SlideShare une entreprise Scribd logo
1  sur  43
Télécharger pour lire hors ligne
ُ‫کٌٌذ‬ ِ‫ارائ‬:
‫بشرگی‬ ‫سْیل‬
‫دریا‬ ‫هٌْذسی‬ ‫ارضذ‬ ‫کارضٌاسی‬
‫َّضوٌذ‬ ‫ضٌاٍرّاي‬ ‫هساتقات‬ ُ‫دٍر‬ ‫سَهیي‬
The 3nd Autonomous Surface Vehicle Competition
ُ‫کٌٌذ‬ ‫بزگشار‬:
‫شزيف‬ ‫صٌعتی‬ ُ‫داًشگا‬
‫دريا‬ ‫هٌْذسی‬ ‫اًجوي‬
‫خذا‬ ‫ًام‬ ِ‫ب‬
1
‫هطالة‬ ‫سزفصل‬
•‫ّا‬ ‫آى‬ ‫ّای‬ ‫ٍيژگی‬ ٍ ‫دريايی‬ ‫ّای‬ ُ‫پیشبزًذ‬ ‫اًَاع‬ ‫هعزفی‬
•‫دريايی‬ ‫ّای‬ ًِ‫پزٍا‬ ‫عولکزد‬ ‫در‬ ‫هَثز‬ ‫پاراهتزّای‬ ‫هعزفی‬
•‫طزاحی‬ ِ‫ًقط‬ ِ‫ب‬ ِ‫تَج‬ ‫با‬ ًِ‫پزٍا‬ ‫طزاحی‬ ‫پاراهتزّای‬ ‫تعییي‬
2
‫ّا‬ ُ‫پیطثزًذ‬ ‫اًَاع‬
• Propellers
– Fixed Pitch
– Controllable (Reversible) Pitch
– CRP
– Super Cavitating
– Ducted
– Vertical Axis
• Jet
– Water jet
– Pump jet
• Podded Propulsion
3
‫هشايا‬
•‫بز‬ ‫هختلف‬ ‫ّای‬ ‫سزعت‬ ‫تا‬ ‫باال‬ ‫راًذهاى‬
‫ًَع‬ ‫حسب‬
•‫کن‬ ٌِ‫ّشي‬
‫هعايب‬
-‫هحذٍد‬ ‫عولیاتی‬ ‫شزايط‬ ‫در‬ ‫کارکزد‬ ‫قابلیت‬
‫ثاتت‬ ‫گام‬ ‫تا‬ ‫ّاي‬ ًِ‫پزٍا‬(FPP)
4
‫هشايا‬
•ُ‫دًذ‬ ِ‫جعب‬ ِ‫ب‬ ‫ًیاس‬ ‫بذٍى‬ ‫عقب‬ ِ‫ب‬ ٍ‫ر‬ ‫تزاست‬
•‫ٍسیع‬ ‫عولکزد‬ ُ‫هحذٍد‬
•‫هختلف‬ ‫ّای‬ ‫سزعت‬ ‫در‬ ‫هَتَر‬ ‫با‬ ‫بْتز‬ ‫ساسگاری‬
•‫شٌاٍر‬ ‫پذيزی‬ ‫هاًَر‬ ‫افشايش‬
‫هعايب‬
ِ‫ب‬ ‫ًسبت‬ ‫کوتز‬ ‫راًذهاى‬F.P.P
‫ساختار‬ ‫پیچیذگی‬
‫باال‬ ٌِ‫ّشي‬
‫هتغیز‬ ‫گام‬ ‫تا‬ ‫ّاي‬ ًِ‫پزٍا‬(CPP)
5
‫گزد‬ ‫هعکَس‬ ‫ّای‬ ًِ‫پزٍا‬Contra-Rotating Propellers
+‫گشتاٍر‬ ‫در‬ ‫تعادل‬
+‫باال‬ ‫راًذهاى‬
+‫کن‬ ‫ًَيش‬ ٍ ‫ارتعاشات‬
-‫باال‬ ٌِ‫ّشي‬ ٍ ‫پیچیذگی‬
6
‫هغزٍق‬ ِ‫ًیو‬ ‫ّای‬ ًِ‫پزٍا‬
•‫تاال‬ ‫سزعتْاي‬ ‫در‬ ‫تاال‬ ‫راًص‬ ‫راًذهاى‬
•‫هلحقات‬ ‫درگ‬ ‫کاّص‬
•‫تشرگتز‬ ‫ّاي‬ ًِ‫پزٍا‬ ‫اس‬ ُ‫استفاد‬ ‫اهکاى‬
•‫اس‬ ‫ًاضی‬ ُ‫پز‬ ‫سطح‬ ‫سایطی‬ ‫خَردگی‬ ‫کاّص‬
‫کاٍیتاسیَى‬
-‫ارتعاضات‬ ‫افشایص‬
-‫تاال‬ ٌِ‫ٍّشی‬ ‫پیچیذگی‬
-‫ضذیذ‬ ‫ًَساًی‬ ‫تارگذاري‬ ‫هعزض‬ ‫در‬
7
‫جت‬ ‫ٍاتز‬(‫آب‬ ‫جت‬)
•‫هشایا‬:
•‫تاال‬ ‫ّاي‬ ‫سزعت‬ ‫در‬ ‫تاال‬ ‫راًذهاى‬
•‫عوق‬ ‫کن‬ ‫آب‬ ‫در‬ ‫عولکزد‬ ‫قاتلیت‬
•‫تاال‬ ‫هاًَرپذیزي‬
‫هعایة‬:
•‫تاال‬ ٌِ‫ّشی‬
•‫ًگْذاري‬ ٍ ‫تعویز‬ ‫هطکالت‬
8
‫ّا‬ ُ‫پیطثزًذ‬ ‫اًَاع‬ ِ‫هقایس‬
9
ًِ‫پزٍا‬ ‫هطخصات‬
• Blade
– Tip
– Root
– Leading Edge
– Trailing Edge
– Pitch Angle
– Angle of Attack
 Diameter
 Pitch
 Skew
 Rake
 Area
 Slip
 Thrust
10
ُ‫پز‬ ‫ٌّذسی‬ ‫هطخصات‬
11
‫پروانه‬ ‫گام‬
12
ًِ‫پزٍا‬ ‫سطَح‬
13
َ‫اسکی‬
The best practical option for reducing
unsteady flow forces on the propeller,
and thus reducing vibration is to skew
the blades. The mid radius of a skewed
propeller is in the same place as that of
a conventional radial propeller, but the
relationship between inner and outer
radius is shifted, the tip hits it later and
there follows a cancellation of forces. A
skewed propeller can be “tuned” to a
specific wake field in order to reduce
the excitation at a given harmonic, and
thus be very effective in reducing
vibration.
14
ِ‫تطات‬ ‫اصَل‬
• Dimensional analysis:
• Result is:
15
‫هذل‬ ‫تست‬ ‫در‬ ‫تٌذي‬ ‫هقیاس‬ ‫قَاًیي‬
• Introduce the scale ratio:
• Froude scaling results in:
• nD/VA equality results in slip ratio equality.
• The third coefficient cannot be made equal unless we adjust the
ambient pressure - cavitation tests.
• The fourth coefficient (Reynolds number) cannot be made
equal. This is not as serious as for resistance.
16
‫هذل‬ ‫تست‬ ‫در‬ ‫تٌذي‬ ‫هقیاس‬ ‫قَاًیي‬
17
ًِ‫پزٍا‬ ‫ضزایة‬
18
ًِ‫پزٍا‬ ‫عولکزدي‬ ‫ّاي‬ ‫هٌحٌی‬
19
ًِ‫تذ‬ ‫اًذرکٌص‬-ًِ‫پزٍا‬
• Wake
• Slip ratio
• Relative Rotative Efficiency
• Thrust deduction
• Hull efficiency
• Propulsive efficiency
20
‫ویک‬
• The difference between the ship speed V and the speed of advance VA is the wake
speed.The wake fraction is defined as:
• w = (V −VA) / V so VA = V (1 −w )
‫اي‬ ًِ‫پزٍا‬ ‫تک‬:
‫اي‬ ًِ‫پزٍا‬ ٍ‫د‬:
21
05.0C45.0w)Robertson(
8.0C7.0w)Heckscher(
C5.005.0w)Taylor(
p
p
B



