực vật như ergosterol, stigmasterol... 2.2. Lipid phức tạp Khác với lipid tự do có nhiệm vụ cung cấp năng lượng , hàm lượng luôn thay đổi. Lipid phức tạp có nhiệm vụ tham gia xây dựng các cấu tử của tế bào, hàm lượng không thay đổi hay rất ít thay đổi. 2.2.1. Glycerophospholipid (phosphatid) Chúngtacóthể hìnhdungcấutạochungcủa glycerophospholipid nhưsau: Glycerophospholipid là diester của phosphoric acid. Một phía phosphoric acid liên kết với glycerol, phía kia liên kết với X. Tùy cấu tạo của X ta có các loại glycerophospholipid khác nhau:
  • 34. 42 Lecithin: Lúc đó X là choline nên lecithin còn được gọi là choline phosphatid Lecithin có nhiều trong lòng đỏ trứng gà, trong đậu nành, trong máu, trong các dây thần kinh. Qua cấu tạo ta nhận thấy nó gồm 2 phần - Phần phân cực bao gồm phosphoric acid và base nitrogen ưa nước.
  • 35. 43 - Phần không phân cực bao gồm các gốc acid béo, rượu glycerol ghét nước. Do có cấu tạo như trên nên lecithin ở trong nước sẽ tạo thành dung dịch gọi là dung dịch giả. Nhờ đặc tính vừa ưa nước, vừa ghét nước mà hình như phospholipid tham gia trong việc bảo đảm tính thấm một chiều của các màng cấu trúc dưới tế bào. Lecithin có thể bị thuỷ phân bằng acid, kiềm hay enzyme: * Thuỷ phân bằng acid: tất cả liên kết ester đều bị cắt đứt. * Thuỷ phân bằng kiềm: ta được acid béo ở dạng muối, glycerophosphate và choline. Nhưng choline bị phân hủy để cho trimetylamin. Với kiềm nhẹ chỉ có thể cắt liên kết ester giữa rượu và acid béo. * Thuỷ phân bằng enzyme: có 4 loại enzyme lecithinase A, B, C và D tác động lên các liên kết ester khác nhau: B α CH2O - CO - R1 A β CHO - CO - R2 C OH α’CH2O - PO D Lecithinase A cắt liên kết ở vị trí β của lecithin cho acid béo và lisolecithin. Cephalin: Trong cấu tạo của cephalin X là colamine. α CH2O-CO-R1 β CHO-CO- R2 O α’CH2O-P = O O-CH2- CH2 -H3N+
  • 36. 44 Tương tự lecithin, cephalin (X là ethanolamine) có cấu tao gồm hai phần ưa nước và ghét nước,làthànhphầncủa dây thầnkinhvàcónhiều trong não. Lisocephalin được tạo thành khi cắt liên kết ester ở vị trí β, cũng có tính chất phá hủy hồng cầu như lisolecithin. Serinphosphatid: Gọi là serinphosphatid khi X là serine. Trong cơ thể: lecithin, cephalin, serinphosphatid thường gặp ở dạng hổn hợp bởi có sự biến đổi tương hổ giữa serine, choline và colamine. 2.2.2. Sphingophospholipid Đây là lipid phức tạp, trong đó rượu đa nguyên tử là sphingosine. Acid béo liên kết với rượu sphingosine bằng liên kết peptid. Tùy theo X ta có các loại sphingophospholipid khác nhau Acid béo Sphingophospholipid quan trọng nhất là sphingomyelin, ở đây X là: phosphocholine. Acid béo trong sphingomyelin là lignoceric, palmitic,
  • 37. 45 stearic hay nervonic. Sphingophospholipid là diaminophospholipid, khác với phosphatid là monoaminophospholipid. Sphingophospholipid không tan trong ethylic ether, dựa vào tính chất này để tách chúng ra khỏi hỗn hợp lipid 2.2.3.Glycolipid Glycolipid là lipid phức tạp không chứa phospho, trong thành phần của chúng có chứa hexose, thường là galactose hay các dẫn xuất của galactose, đôi khi là glucose. Thuộc nhóm này có MGDG, DGDG và sulfolipid khá phổ biến trong lục lạp và các thành phần khác của tế bào ở lá. 6-Sulfo-6-deoxy-α-D-glucopyranosyldiacyglycerrol (sulfolipid) 2.2.4. Sphingolipid Cerebroside: trong phân tử cerebroside rượu sphingosine liên kết với acid béo bằng liên kết peptide, với galactose (X) bằng liên kết glucosidic.
  • 38. 46 Các cerebroside khác nhau về thành phần acid béo, có nhiều trong mô thần kinh, hồng cầu, bạch cầu, tinh trùng… Ganglyoside: cấu tạo giống cerebroside nhưng X là phức hợp oligosaccharide TÀI LIỆU THAM KHẢO Tài liệu tiếng Việt 1. Phạm Thị Trân Châu, Trần thi Áng. 1999. Hoá sinh học, NXB Giáo dục, Hà Nội. 2. Đỗ Quý Hai.2004. Giáo trình Hóa sinh đại cương, Tài liệu lưu hành nội bộ Trường ĐHKH Huế. 3. Trần Thanh Phong.2004. Giáo trình Hóa sinh đại cương, Tài liệu lưu hành nội bộ Trường ĐHKH Huế. 4. Lê Ngọc Tú (chủ biên), Lê Văn Chứ, Đặng Thị Thu, Phạm Quốc Thăng Nguyễn Thị Thịnh, Bùi Đức Hợi, Lưu Duẫn, Lê Doãn Diên, 2000. Hóa sinh Công nghiệp, Nxb KH&KT, Hà Nội. Phức hợp ologosaccharide Acid béo Tài liệu tiếng Anh 1. LehningerA.L. 2004. Principles of Biochemistry, 4th Edition. W.H Freeman. 2. Mead, Alfin-Slater, Howton & Popják. 1986. Lipids: Chemistry, biochemistry and nutrion, Plenum, New York.
  • 39. 47 Chương 3 Protein Protein là hợp chất hữu cơ có ý nghĩa quan trọng bậc nhất trong cơ thể sống, về mặt số lượng, protein chiếm không dưới 50% trọng lượng khô của tế bào; về thành phần cấu trúc, protein được tạo thành chủ yếu từ các amino acid vốn được nối với nhau bằng liên kết peptide. Cho đến nay người ta đã thu được nhiều loại protein ở dạng tinh thể và từ lâu cũng đã nghiên cứu kỹ thành phần các nguyên tố hoá học và đã phát hiện được rằng thông thường trong cấu trúc của protein gồm bốn nguyên tố chính là C, H, O, N với tỷ lệ C ≈ 50%, H ≈ 7%, O ≈ 23% và N ≈ 16%. Đặc biệt tỷ lệ N trong protein khá ổn định (lợi dụng tính chất này để định lượng protein theo phương pháp Kjeldahl bằng cách tính lượng N rồi nhân với 6,25). Ngoài ra trong protein còn gặp một số nguyên tố khác như S ≈0-3% và P, Fe, Zn, Cu... Phân tử protein có cấu trúc, hình dạng và kích thước rất đa dạng, khối lượng phân tử (MW) được tính bằng Dalton (1Dalton = 1/1000 kDa, đọc là kiloDalton) của các loại protein thay đổi trong những giới hạn rất rộng, thông thường từ hàng trăm cho đến hàng triệu. ví dụ: insulin có khối lượng phân tử bằng 5.733; glutamat-dehydrogenase trong gan bò có khối lượng phân tử bằng 1.000.000, v.v... Từ lâu người ta đã biết rằng protein tham gia mọi hoạt động sống trong cơ thể sinh vật, từ việc tham gia xây dưng tế bào, mô, tham gia hoạt động xúc tác và nhiều chức năng sinh học khác. Ngày nay, khi hiểu rõ vai trò to lớn của protein đối với cơ thể sống, người ta càng thấy rõ tính chất duy vật và ý nghĩa của định nghĩa thiên tài của Engels P. “Sống là phương thức tồn tại của những thể protein”. Với sự phát triển của khoa học, vai trò và ý nghĩa của protein đối với sự sống càng được khẳng định. Cùng với nucleic acid, protein là cơ sở vật chất của sự sống. 3.1. Amino acid 3.1.1 Cấu tạo chung Amino acid là chất hữu cơ mà phân tử chứa ít nhất một nhóm carboxyl (COOH) và ít nhất một nhóm amine (NH2), trừ proline chỉ có nhóm NH (thực chất là một imino acid).
  • 40. 48 Trong phân tử amino acid đều có các nhóm COOH và NH2 gắn với carbon ở vị trí α. Hầu hết các amino acid thu nhận được khi thuỷ phân protein đều ở dạng L-α amino acid. Như vậy các protein chỉ khác nhau ở mạch nhánh (thường được ký hiệu: R). Hình: 3.1. Công thức cấu tạo chung của các amino acid 3.1.2. Phân loại amino acid Hiện nay người ta phân loại amino acid theo nhiều kiểu khác nhau, mỗi kiểu phân loại đều có ý nghĩa và mục đích riêng. Tuy nhiên, họ đều dựa trên cấu tạo hoá học hoặc một số tính chất của gốc R. Ví dụ có người chia các amino acid thành 2 nhóm chính là nhóm mạch thẳng và nhóm mạch vòng. Trong nhóm mạch thẳng lại tuỳ theo sự có mặt của số nhóm carboxyl hay số nhóm amine mà chia ra thành các nhóm nhỏ, nhóm amino acid trung tính (chứa một nhóm COOH và một nhóm NH2); nhóm amino acid kiềm (chứa một nhóm COOH và hai nhóm NH2); nhóm amino acid acid (chứa hai nhóm COOH và một nhóm NH ).2 Trong nhóm mạch vòng lại chia ra thành nhóm đồng vòng hay dị vòng v.v... Có người lại dựa vào tính phân cực của gốc R chia các amino acid thành 4 nhóm: nhóm không phân cực hoặc kỵ nước, nhóm phân cực nhưng không tích điện, nhóm tích điện dương và nhóm tích điện âm. Tuy nhiên, hiện nay cách phân loại các amino acid đang được nhiều người sử dụng nhất là dựa vào gốc R của amino acid và được chia làm 5 nhóm: Nhóm I. Gồm 7 amino acid có R không phân cực, kỵ nước, đó là: glycine, alanine, proline, valine, leucine, isoleucine và methionine. (Hình 3.2)
  • 41. 49 Hình 3.2. Công thức cấu tạo của các amino acid nhóm I Nhóm II. Gồm 3 amino acid có gốc R chứa nhân thơm, đó là phenylalanine, tyrosine và tryptophan (Hình 3.3.) Hình 3.3. Công thức cấu tạo của các amino acid nhóm II
  • 42. 50 Nhóm III. Gồm 5 amino acid có gốc R phân cực, không tích điện, đó là serine, theonine, cysteine, aspargine và glutamine (Hình 3.4) Hình: 3.4. Công thức cấu tạo của các amino acid nhóm III Nhóm IV. Gồm 3 amino acid có R tích điện dương, đó là lysine, histidine và arginine, trong phân tử chứa nhiều nhóm amin (hình 3.5). Hình 3.5. Công thức cấu tạo các amino acid nhóm IV
  • 43. 51 Nhóm V. Gồm 2 amino acid có gốc R tích điện âm, đó là aspartate và glutamate, trong phân tử chứa hai hóm carboxyl (hình 3.6). Hình 3.6. Công thức cấu tạo của các amino acid nhóm V 3.1.3. Các amino acid thường gặp Các amino acid thường gặp là những amino acid thường có mặt trong thành phần của các loại protein. Chúng có khoảng 20 loại và được thu nhận khi thuỷ phân protein. Các loại amino acid này có tên gọi, khối lượng phân tử và ký hiệu được trình bày trên bảng 3.1. 3.1.4. Các amino acid không thể thay thế Các amino acid được hình thành bằng nhiều con đường khác nhau. Như đã biết, trong phân tử protein có khoảng 20 loại amino acid, tuy nhiên trong cơ thể người và động vật không tổng hợp được tất cả các loại đó mà phải đưa từ ngoài vào qua thức ăn. Những amino acid phải đưa từ ngoài vào được gọi là các amino acid không thể thay thế. Người ta biết được có khoảng 8-10 loại amino acid không thể thay thế bao gồm: Met, Val, Leu, Ile, Thr,Phe, Trp, Lys, Arg và His và ngày nay người ta còn xem Cys cũng là một amino acid không thể thay thế. 3.1.5. Các amino acid ít gặp Ngoài các amino acid thường gặp ở trên, trong phân tử protein đôi khi còn có một số amino acid khác, đó là những loại ít gặp. Các amino acid này là dẫn xuất của những amino acid thường gặp như: trong phân tử collagen có chứa 4-hydroxyproline là dẫn xuất của proline, 5- hydroxylysine là dẫn xuất của lysine v.v...Mặt khác, mặc dù không có trong cấu trúc protein, nhưng có hàng trăm loại amino acid khác cũng có thể tồn tại ở dạng tự do hoặc liên kết với hợp chất khác trong các mô và tế