2.0C5.0w)Robertson(
3.0C7.0w)Heckscher(
C55.02.0w)Taylor(
p
p
B



‫ًسثی‬ ‫چزخص‬ ‫راًذهاى‬
open water propeller efficiency and efficiency behind the hull:
Their ratio is called the relative rotative efficiency:
0.95 -1.0 for twin screw ships
1.0 - 1.1 for single screw.
22
‫تزاست‬ ‫کاّص‬ ‫ضزیة‬
When a hull is towed, there is an area of high pressure over the stern which has
a resultant forward component reducing the total resistance. With a self
propelled hull, however, the pressure over some of this area is reduced by the
action of the propeller in accelerating the water flowing into it, the forward
component is reduced, the resistance is increased and so is the thrust
necessary to propel the model or ship.
If R is the resistance and T the thrust, we can write for the same ship speed
where the expression (1-t) is called the thrust deduction factor .
23
ًِ‫تذ‬ ‫راًذهاى‬
The work done in moving a ship at a speed V against a resistance R is proportional to the
product RV or the effective power PE. The work done by the propeller in delivering a
thrust T at a speed of advance VA is proportional to the product TVA or the thrust power P.
The ratio of the work done on the ship with that done by the propeller is called the hull
efficiency
For most ships this is greater than 1.
At first sight this seems an anomalous situation in that apparently something is being obtained
for nothing. It can,however, be explained by the fact that the propeller is making use of the
energy which is already in the wake because of its forward velocity.
24
‫رانش‬ ‫کل‬ ‫راندمان‬
• Need to select a propeller such that hP is maximized.
25
‫هطالة‬ ‫هزٍر‬
• Thrust Coefficient (KT)
• Torque Coefficient (KQ)
• Advance Coefficient (J)
• Open-water Propeller Efficiency (h0)
• Pitch-diameter ratio (P/D)
• Expanded area ratio (AE/A0)
• Thrust deduction, t
• Wake fraction, w
• Speed of advance, VA
VwV
TtR
K
KJ
nQ
TV
nD
V
J
Dn
Q
K
Dn
T
K
A
Q
TA
A
Q
T
)1(
)1(
22
0
52
42