  • 44. 52 bào, chúng có thể là chất tiền thân hay là các sản phẩm trung gian của quá trình chuyển hoá trong cơ thể. Bảng 3.1. Các amino acid thường gặp Tên amino acid Tên amino acid gọi theo danh pháp hoá học Tên viết tắt Ký hiệu Khối lượng (MW) Glycine Gly G 75α-aminoacetic acid Alanine Ala A 89α-aminopropionic acid Proline Pro P 115α-pyrolydilcarboxylic acid Valine Val V 117α-aminoisovaleric acid Leucine Leu L 131α-aminoisocaproic acid Isoleucine Ile I 131α-amino-β-metylvaleric acid Methionine Met M 149α-amino-γ-metylthiobutyric acid Phenylalanine Phe F 165α-amino-β-phenylpropionic acid Tyrosine Tyr Y 181α-amino-β- hydroxyphenylpropionic acid Tryptophan Trp W 204α-amino-β-indolylpropionic acid Serine Ser S 105α-amino-β-hydoxypropionic acid Threonine Thr T 119α-amino-β-hydroxybutiric acid Cysteine Cys C 121α-amino-β-thiopropionic acid Aspargine amid của aspartate Asn B 132 Glutamine amid của glutamate Gln Q 146 Lysine Lys K 146α,ε diaminocaproic acid Histidine His H 155α-amino-β-imidazolpropionic acid Arginine Arg R 174α-amino-δ-guanidinvaleric acid Aspartate Asp D 133α-aminosuccinic acid Glutamate Glu E 147α-aminoglutarate 3.1.6. Một số tính chất của amino acid 3.1.6.1. Màu sắc và mùi vị của amino acid Các amino acid thường không màu, nhiều loại có vị ngọt kiểu đường như glycine, alanine, valine, serine, histidine, tryptophan; một số loại có vị đắng như isoleucine, arginine hoặc không có vị như leucine. Bột
  • 45. 53 ngọt hay còn gọi là mì chính là muối của natri với glutamic acid (monosodium glutamate). 3.1.6.2. Tính tan của amino acid Các amino acid thường dễ tan trong nước, các amino acid đều khó tan trong alcohol và ether (trừ proline và hydroxyproline), chúng cũng dễ hoà tan trong acid và kiềm loãng (trừ tyrosine). 3.1.6.3. Biểu hiện tính quang học của amino acid Hình 3.7. Đồng phân lập thể của alanine Các amino acid trong phân tử protein đều có ít nhất một carbon bất đối (trừ glycine) vì thế nó đều có biểu hiện hoạt tính quang học, nghĩa là có thể làm quay mặt phẳng của ánh sáng phân cực sang phải hoặc sang trái. Quay phải được ký hiệu bằng dấu (+), quay trái được ký hiệu bằng dấu (-). Góc quay đặc hiệu của amino acid phụ thuộc vào pH của môi trường. Tuỳ theo sự sắp xếp trong cấu trúc phân tử của các nhóm liên kết với carbon bất đối mà các amino acid có cấu trúc dạng D hay L (hình 3.7) gọi là đồng phân lập thể. Số đồng phân lập thể được tính theo 2n (n là số carbon bất đối) Hầu hết các amino acid khác hấp thụ tia cực tím ở bước sóng (λ) khoảng từ 220 - 280 nm. Đặc biệt cùng nồng độ 10-3 M, trong bước sóng khoảng 280 nm, tryptophan hấp thụ ánh sáng cực tím mạnh nhất, gấp 4 lần khả năng hấp thụ của tyrosine (hình 3.8) và phenylalanine là yếu nhất.
  • 46. 54 Phần lớn các protein đều chứa tyrosine nên người ta sử dụng tính chất này để định lượng protein Độ hấp phụ λ - Bước sóng(nm) Hình 3.8. Phổ hấp thụ ánh sáng cực tím của tryptophan và tyrosine 3.1.6.4. Tính lưỡng tính của amino acid Trong phân tử amino acid có nhóm carboxyl -COOH nên có khả năng nhường proton (H+ ) thể hiện tính acid, mặt khác có nhóm amin- NH2 nên có khả năng nhận proton nên thể hiện tính base. Vì vậy amino acid có tính chất lưỡng tính. Trong môi trường acid, amino acid ở dạng cation (tích điện dương), nếu tăng dần pH amino acid lần lượt nhường proton thứ nhất chuyển qua dạng lưỡng cực (trung hoà về điện), và tiếp tục tăng pH amino acid sẽ nhường proton thứ hai chuyển thành dang anion (tích điện âm). Vì vậy đôi khi người ta coi nó như một di-acid. cation lưỡng cực anion Hình 3.9. Tính lưỡng tính của amino acid
  • 47. 55 Tương ứng với độ phân ly H+ của các nhóm COOH và NH3 + có các trị số pK1 và pK2 (biểu thị độ phân ly của các nhóm được 1/2). Từ đó trước tiên chuyển sang dạng lưỡng tính và sau cùng chuyển thành dạng anion. Độ phân ly của H+ Hình 3.10. Đường cong chuẩn độ của glycine nồng độ 1 M ở 25O C Người ta xác định được pH (pI= pH đẳng điện) = pK + pKi 1 2 / 2. Ví dụ khi hoà tan glycine vào môi trường acid mạnh thì hầu như glycine đều ở dạng cation. Nếu tăng dần lượng kiềm, thu được đường cong chuẩn độ. Trên đường cong chuẩn độ thấy rằng glycine lần lượt nhường 2 proton trước Tương đương độ phân ly của nhóm COOH được một nửa có trị số pK + = 2,34 và độ phân ly của NH được một nửa có trị số pK1 3 2= 9,60. Như vậy ta có 2,34 + 9,60 pHi = = 5,97 2
  • 48. 56 Bảng: 3.2 Các trị số pK của các amino acid thường gặp Các trị số pK pITên các amino acid + pK (của COOH) pK (của NH ) pK1 2 3 R(của R) 5,979,602,34Glycine 6,019,602,34Alanine 6,4810,961,99Proline 5,979,622,32Valine 5,989,602,36Leucine 6,029,682,36Isoleucine 5,749,212,28Methionine 5,489,131,83Phenylalanine 5,6610,079,112,20Tyrosine 5,899,392,38Tryptophan 5,689,152,21Serine 5,879,622,11Theonine 5,078,1810,281,96Cysteine 5,418,802,02Aspargine 5,659,132,17Glutamine 9,7410,538,952,18Lysine 7,596,009,171,83Histidine 10,7612,489,042,17Arginine 2,773,659,601,88Aspartate 3,224,259,672,19Glutamate Mặt khác tại pK1 + 2 sự phân ly H+ - của nhóm COO glycine là 99%, chỉ 1% ở dạng COOH và ở pK + -2 dạng NH2 3 là 99%, chỉ 1% ở dạng NH . Như vậy trong vùng pH từ pK + 2 đến pK2 1 2 -2, phân tử glycine chủ yếu ở dạng lưỡng tính và kết quả ta có một vùng đẳng điện. Ngoài ra các amino acid trong gốc R có thêm nhóm COOH hay NH2 sự phân ly của chúng sẽ có thêm một trị số phân ly nữa-pKR (xem bảng 3.2). 3.1.7. Các phản ứng hoá học của amino acid Các amino acid đều có nhóm NH và COOH liên kết với C2 α, vì vậy chúng có những tính chất hoá học chung. Mặt khác các amino acid khác nhau bởi gốc R, vì vậy chúng có những phản ứng riêng biệt. Người ta chia các phản ứng hoá học của amino acid thành 3 nhóm:
  • 49. 57 - Phản ứng của gốc R Do các amino acid có cấu tạo gốc R khác nhau, nên người ta có thể dùng để xác định từng amino acid riêng rẽ nhờ phản ứng đặc trưng của nó, ví dụ phản ứng oxy hoá khử do nhóm SH của cysteine, phản ứng tạo muối do các nhóm COOH hay NH2 của glutamate hay lysine, phản ứng tạo ester do nhóm OH của tyrosine v.v... - Phản ứng chung Là phản ứng có sự tham gia của cả hai nhóm α- COOH và α- NH2. Tất cả các amino acid trong phân tử protein đều phản ứng với hợp chất ninhydrin tạo thành phức chất màu xanh tím, riêng imino acid như proline tạo thành màu vàng. Phản ứng được thực hiện qua một số bước như sau: Dưới tác dụng của ninhydrin ở nhiệt độ cao, amino acid tạo thành NH3, CO2 và aldehide, mạch polypeptide ngắn đi môt carbon; đồng thời ninhydrin chuyển thành diceto oxy hindriden. Diceto oxy hindriden, NH3 mới tạo thành tiếp tục phản ứng với một phân tử ninhydrin khác để tạo thành phức chất màu xanh tím (hình 3.11) Hình 3.11. Phản ứng của protein với ninhydrin - Phản ứng riêng biệt Có thể chia các phản ứng riêng biệt theo hai nhóm α- COOH và α- NH2 + Các phản ứng của nhóm α- COOH. Ngoài các phản ứng của nhóm COOH thông thường tạo ester, tạo amid, tạo muối ...thì nó còn có những phản ứng đạc trưng khác như có thể bị khử thành hợp chất rượu amino dưới sự xúc tác của NaBH4. R-NH CH-COOH R-NH CH-CH OH2 2 2 Nhóm COOH có thể tạo thành phức aminoacyl-adenylate trong phản ứng hoạt hoá amino acid để tổng hợp protein, hay có thể loại CO2 vốn gặp rất nhiều trong quá trình thoái hoá amino acid.
  • 50. 58 + Các phản ứng của nhóm α- NH2. Nhiều phản ứng của nhóm amine được dùng để định tính và định lượng các chỉ tiêu của amino acid như: Để định lượng nitrogen của amino acid người ta cho phản ứng với HNO để giải phóng N2 2. R-CH-COOH R-CH-COOH + HNO OH + NNH + H O2 2 2 2 Để định lượng amino acid người ta cho phản ứng với aldehyde tạo thành base schiff. Để xác định amino acid đầu N-tận cùng người ta cho tác dụng với 2-4 dinitrofluobenzen (phản ứng Sanger) hay phenyliothiocyanate (phản ứng Edman). 3.2. Peptide 3.2.1. Khái niệm chung Peptide là những protein thường có cấu trúc đoạn ngắn khoảng từ hai đến vài chục amino acid nối với nhau, có khối lượng phân tử thường dưới 6.000. Chúng có thể được tổng hợp trong tự nhiên hoặc được hình thành do sự thoái hoá protein. Trong các peptide các amino acid được liên kết với nhau thông qua liên kết peptide (hình 3.12). Hình 3.12. Sự tạo thành liên kết peptide Liên kết peptide có độ bền cao bởi cấu trúc của nó có 4 e'π, 2e'π thuộc về liên kết C=O còn 2e'π thuộc về bộ đôi e' tự do của nguyên tử N. Liên kết giữa C-N là liên kết phức tạp, nó có thể chuyển từ dạng ρ đến
  • 51. 59 dạng lai (trung gian) thì bị một phần ghép đôi của liên kết π (hình 3.13). Người ta cho rằng tỷ lệ của liên kết kép này là khoảng 30% đối với liên kết C-N và 70% với liên kết giữa C và O. Như vậy ở đầu của một chuỗi peptide là amino acid có nhóm α -amine (α-NH2) tự do được gọi là đầu N- tận cùng và đầu kia có nhóm α - carboxyl (α -COOH) tự do được gọi là đầu C tận cùng. Liên kết peptide tạo nên bộ khung chính của chuỗi polypeptide, còn các gốc R tạo nên mạch bên của chuỗi (hình 3.14) Dạng cộng hoá trị ρ Dạng ion ρ+π Dạng lai (hybrid) Hình 3.13. Sự tồn tại các dạng của liên kết peptide Mạch chính Mạch bên Hình 3.14. Mạch bên và khung của một chuỗi polypeptide 3.2.2. Các phương pháp xác định peptide Ngoài phản ứng của nhóm NH2 và COOH đầu tận cùng, các gốc R của peptide cũng cho những phản ứng màu đặc trưng của các amino acid tự do tương ứng. Một trong những phản ứng màu đặc trưng nhất dành cho liên kết peptide đó là phản ứng Biure, phản ứng này không xảy ra với
  • 52. 60 amino acid tự do và với dipeptide. Trong môi trường kiềm mạnh, liên kết peptide phản ứng với CuSO4 tạo thành phức chất màu tím đỏ (hình 3.15.) và có khả năng hấp thụ cực đại ở bước sóng 540 nm. Đây là phản ứng được sử dụng rộng rãi để định lượng protein. Phương pháp xác định protein theo Lowry cũng dựa trên nguyên tắc của phản ứng này bằng cách thêm thuốc thử Folin-Ciocalteau để làm tăng độ nhạy của phản ứng sau khi đã thực hiện phản ứng biure, đồng thời dựa vào các gốc Tyr, Try nhờ thuốc thử đó để tạo phức màu xanh da trời. O- O- C =NH HN = C HN O Cu O NH C C NH HN Hình 3.15. Phức màu tím đỏ trong phản ứng Biure Có một số phương pháp tách phân lập và xác định thành phần, số lượng và trình tự amino acid trong peptide. Về nguyên tắc chung các phương pháp tách phân lập và xác định peptide về cơ bản cũng như đối với protein. Tuy nhiên peptide là những đoạn ngắn của chuỗi polypeptide, vì thế có thể bỏ qua giai đoạn cắt chuỗi polypeptide thành các peptide nhỏ mà có thể tách, phân lập ngay bằng phương pháp điện di hay sắc ký để tách riêng từng peptide. Sau khi đã tách riêng các peptide, tiến hành thuỷ phân hoàn toàn thành các amio acid tự do, xác định các amino acid , amino acid đầu N-tận cùng và amino acid đầu C-tận cùng. Các dữ liệu thu được qua sự phân tích này sẽ được so sánh đối chiếu và tổng hợp lại. Ví dụ, Puppy và Bodo đã phân tích một peptide của dịch khi thuỷ phân Cytocrom C thu được các dữ kiện sau đây: - Thành phần amino acid của peptide sau khi được thuỷ phân hoàn toàn và tiến hành sắc ký là 2Cys, 1 Ala, 2 Glu, 1His, 1Thr, 1Val,và 1Lys.