h


26
‫کاٍیتاسیَى‬
• Cavitation occurs when pressure on back or suction side of blade
becomes so low that water vaporizes and vapor-filled cavities of
bubbles form.
• Occurs on heavily loaded propellers
• high rotational speed
Bubbles can collapse on blades and cause:
• erosion
• serious noise problems
• rapid decrease in propeller efficiency
• fluctuating forces that give rise to severe vibrations
27
ًِ‫پزٍا‬ ‫کاٍیتاسیَى‬
• Sheet
• Bubble
• Cloud
• Tip and Hub Vortex
28
‫کاٍیتاسیَى‬ ‫کاّص‬ ‫ّاي‬ ‫رٍش‬
• Must sufficient blade area
• Sufficient hub immersion
• Burrill Cavitation Diagram
• Keller Criterion.
29
Keller Criterion
 
 
A
A
Z T
p p D
k
E
O o v




13 0 3
2
. .
Where:
T = Thrust, N
Z = Number of Blades
p - p = Pressure at propeller centerline (N / m )
k = Constant varying from 0 for transom - stern naval
vessels to 0.20 for high - powered single screw vessels
o v
2
30
Burrill Cavitation Diagram
2 2 2
A
2 2
188.2+19.62h
0.7 V 4.836
( / )
0.5 [ (0.7 ) ]
Diagram gives the local
cavitation number
=
versus the mean
thrust blade loading
.P
A
R n D
T A
c V nD 





2
is the head of the water (m), the propeller diameter (m), is revolutions per second, the speed of advance (m/sec),
T the thrust (kN), and the projected blade area (m ). This is related to t
A
P
h D n V
A he more commonly used developed area by
the following approximate formula 1.067 0.229 .P
D
D
A P
A D
A
 
31
ًِ‫پزٍا‬ ‫استاًذارد‬ ‫ّاي‬ ‫سزي‬
• Open water tests of geometrically related propellers with pitch and other
variables varied systematically.
• Thrust, torque coefficients and open water efficiency measured and plotted
versus speed of advance.
• Comprehensive series, such as B –Wageningen&Gawn series.
32
‫سزي‬ ًِ‫پزٍا‬ ‫ًوَدارّاي‬B-Wageningen
33
ًِ‫پزٍا‬ ‫طزاحی‬ ‫هالحظات‬
• Inputs:
– Design speed
– Diameter constraints
– EHP at design speed
– Type and number of propellers (skew angle, blades, etc.).
– Wake fraction (w) and thrust deduction (t)
• Approach
– Select number of blades based on frequency of excitation (similar designs).
– Select area ratio based on cavitation limitations
– The minimum area ratio allowed by cavitation or strength will have the best efficiency.
– In general, larger diameter is better.
– In general, lower RPM is better.
– If machinery sets RPM, then seek the optimum diameter.
34
‫تزاست‬ ‫ضزیة‬ ‫طزیق‬ ‫اس‬ ‫ثاتت‬ ‫قطز‬ ‫تا‬ ‫طزاحی‬
Case 1: From the hull requirements we might have a required ship speed and
resistance:
– Select a blade number.
– Select a minimum acceptable AE/A0.
– Work with KT and J.
– Form the ratio KT/J2 to eliminate the unknown n.
– Optimize for maximum open water propeller efficiency.
35
‫سزي‬ ‫طزاحی‬ ‫ًوَدارّاي‬ ‫اس‬ ‫اي‬ ًَِ‫ًو‬B-Wageningen
36
‫گطتاٍر‬ ‫ضزیة‬ ‫طزیق‬ ‫اس‬ ‫ثاتت‬ ‫قطز‬ ‫تا‬ ‫طزاحی‬
Case 2: From the engine requirements we might have a delivered power
and ship speed:
 Select a blade number.
 Select a minimum acceptable AE/A0.
 Work with KQ and J.
 Form the ratio KQ/J3 to eliminate the unknown n.
 Optimize for maximum open water propeller efficiency.
37
‫تزاست‬ ‫ضزیة‬ ‫طزیق‬ ‫اس‬ ِ‫ت‬ ‫ثاتت‬ ‫دٍر‬ ‫تا‬ ‫طزاحی‬
Case 1: From the hull requirements we might have a required ship speed and resistance:
• Select a blade number.
• Select a minimum acceptable AE/A0. Iterations may be necessary since some
cavitation criteria involve the diameter D.
• Work with KT and J.
• Form the ratio KT/J4 to eliminate the unknown D.
• Optimize for maximum open water propeller efficiency.
38
‫گطتاٍر‬ ‫ضزیة‬ ‫طزیق‬ ‫اس‬ ِ‫ت‬ ‫ثاتت‬ ‫دٍر‬ ‫تا‬ ‫طزاحی‬
Case 2: From the engine requirements we might have a required ship speed and
delivered power:
• Select a blade number.
• Select a minimum acceptable AE/A0. Iteration may be necessary since some
cavitation criteria involve the diameter D.
• Work with KQ and J.
• Form the ratio KQ/J5 to eliminate the unknown D.
• Optimize for maximum open water propeller efficiency.
39
‫سزٍیس‬ ‫حالت‬ ‫در‬ ‫هَتَر‬ ‫ًیاس‬ ‫هَرد‬ ‫قذرت‬
• To maintain contracted design speed on average over ship’s service life in
actual sea conditions (referred to as “sustained speed” by USN), installed
power must be greater than PS.
• A service power allowance is added, expressed as fraction of PS.
• USN determines sustained speed at 80% of maximum continuous installed
power.
• This covers added resistance due to sea waves.
21 February 2002 Propellers 40
‫جت‬ ‫ٍاتز‬
 