  • 53. 61 - Dùng phương pháp Sanger xác định được amino acid đầu N-tận cùng là Cys và phương pháp carboxypeptidase xác định được amino acid đầu C - tận cùng là Lys. - Cấu tạo của peptide nhỏ (bằng cách thuỷ phân từng phần ban đầu và xác định các amino acid, amino acid đầu N - tận cùng và amino acid đầu C - tận cùng của mỗi peptide nhỏ): Cys- Ala Glu- Cys (Val- Glu) Cys-(Ala,Glu) Cys- His Thr (Val, Glu) Ala- Glu Glu (Cys, His) Glu- Lys Thr (Val, Glu, Lys) Tổng hợp các dữ kiên trên, họ đã xác định được trình tự các amino acid của peptide nghiên cứu là: H N-Cys-Ala-Glu-Cys-His-Thr-Val-Glu-Lys-COOH.2 Đây là nguyên tắc chung để xác định một trình tự trong peptide. Tuy nhiên đối với những peptide dài, việc xác định rất phức tạp. 3.2.3. Các peptide thường gặp trong thiên nhiên Trong tự nhiên tồn tại nhiều dạng peptide có chức phận quan trong liên quan đến hoạt động sống của cơ thể như là các hormon, các chất kháng sinh hay những chất tiền thân của tế bào vi khuẩn v.v... Bên cạnh đó cũng có những peptide chức phận chưa rõ ràng, có những peptide là sản phẩm thuỷ phân đang còn dang dở của protein. Trong phạm vi của giáo trình này xin được giới thiệu một số peptide quan trọng,có nhiều ý nghĩa đối với cho hoạt động sống của sinh vật. 3.2.3.1. Glutathion và các chất tương tự Glutathion là một tripeptide γ-glutamyl-cysteyl-glycine có công thức cấu tạo như sau: CH SHNH2 2 HOOC-CH-CH -CH -CO-NH-CH-CO-NH-CH -COOH2 2 2 Trong cấu trúc của glutathion, nhóm SH của cysteine là nhóm hoạt động, vì vậy người ta thường viết tắt chữ glutathion là G-SH. Đây là glutathion dạng khử. Trong môi trường hoạt động glutathion có thể
  • 54. 62 nhường hydrogen (H) để thành dạng oxy hoá (GSSG) và ngược lại có thể nhận H để thành dạng khử: -2H 2GSH G-S-S-G +2H Nhờ phản ứng trên, glutathion đóng vai trò của một hệ thống oxy hoá khử (vận chuyển hydrogen). Glutathion là một trong những peptide nội bào phổ biến nhất, nó phân bố nhiều trong các mô và các cơ quan như: gan, thận, lách, tim, phổi, hồng cầu v.v... 3.2.3.2. Các hormone sinh trưởng (HGH) Hormone sinh trưởng của người (HGH-human growth hormone) còn có tên gọi STH (somatotropin hormone) là một chuỗi polypeptide bao gồm 191 amino acid có khối lượng phân tử 20.000. Trong cấu trúc có hai cầu disulfua được tạo thành giữa amino acid 53 -165 và giữa amino acid 182-189. Hoạt động sinh học của HGH là ở chuỗi gồm 134 amino acid. HGH có cấu tạo rất giống với hormon lactogen của rau thai (85% amino acid giống nhau) và gần giống prolactin của người (32% amino acid giống nhau). Hormon sinh trưởng có tác dụng đối với sự tăng trưởng nói chung, kích thích sự tạo sụn hơn là tạo xương, nó cũng là một hormon chuyển hoá. Hormon sinh trưởng kích thích sự tổng hợp protein từ những amino acid đã được vận chuyển dễ dàng vào trong tế bào nhờ chúng, và là hormon gây tăng đường huyết, sinh đái tháo đường, đồng thời kích thích sự thoái hoá lipid để đảm bảo nhu cầu về năng lượng cho cơ thể, gây tăng acid béo tự do trong huyết tương. Sự thiếu hụt HGH nếu xảy ra trước tuổi dậy thì sẽ dẫn đến chứng người lùn, sự dư thừa HGH nếu xẩy ra trước tuổi dậy thì sẽ dẫn đến chứng người khổng lồ, nếu xẩy ra sau tuổi dậy thì sẽ dẫn đến chứng người bị to cực (phát triển chiều dày của đầu, xương và mặt).