 
jet jet 2
2 21
jet2
Basic variables and assumptions:
Ship speed , Resistance
Water jet diameter .
100% efficient pumping system.
Basic equations:
,
/ 4
Power in:
Power out:
Pow
Efficiency:
V R
D
Q
R Q V V V
D
Q V V
RV



  

 
 
jet
2 21
jetjet2
er out 2
Power in
Efficiency goes down as becomes smaller.
Q V V V V
V VQ V V
V



 

41
‫ضفت‬ ‫تٌذي‬ ‫آب‬
42
‫شما‬ ‫توجه‬ ‫و‬ ‫حضور‬ ‫از‬ ‫تشکر‬ ‫با‬
43

Contenu connexe

Tendances

Hull form geometry
Hull form geometryHull form geometry
Hull form geometry
Unikl MIMET
 
SeniorDesignProjectReport
SeniorDesignProjectReportSeniorDesignProjectReport
SeniorDesignProjectReport
Daniel Place
 

Tendances (20)

CONTAINER SHIP DESIGN REPORT
CONTAINER SHIP DESIGN REPORTCONTAINER SHIP DESIGN REPORT
CONTAINER SHIP DESIGN REPORT
 
Shell and deck plating
Shell and deck platingShell and deck plating
Shell and deck plating
 
Propulsion system
Propulsion systemPropulsion system
Propulsion system
 
Coupled motions in turning and sea trials
Coupled motions in turning and sea trials Coupled motions in turning and sea trials
Coupled motions in turning and sea trials
 
propellers and propulsion.pptx
propellers and propulsion.pptxpropellers and propulsion.pptx
propellers and propulsion.pptx
 
Dimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanicsDimension less numbers in applied fluid mechanics
Dimension less numbers in applied fluid mechanics
 
Marine Propulsion History and Electric Propulsion & Future Technology
Marine Propulsion History and Electric Propulsion & Future TechnologyMarine Propulsion History and Electric Propulsion & Future Technology
Marine Propulsion History and Electric Propulsion & Future Technology
 
SHIP PROPULSION SEMINAR report
SHIP PROPULSION SEMINAR reportSHIP PROPULSION SEMINAR report
SHIP PROPULSION SEMINAR report
 
Propulsion Systems Of Ships
Propulsion Systems Of ShipsPropulsion Systems Of Ships
Propulsion Systems Of Ships
 
Hull form geometry
Hull form geometryHull form geometry
Hull form geometry
 
Tugas merancang kapal ii rencana umum
Tugas merancang kapal ii   rencana umumTugas merancang kapal ii   rencana umum
Tugas merancang kapal ii rencana umum
 
4 ship dimensions
4 ship dimensions4 ship dimensions
4 ship dimensions
 
Wave resistance
Wave resistanceWave resistance
Wave resistance
 
SeniorDesignProjectReport
SeniorDesignProjectReportSeniorDesignProjectReport
SeniorDesignProjectReport
 
Loadline
LoadlineLoadline
Loadline
 
Ship resistance in confined water
Ship resistance in confined waterShip resistance in confined water
Ship resistance in confined water
 
Ship Propulsion system
Ship Propulsion systemShip Propulsion system
Ship Propulsion system
 
Ship Building (parts of ship)
Ship Building (parts of ship)Ship Building (parts of ship)
Ship Building (parts of ship)
 
[5] ptk 2014 2015 ship main particulars
[5] ptk 2014 2015 ship main particulars[5] ptk 2014 2015 ship main particulars
[5] ptk 2014 2015 ship main particulars
 
Multi hull vessels
Multi hull vesselsMulti hull vessels
Multi hull vessels
 

En vedette

Lect 9 ship propellers (new)
Lect 9 ship propellers (new)Lect 9 ship propellers (new)
Lect 9 ship propellers (new)
Saif Alenzi
 
Ship´s dimension & types of ships
Ship´s dimension & types of shipsShip´s dimension & types of ships
Ship´s dimension & types of ships
Adrian Urbina
 

En vedette (11)

Lect 9 ship propellers (new)
Lect 9 ship propellers (new)Lect 9 ship propellers (new)
Lect 9 ship propellers (new)
 
Pipe Fittings and Valves for Marine Use
Pipe Fittings and Valves for Marine UsePipe Fittings and Valves for Marine Use
Pipe Fittings and Valves for Marine Use
 
Marine piping systems
Marine piping systemsMarine piping systems
Marine piping systems
 
هندسه پروانه
هندسه پروانههندسه پروانه
هندسه پروانه
 
Arvandan
ArvandanArvandan
Arvandan
 
Tug launching by air bag
Tug launching by air bagTug launching by air bag
Tug launching by air bag
 
Displacement and weight of Ship
Displacement and weight of ShipDisplacement and weight of Ship
Displacement and weight of Ship
 
Perhitungan propulsi kapal
Perhitungan propulsi kapalPerhitungan propulsi kapal
Perhitungan propulsi kapal
 
Propeller
PropellerPropeller
Propeller
 
Propeller
PropellerPropeller
Propeller
 
Ship´s dimension & types of ships
Ship´s dimension & types of shipsShip´s dimension & types of ships
Ship´s dimension & types of ships
 

Similaire à Propulsion%20system %203rd[1]

Equipment for controlling ship's movements
Equipment for controlling ship's movementsEquipment for controlling ship's movements
Equipment for controlling ship's movements
arvylaps
 
88c40e_Suppressed Weir Lecture.pptx
88c40e_Suppressed Weir Lecture.pptx88c40e_Suppressed Weir Lecture.pptx
88c40e_Suppressed Weir Lecture.pptx
WaliEdwardian1
 

Similaire à Propulsion%20system %203rd[1] (20)

CPP-Propulsors-ESD (1)_101528.pdf
CPP-Propulsors-ESD (1)_101528.pdfCPP-Propulsors-ESD (1)_101528.pdf
CPP-Propulsors-ESD (1)_101528.pdf
 
Chp5-part2.ppt
Chp5-part2.pptChp5-part2.ppt
Chp5-part2.ppt
 
Lecture 1 free overfall and ogee
Lecture 1 free overfall and ogeeLecture 1 free overfall and ogee
Lecture 1 free overfall and ogee
 
cavitation ppt.pptx
cavitation ppt.pptxcavitation ppt.pptx
cavitation ppt.pptx
 
Axial flow turbine
Axial flow turbine Axial flow turbine
Axial flow turbine
 
Equipment for controlling ship's movements
Equipment for controlling ship's movementsEquipment for controlling ship's movements
Equipment for controlling ship's movements
 
Fluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdfFluid_Mechanics_Lab_IVSem (1).pdf
Fluid_Mechanics_Lab_IVSem (1).pdf
 
Offshore Support Vessels Design
Offshore Support Vessels DesignOffshore Support Vessels Design
Offshore Support Vessels Design
 
mel705-27.ppt
mel705-27.pptmel705-27.ppt
mel705-27.ppt
 
Anchor Handling Stability
Anchor Handling StabilityAnchor Handling Stability
Anchor Handling Stability
 
Christopher Kelley - National Rotor Testbed Design
Christopher Kelley - National Rotor Testbed DesignChristopher Kelley - National Rotor Testbed Design
Christopher Kelley - National Rotor Testbed Design
 
Present buk
Present bukPresent buk
Present buk
 
mel346-26 (1).ppt
mel346-26 (1).pptmel346-26 (1).ppt
mel346-26 (1).ppt
 
mel346-26.ppt.akshay patel is the very important
mel346-26.ppt.akshay patel is the very importantmel346-26.ppt.akshay patel is the very important
mel346-26.ppt.akshay patel is the very important
 
mel346-26.pptgrehdhdjhtdhxtrjrgfhjdrybysyer
mel346-26.pptgrehdhdjhtdhxtrjrgfhjdrybysyermel346-26.pptgrehdhdjhtdhxtrjrgfhjdrybysyer
mel346-26.pptgrehdhdjhtdhxtrjrgfhjdrybysyer
 
Episode 38 : Bin and Hopper Design
Episode 38 :  Bin and Hopper DesignEpisode 38 :  Bin and Hopper Design
Episode 38 : Bin and Hopper Design
 
offshore structural design detailed engineering fixed plate form
offshore structural design detailed engineering fixed plate formoffshore structural design detailed engineering fixed plate form
offshore structural design detailed engineering fixed plate form
 