  • 55. 63 3.2.3.3. Insulin Từ 1953, Sanger (giải thưởng Nobel 1958) đã nghiên cứu, tinh chế và xác định hoàn toàn cấu trúc của phân tử insulin. Phân tử insulin bao gồm 51 amino acid, có cấu trúc gồm 2 chuỗi polypeptide, với khối lượng phân tử 5.700 chuỗi A có 21 amino acid, chuỗi B có 30 amino acid. Hai chuỗi được nối với nhau bằng 2 cầu disulfua. Trong chuỗi A cũng hình thành 1 cầu disulfua giữa amino acid thứ 6 và amino acid thứ 11. Phần đặc hiệu (đặc trưng của một loài) chỉ tập trung vào các amino acid thứ 8-9-10, 12-14 của chuỗi A và đặc biệt là amino acid thứ 30 của chuỗi B (hình 3.16). Người ta cũng đã xác định được cấu trúc ba chiều của insulin và thấy rằng cấu trúc phân tử insulin được giử vững bởi nhiều liên kết muối, liên kết hydro và liên kết cầu disulphate giữa chuỗi A và chuỗi B. Insulin có tác dụng rõ nhất trong tất cả các hormon của tuyến tuỵ, đặc biệt đối với quá trình chuyển hoá glucid, nó có tác dụng hạ đường huyết. Insulin còn kích thích quá trình tổng hợp và ức chế quá trình thoái hoá glycogen ở cơ, gan và mô mỡ. Đặc biệt, insulin tăng cường tổng hợp acid béo, protein và kích thích sự đường phân. Tác dụng quan trọng nhất của insulin là kích thích sự thâm nhập glucose, một số ose, amino acid trogn tế bào cơ và mỡ. Do vậy insulin làm giảm lượng glucose trong máu. Ngoài ra insulin cũng làm giảm sự tân tạo glucose do làm giảm nồng độ enzyme như pyruvat carboxylase và fructose 1-6 diphosphatase. Hình 3.16. Các amino acid của chuỗi A và B ở insulin bò
  • 56. 64 3.2.3.4. Oxytocin, Vasopressin Vasotocin Oxytocin là một peptide có 9 amino acid. Ở động vật có vú, oxytocin chỉ khác ở sự thay đổi của 2 amino acid là: amino acid ở vị trí thứ ba là isoleucine và amino acid vị trí thứ tám là leucine (bảng 3.3). Vasopressin của loài ếch nhái có cấu trúc trung gian giữa vasopresin và oxytocin của động vật có vú (amino acid thứ ba là isoleucin và amino acid thứ tám là arginine và có tên là vasotocin). Vasopressin là một peptide có cấu trúc gồm 9 amino acid. . Bảng 3.3. So sánh cấu trúc hoá học giữa oxytocin và vasopressin của một số loài động vật 1 2 3 4 5 6 7 8 9LysineVa- Lợn, Cys-Tyr-Phe-Glu-Asn-Cys-Pro-Lys-Gly-NHVaso- Hà mã2 pressin Phần lớn động vật có vú So- 1 2 3 4 5 6 7 8 9Arginine vasopressin Cys-Tyr-Phe-Glu-Asn-Cys-Pro-Arg-Gly-NH2 pres- Động vật có xương sống, không có vú 1 2 3 4 5 6 7 8 9 Vasotocin Cys-Tyr-Ile-Glu-Asn-Cys-Pro-Arg-Gly-NHsin 2 Động vật có xương sống có vú, chim Oxytocin 1 2 3 4 5 6 7 8 9 Cys-Tyr-Ile-Glu-Asn-Cys-Pro-Leu-Gly-NH2 Phần lớn ở động vật có vú amino acid thứ 8 của vasopressin là arginine (arg-vasopressin), trừ ở lợn và hà mã, amino acid thứ 8 là lysine (lys- vasopressin). Oxytocin có tác dụng trên cơ trơn của tử cung và tuyến vú, gây co khi tử cung sinh con và kích thích sự tiết sữa khi cho con bú. Vasopressin có tác dụng chống lợi niệu, tăng cường tái hấp thu nước ở thận, đồng thời làm co mạch, do đó có tác dụng tăng huyết áp. 3.3. Protein 3.3.1. Cấu trúc phân tử bậc 1, 2, 3, 4 Về mặt cấu trúc người ta phân biệt protein gồm bốn bậc: bậc I, bậc II, bậc III và bậc IV (Hinh. 3.17)
  • 57. 65 Bậc I Bậc II Bậc III Bậc IV Hình 3.17. Sơ đồ các bậc cấu trúc của protein 3.3.1.1. Cấu trúc bậc I Cấu trúc bậc I biểu thị trình tự các gốc amino acid trong chuỗi polypeptide, cấu trúc này được giữ vững bằng liên kết peptide (liên kết cộng hóa trị). Cấu trúc bậc I là phiên bản của mã di truyền, việc xác định được cấu trúc bậc I là cơ sở để tổng hợp nhân tạo protein bằng phương pháp hoá học hoặc bằng kỹ thuật của công nghệ sinh học. Hiện nay nhiều loại protein đã biết được trình tự các amino acid trong chuỗi polypeptide như: ribonuclease là một protein có 124 amino acid được nối với nhau thành một chuỗi, có 4 cầu disulfua (hình 3.18); hemoglobin là protein có 4 chuỗi polypeptide, 2 chuỗi α ( mỗi chuỗi 141 amino acid) và 2 chuỗi β (mỗi chuỗi 146 amino acid); trypsinogen bò (229 amino acid); kimotrypsin bò (229 amino acid); alcol dehydrogenase ngựa (374 amino acid); glutamate dehydrogenase bò (500 amino acid) v.v..