88c40e_Suppressed Weir Lecture.pptx
88c40e_Suppressed Weir Lecture.pptx88c40e_Suppressed Weir Lecture.pptx
88c40e_Suppressed Weir Lecture.pptx
 
4 spillways
4 spillways4 spillways
4 spillways
 
pelton wheel
pelton wheel pelton wheel
pelton wheel
 

Plus de kmsu (19)

Slideshare
SlideshareSlideshare
Slideshare
 
Hydrodinamic[1]
Hydrodinamic[1]Hydrodinamic[1]
Hydrodinamic[1]
 
Hooshmand[1]
Hooshmand[1]Hooshmand[1]
Hooshmand[1]
 
Offshore platform design
Offshore platform designOffshore platform design
Offshore platform design
 
Marine fire safety
Marine fire safetyMarine fire safety
Marine fire safety
 
Multiframe intro
Multiframe introMultiframe intro
Multiframe intro
 
Naval museum of bushehr
Naval museum of bushehrNaval museum of bushehr
Naval museum of bushehr
 
Khazar lake
Khazar lakeKhazar lake
Khazar lake
 
Pp
PpPp
Pp
 
Erfan
ErfanErfan
Erfan
 
Delvar
DelvarDelvar
Delvar
 
Maxsurf
MaxsurfMaxsurf
Maxsurf
 
Modern ships
Modern shipsModern ships
Modern ships
 
Marine Production Technology
Marine Production TechnologyMarine Production Technology
Marine Production Technology
 
Ocean energy
Ocean energyOcean energy
Ocean energy
 
مراحل اجرای شمع های درجا ریز
مراحل اجرای شمع های درجا ریزمراحل اجرای شمع های درجا ریز
مراحل اجرای شمع های درجا ریز
 
Wave makers
Wave makersWave makers
Wave makers
 
طراحی کارخانه
طراحی کارخانهطراحی کارخانه
طراحی کارخانه
 
آشنایی با انواع شناورها
آشنایی با انواع شناورهاآشنایی با انواع شناورها
آشنایی با انواع شناورها
 

Dernier

FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
ankushspencer015
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Dernier (20)

Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
NFPA 5000 2024 standard .
NFPA 5000 2024 standard                                  .NFPA 5000 2024 standard                                  .
NFPA 5000 2024 standard .
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01Double rodded leveling 1 pdf activity 01
Double rodded leveling 1 pdf activity 01
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Palanpur 7001035870 Whatsapp Number, 24/07 Booking
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 

Propulsion%20system %203rd[1]

  • 1. ُ‫کٌٌذ‬ ِ‫ارائ‬: ‫بشرگی‬ ‫سْیل‬ ‫دریا‬ ‫هٌْذسی‬ ‫ارضذ‬ ‫کارضٌاسی‬ ‫َّضوٌذ‬ ‫ضٌاٍرّاي‬ ‫هساتقات‬ ُ‫دٍر‬ ‫سَهیي‬ The 3nd Autonomous Surface Vehicle Competition ُ‫کٌٌذ‬ ‫بزگشار‬: ‫شزيف‬ ‫صٌعتی‬ ُ‫داًشگا‬ ‫دريا‬ ‫هٌْذسی‬ ‫اًجوي‬ ‫خذا‬ ‫ًام‬ ِ‫ب‬ 1
  • 2. ‫هطالة‬ ‫سزفصل‬ •‫ّا‬ ‫آى‬ ‫ّای‬ ‫ٍيژگی‬ ٍ ‫دريايی‬ ‫ّای‬ ُ‫پیشبزًذ‬ ‫اًَاع‬ ‫هعزفی‬ •‫دريايی‬ ‫ّای‬ ًِ‫پزٍا‬ ‫عولکزد‬ ‫در‬ ‫هَثز‬ ‫پاراهتزّای‬ ‫هعزفی‬ •‫طزاحی‬ ِ‫ًقط‬ ِ‫ب‬ ِ‫تَج‬ ‫با‬ ًِ‫پزٍا‬ ‫طزاحی‬ ‫پاراهتزّای‬ ‫تعییي‬ 2
  • 3. ‫ّا‬ ُ‫پیطثزًذ‬ ‫اًَاع‬ • Propellers – Fixed Pitch – Controllable (Reversible) Pitch – CRP – Super Cavitating – Ducted – Vertical Axis • Jet – Water jet – Pump jet • Podded Propulsion 3
  • 4. ‫هشايا‬ •‫بز‬ ‫هختلف‬ ‫ّای‬ ‫سزعت‬ ‫تا‬ ‫باال‬ ‫راًذهاى‬ ‫ًَع‬ ‫حسب‬ •‫کن‬ ٌِ‫ّشي‬ ‫هعايب‬ -‫هحذٍد‬ ‫عولیاتی‬ ‫شزايط‬ ‫در‬ ‫کارکزد‬ ‫قابلیت‬ ‫ثاتت‬ ‫گام‬ ‫تا‬ ‫ّاي‬ ًِ‫پزٍا‬(FPP) 4
  • 5. ‫هشايا‬ •ُ‫دًذ‬ ِ‫جعب‬ ِ‫ب‬ ‫ًیاس‬ ‫بذٍى‬ ‫عقب‬ ِ‫ب‬ ٍ‫ر‬ ‫تزاست‬ •‫ٍسیع‬ ‫عولکزد‬ ُ‫هحذٍد‬ •‫هختلف‬ ‫ّای‬ ‫سزعت‬ ‫در‬ ‫هَتَر‬ ‫با‬ ‫بْتز‬ ‫ساسگاری‬ •‫شٌاٍر‬ ‫پذيزی‬ ‫هاًَر‬ ‫افشايش‬ ‫هعايب‬ ِ‫ب‬ ‫ًسبت‬ ‫کوتز‬ ‫راًذهاى‬F.P.P ‫ساختار‬ ‫پیچیذگی‬ ‫باال‬ ٌِ‫ّشي‬ ‫هتغیز‬ ‫گام‬ ‫تا‬ ‫ّاي‬ ًِ‫پزٍا‬(CPP) 5
  • 6. ‫گزد‬ ‫هعکَس‬ ‫ّای‬ ًِ‫پزٍا‬Contra-Rotating Propellers +‫گشتاٍر‬ ‫در‬ ‫تعادل‬ +‫باال‬ ‫راًذهاى‬ +‫کن‬ ‫ًَيش‬ ٍ ‫ارتعاشات‬ -‫باال‬ ٌِ‫ّشي‬ ٍ ‫پیچیذگی‬ 6
  • 7. ‫هغزٍق‬ ِ‫ًیو‬ ‫ّای‬ ًِ‫پزٍا‬ •‫تاال‬ ‫سزعتْاي‬ ‫در‬ ‫تاال‬ ‫راًص‬ ‫راًذهاى‬ •‫هلحقات‬ ‫درگ‬ ‫کاّص‬ •‫تشرگتز‬ ‫ّاي‬ ًِ‫پزٍا‬ ‫اس‬ ُ‫استفاد‬ ‫اهکاى‬ •‫اس‬ ‫ًاضی‬ ُ‫پز‬ ‫سطح‬ ‫سایطی‬ ‫خَردگی‬ ‫کاّص‬ ‫کاٍیتاسیَى‬ -‫ارتعاضات‬ ‫افشایص‬ -‫تاال‬ ٌِ‫ٍّشی‬ ‫پیچیذگی‬ -‫ضذیذ‬ ‫ًَساًی‬ ‫تارگذاري‬ ‫هعزض‬ ‫در‬ 7
  • 8. ‫جت‬ ‫ٍاتز‬(‫آب‬ ‫جت‬) •‫هشایا‬: •‫تاال‬ ‫ّاي‬ ‫سزعت‬ ‫در‬ ‫تاال‬ ‫راًذهاى‬ •‫عوق‬ ‫کن‬ ‫آب‬ ‫در‬ ‫عولکزد‬ ‫قاتلیت‬ •‫تاال‬ ‫هاًَرپذیزي‬ ‫هعایة‬: •‫تاال‬ ٌِ‫ّشی‬ •‫ًگْذاري‬ ٍ ‫تعویز‬ ‫هطکالت‬ 8
  • 10. ًِ‫پزٍا‬ ‫هطخصات‬ • Blade – Tip – Root – Leading Edge – Trailing Edge – Pitch Angle – Angle of Attack  Diameter  Pitch  Skew  Rake  Area  Slip  Thrust 10
  • 14. َ‫اسکی‬ The best practical option for reducing unsteady flow forces on the propeller, and thus reducing vibration is to skew the blades. The mid radius of a skewed propeller is in the same place as that of a conventional radial propeller, but the relationship between inner and outer radius is shifted, the tip hits it later and there follows a cancellation of forces. A skewed propeller can be “tuned” to a specific wake field in order to reduce the excitation at a given harmonic, and thus be very effective in reducing vibration. 14
  • 15. ِ‫تطات‬ ‫اصَل‬ • Dimensional analysis: • Result is: 15
  • 16. ‫هذل‬ ‫تست‬ ‫در‬ ‫تٌذي‬ ‫هقیاس‬ ‫قَاًیي‬ • Introduce the scale ratio: • Froude scaling results in: • nD/VA equality results in slip ratio equality. • The third coefficient cannot be made equal unless we adjust the ambient pressure - cavitation tests. • The fourth coefficient (Reynolds number) cannot be made equal. This is not as serious as for resistance. 16
  • 17. ‫هذل‬ ‫تست‬ ‫در‬ ‫تٌذي‬ ‫هقیاس‬ ‫قَاًیي‬ 17
  • 20. ًِ‫تذ‬ ‫اًذرکٌص‬-ًِ‫پزٍا‬ • Wake • Slip ratio • Relative Rotative Efficiency • Thrust deduction • Hull efficiency • Propulsive efficiency 20
  • 21. ‫ویک‬ • The difference between the ship speed V and the speed of advance VA is the wake speed.The wake fraction is defined as: • w = (V −VA) / V so VA = V (1 −w ) ‫اي‬ ًِ‫پزٍا‬ ‫تک‬: ‫اي‬ ًِ‫پزٍا‬ ٍ‫د‬: 21 05.0C45.0w)Robertson( 8.0C7.0w)Heckscher( C5.005.0w)Taylor( p p B    2.0C5.0w)Robertson( 3.0C7.0w)Heckscher( C55.02.0w)Taylor( p p B   