  • 58. 66 Hình 3.18. Cấu trúc bậc nhất của ribonuclesae của bò 3.3.1.2. Cấu trúc bậc II Biểu thị sự xoắn của chuỗi polypeptide, là tương tác không gian giữa các gốc amino acid ở gần nhau trong mạch polypeptide. Xoắn α Liên kết hydrogen Xoắn β Hình 3.19. Các kiểu xuắn trong cấu trúc bậc II của protein Nói cách khác, cấu trúc bậc II là dạng không gian cục bộ của từng phần trong mạch polypeptide. Cấu trúc này được làm bền nhờ các liên kết
  • 59. 67 hydrogen được tạo thành giữa liên kết peptide ở kề gần nhau, cách nhau những khoảng xác định. Theo Pauling và Cori (1951) cấu trúc bậc II của protein bao gồm 2 kiểu chính là xoắn α và phiến gấp β. Ở trong tóc người ta tìm thấy keratin là loại protein có hai dạng cấu trúc: dạng α bình thường và dạng β duỗi thẳng.; cấu trúc phiến gấp β tìm thấy trong fibroin của tơ. Cấu trúc xuắn α hiện nay được tìm thấy trong nhiều loại protein khác nhau Mặt khác tỷ lệ % xoắn α trong các protein khác nhau cũng thay đổi khá nhiều. Ví dụ trong hemoglobin và mioglobin là 75%; lysosyme là 35%; ribonuclease là 17% .. Bảng 3.4. Số lượng xoắn α và phiến gấp β trong chuỗi đơn một số protein Số gốc (%) Protein (số gốc) Xoắn α Phiến gấp β 4514Chymotrypsin (247) 3526Ribonuclease (124) 1738Carboxypeptidase (397) 039Cytochrom C (104) 1240Lysosyme (129) 078Myoglobin (153) Ngoài ra còn có kiểu xoắn collagen được tìm thấy trong phân tử collagen (hình 3.20). Hình 3.20. Cấu trúc kiểu xuắn collagen
  • 60. 68 Đơn vị cấu trúc của nó là tropocollagen bao gồm 3 mạch polypeptide bện vào nhau thành một dây cáp siêu xoắn (vì mỗi mạch đơn có cấu trúc xoắn, chiều cao của mỗi gốc xoắn trên trục siêu xoắn này là 2,9 anstron, một vòng xoắn là 3,3 gốc amino acid. Ba chuỗi polypeptide trong “dây cáp” nối với nhau bằng các liên kết hydrogen. 3.3.1.3. Cấu trúc bậc III Biểu thị sự xoắn và cuộn khúc của chuỗi polypeptide thành khối, đặc trưng cho potein cầu, là tương tác không gian giữa các gốc amino acid ở xa nhau trong chuỗi polypeptide. Trong nhiều protein hình cầu có chứa các gốc Cys tạo nên liên kết disulfua giữa các gốc Cys xa nhau trong chuỗi polypeptide làm cho chuỗi bị cuộn lại (xem myoglobin hình 3.21). Ngoài ra cấu trúc bậc III còn được giữ vững bằng các loại liên kết khác như Van der Waals, liên kết hydrogen, liên kết tĩnh điện giữa các gốc amino acid v.v... 3.3.1.4. Cấu trúc bậc IV Biểu thị sự kết hợp của các chuỗi có cấu trúc bậc III trong phân tử protein. Hay nói cách khác, những phân tử protein có cấu trúc từ 2 hay nhiều chuỗi protein hình cầu, tương tác với nhau trong không gian tạo nên cấu trúc bậc IV. Mỗi một chuỗi polypeptide đó được gọi là một tiểu đơn vị (subunit), chúng gắn với nhau nhờ các liên kết hydrogen, tương tác Van der Waals giữa các nhóm phân bố trên bề mặt của các tiểu đợn vị để làm bền cấu trúc bậc IV. Myoglobin Hemoglobin Hình 3.21. Cấu trúc bậc III của myoglobin và bậc IV của hemoglobin (hemoglobin là protein có 4 chuỗi polypeptide2 chuỗi α và 2 chuỗi β; myoglobin chỉ gồm một chuỗi polypeptide)
  • 61. 69 3.3.2. Một vài tính chất của protein 3.3.2.1. Tính chất lý-hoá của protein - Tính tan của protein Các loại protein khác nhau có khả năng hoà tan dễ dàng trong một số loại dung môi nhất định, chẳng hạn như albumin dễ tan trong nước; globulin dễ tan trong muối loãng; prolamin tan trong ethanol, glutelin chỉ tan trong dung dịch kiềm hoặc acid loãng v.v... - Tính ngậm nước của protein Trong môi trường nước, protein kết hợp với nước trương lên trở thành dạng keo, hay nói cách khác protein ở trạng thái hydrate hoá, các phân tử nước bám vào các nhóm ưa nước trong phân tử protein như -NH2, -COOH..., lớp áo nước bao quanh phân tử protein là một trong các yếu tố làm bền vững cấu trúc, ngăn cách các phân tử protein không cho chúng dính vào nhau để thành tủa. - Độ nhớt của dung dịch protein Khi protein hoà tan trong dung dịch, mỗi loại dung dịch của những protein khác nhau có độ nhớt khác nhau (bảng 3.5). Người ta có thể lợi dụng tính chất này để xác định khối lượng phân tử của protein (độ nhớt càng cao thì khối lượng phân tử càng cao). Bảng 3.5. Độ nhớt của một số protein Nồng độ % Độ nhớt tương đối Protein (trong nước) (của nước =1) 4,543,0Gelatin 1,203,0Albumin trứng 14,28,0Gelatin 1,578,0Albumin trứng - Hằng số điện môi của dung dịch protein Khi thêm các dung môi hữu cơ trung tính như ethanol, aceton vào dung dịch protein trong nước thì độ tan của protein giảm và protein sẽ kết tủa do việc giảm mức độ hydrate hoá của các nhóm ion hoá của protein, lớp áo mất nước, các phân tử protein kết hợp với nhau thành tủa. Như vậy, hằng số điện môi của dung môi làm ngăn cản lực tĩnh điện giữa các nhóm tích điện của protein và nước. Mối liên hệ đó được đặc trưng bởi biểu thức:
  • 62. 70 L1 - l2 F = 2 Dr Trong đó: D - hằng số điện môi của dung dịch F- lực tĩnh điện giữa các ion tích điện L1 , l - điện tích các ion, r - khoảng cách giữa các ion2 - Tính chất điện li của protein Cũng như các amino acid, protein là chất điện li lưỡng tính vì trong phân tử protein có nhiều nhóm phân cực mạnh (bên gốc R) của amino acid ví dụ: nhóm COOH thứ hai của Asp, Glu; nhóm NH2 của Lys; nhóm OH của Ser, Thr, Tyr v.v...Trạng thái tích điện của các nhóm này phụ thuộc vào pH của môi trường. Ở một pH nào đó mà tổng điện tích (+) và điện tích (-) của phân tử protein bằng không, phân tử protein không di chuyển trong điện trường gọi là pHi (isoelectric - điểm đẳng điện) của protein. Như vậy protein chứa nhiều Asp, Glu (amino acid có tính acid mạnh) thì pHi ở trong vùng acid, ngược lại nhiều amino acid kiềm như Lys, Arg, His thì pH ở trong vùng kiềm.i Ở môi trường có pH < pHi , protein đa số là một cation, số điện tích dương lớn hơn số điện tích âm. Ở pH > pHi phân tử protein thể hiện tính acid, cho ion H+ , do đó số điện tích âm lớn hơn số điện tích dương, protein là một đa anion, tích điện âm. Bảng 3.5. Giá trị pHi của một số protein Protein pH Protein pHi i 5,2Globulin sữa1,0Pepsin 6,8Hemoglobin4,6Albumin trứng 7,8Ribonuclease4,7Casein 10,5Trypsin4,9Albumin huyết thanh 10,6Cytochrom C4,9Gelatin 12,0Prolamin Trong môi trường có pH = pHi của protein, protein dễ dàng kết tụ lại với nhau vì thế người ta lợi dụng tính chất này để xác định pHi của protein cũng như để kết tủa protein. Mặt khác do sự sai khác nhau về pHi giữa các protein mà có thể điều chỉnh pH của môi trường để tách riêng các protein ra khỏi hỗn hợp của chúng.
  • 63. 71 - Sự kết tủa bằng muối của dung dịch protein Muối trung tính có ảnh hưởng rõ tới độ hoà tan của protein hình cầu: với nồng độ thấp chúng làm hoà tan nhiều protein. Tác dụng đó không phụ thuộc vào bản chất của muối trung tính, mà phụ thuộc vào nồng độ muối và số điện tích của mỗi ion trong dung dịch, tức là phụ thuộc vào lực ion μ của dung dịch (μ = 1/2 ∑ C1 Z1, 2 trong đó ∑ là ký hiệu của tổng, C1 là nồng độ của mỗi ion, Z1 là điện tích của mỗi ion). Các muối có ion hoá trị 2 (MgCl2, MgSO4...) làm tăng đáng kể độ tan của protein hơn các muối có ion hoá trị 1 (NaCl, NH4Cl, KCl...). Khi tăng đáng kể nồng độ muối trung tính thì độ tan của protein bắt đầu giảm và ở nồng độ muối rất cao, protein có thể bị kết tủa hoàn toàn. Các protein khác nhau bị kết tủa ở những nồng độ muối trung tính khác nhau. Người ta sử dụng tính chất này để chiết xuất và tách riêng protein khỏi hỗn hợp. Đó là phương pháp diêm tích (kết tủa protein bằng muối). Thí dụ dùng muối amonium sulfate 50% bảo hoà kết tủa globulin và dung dịch amonium sulfate bảo hoà để kết tủa albumin từ huyết thanh. - Biểu hiện quang học của protein Cũng như nhiều chất hoá học khác, protein có khả năng hấp thụ và bức xạ ánh sáng dưới dạng lượng tử hγ. Vì vậy có thể đo cường độ hấp thụ của protein trong dung dịch hay còn gọi là mật độ quang thường ký hiệu bằng chữ OD (Optical Density). Dựa trên tính chất đó người ta đã sản xuất ra các loại máy quang phổ hấp thụ để phân tích protein. Nhìn chung protein đều có khả năng hấp thụ ánh sáng trong vùng khả kiến (từ 350nm- 800nm) và vùng tử ngoại (từ 320nm xuống tới 180nm). Trong vùng ánh sáng khả kiến protein kết hợp với thuốc thử hấp thụ mạnh nhất ở vùng ánh sáng đỏ 750nm (định lượng protein theo Lowry). Đối với vùng tử ngoại dung dịch protein có khả năng hấp thụ ánh sáng tử ngoại ở hai vùng bước sóng khác nhau: 180nm-220nm và 250nm - 300nm. Ở bước sóng từ 180nm-220nm đó là vùng hấp thụ của liên kết peptide trong protein, cực đại hấp thụ ở 190nm. Do liên kết peptide có nhiều trong phân tử protein nên độ hấp thụ khá cao, cho phép định lượng tất cả các loại protein với nồng độ thấp. Tuy nhiên vùng hấp thụ này của các liên kết peptide trong protein có thể bị dịch về phía có bước sóng dài hơn khi có một số tạp chất lẫn trong dung dịch protein. Mặt khác chính các tạp chất này cũng hấp thụ ánh sáng tử ngoại ở vùng bước sóng 180nm-220nm. Vì thế trong thực tế thường đo độ hấp thụ của dung dịch protein ở bước sóng 220nm-240nm. Ở bước sóng từ 250nm-300nm là vùng hấp thụ các amino acid thơm (Phe, Tyr, Trp) có trongphân tử protein hấp thụ cực đại ở 280nm. Có thể sử dụng phương pháp đo độ hấp thụ của dung dịch protein ở bước sóng 280nm
  • 64. 72 để định tính và định lượng các protein có chứa các amino acid thơm. Hàm lượng các amino acid thơm trong các protein khác nhau thay đổi khá nhiều, do đó dung dịch của các protein khác nhau có nồng độ giống nhau có thể khác nhau về độ hấp thụ ở bước sóng 280nm. Ngoài ra có nhiều chất khác trong dung dịch cũng có ảnh hưởng đến độ hấp thụ protein. Vì vậy, các phương pháp đo độ hấp thụ ở vùng ánh sáng tử ngoại thường được dung để định lượng protein đã được tinh sạch hoặc để xác định protein trong các phân đoạn nhận được khi sắc ký tách các protein qua cột. - Kết tủa thuận nghịch và không thuận nghịch protein Khi protein bị kết tủa đơn thuần bằng dung dịch muối trung tính có nồng độ khác nhau hoặc bằng alcohol, acetone ở nhiệt độ thấp thì protein vẫn giữ nguyên được mọi tính chất của nó kể cả tính chất sinh học và có thể hoà tan trở lại gọi là kết tủa thuận nghịch. Các yếu tố kết tủa thuận nghịch được dùng để thu nhận chế phẩm protein. Trong quá trình kết tủa thuận nghịch muối trung tính vừa làm trung hoà điện vừa loại bỏ lớp vỏ hydrate hoá của protein, còn dung môi hữu cơ vốn háo nước sẽ phá hủy lớp vỏ hydrate nhanh chóng. Trong chế phẩm protein nhận được còn lẫn các chất đã dùng để kết tủa, cần sử dụng phương pháp thích hợp để loại bỏ các chất này. Ví dụ có thể dùng phương pháp thẩm tích để loại bỏ muối. Ngược lại kết tủa không thuận nghịch là protein sau khi bị kết tủa không thể phục hồi lại trạng thái ban đầu. Sự kết tủa này thường được sử dụng để loại bỏ protein ra khỏi dung dịch, làm ngưng phản ứng của enzyme. Một trong những yếu tố gây kết tủa không thuận nghịch đơn giản nhất là đun sôi dung dịch protein (sẽ nói kỹ hơn trong phần biến tính protein ở sau). - Các phản ứng hoá học của protein Cũng như các amino acid và peptide, protein có các phản ứng hoá học tương tự, đó là: phản ứng của các nhóm -COOH, -NH2, gốc R và phản ứng tạo màu đặc trưng của liên kết peptide như phản ứng biure (xem chương 2 và 3. Ở đây xin được giới thiệu thêm một số phản ứng màu đặc trưng khác, có ý nghĩa quan trọng trong phát hiện protein và các gốc amio acid trong chuỗi polypeptide. + Phản ứng với thuốc thử Folin-Ciocateau Thuốc thử Folin-Ciocateau có chứa phosphomolipdic acid và phosphovolframic acid các chất này làm tăng độ nhạy của phản ứng biure, mặt khác phản ứng với gốc Tyr và Trp trong phân tử protein. Các gốc amino acid này tham gia trong quá trình tạo phức chất màu xanh da trời. + Các phản ứng màu đặc trưng khác của protein