  • 22. ‫ًسثی‬ ‫چزخص‬ ‫راًذهاى‬ open water propeller efficiency and efficiency behind the hull: Their ratio is called the relative rotative efficiency: 0.95 -1.0 for twin screw ships 1.0 - 1.1 for single screw. 22
  • 23. ‫تزاست‬ ‫کاّص‬ ‫ضزیة‬ When a hull is towed, there is an area of high pressure over the stern which has a resultant forward component reducing the total resistance. With a self propelled hull, however, the pressure over some of this area is reduced by the action of the propeller in accelerating the water flowing into it, the forward component is reduced, the resistance is increased and so is the thrust necessary to propel the model or ship. If R is the resistance and T the thrust, we can write for the same ship speed where the expression (1-t) is called the thrust deduction factor . 23
  • 24. ًِ‫تذ‬ ‫راًذهاى‬ The work done in moving a ship at a speed V against a resistance R is proportional to the product RV or the effective power PE. The work done by the propeller in delivering a thrust T at a speed of advance VA is proportional to the product TVA or the thrust power P. The ratio of the work done on the ship with that done by the propeller is called the hull efficiency For most ships this is greater than 1. At first sight this seems an anomalous situation in that apparently something is being obtained for nothing. It can,however, be explained by the fact that the propeller is making use of the energy which is already in the wake because of its forward velocity. 24
  • 25. ‫رانش‬ ‫کل‬ ‫راندمان‬ • Need to select a propeller such that hP is maximized. 25
  • 26. ‫هطالة‬ ‫هزٍر‬ • Thrust Coefficient (KT) • Torque Coefficient (KQ) • Advance Coefficient (J) • Open-water Propeller Efficiency (h0) • Pitch-diameter ratio (P/D) • Expanded area ratio (AE/A0) • Thrust deduction, t • Wake fraction, w • Speed of advance, VA VwV TtR K KJ nQ TV nD V J Dn Q K Dn T K A Q TA A Q T )1( )1( 22 0 52 42        h   26
  • 27. ‫کاٍیتاسیَى‬ • Cavitation occurs when pressure on back or suction side of blade becomes so low that water vaporizes and vapor-filled cavities of bubbles form. • Occurs on heavily loaded propellers • high rotational speed Bubbles can collapse on blades and cause: • erosion • serious noise problems • rapid decrease in propeller efficiency • fluctuating forces that give rise to severe vibrations 27
  • 28. ًِ‫پزٍا‬ ‫کاٍیتاسیَى‬ • Sheet • Bubble • Cloud • Tip and Hub Vortex 28
  • 29. ‫کاٍیتاسیَى‬ ‫کاّص‬ ‫ّاي‬ ‫رٍش‬ • Must sufficient blade area • Sufficient hub immersion • Burrill Cavitation Diagram • Keller Criterion. 29
  • 30. Keller Criterion     A A Z T p p D k E O o v     13 0 3 2 . . Where: T = Thrust, N Z = Number of Blades p - p = Pressure at propeller centerline (N / m ) k = Constant varying from 0 for transom - stern naval vessels to 0.20 for high - powered single screw vessels o v 2 30
  • 31. Burrill Cavitation Diagram 2 2 2 A 2 2 188.2+19.62h 0.7 V 4.836 ( / ) 0.5 [ (0.7 ) ] Diagram gives the local cavitation number = versus the mean thrust blade loading .P A R n D T A c V nD       2 is the head of the water (m), the propeller diameter (m), is revolutions per second, the speed of advance (m/sec), T the thrust (kN), and the projected blade area (m ). This is related to t A P h D n V A he more commonly used developed area by the following approximate formula 1.067 0.229 .P D D A P A D A   31
  • 32. ًِ‫پزٍا‬ ‫استاًذارد‬ ‫ّاي‬ ‫سزي‬ • Open water tests of geometrically related propellers with pitch and other variables varied systematically. • Thrust, torque coefficients and open water efficiency measured and plotted versus speed of advance. • Comprehensive series, such as B –Wageningen&Gawn series. 32
  • 34. ًِ‫پزٍا‬ ‫طزاحی‬ ‫هالحظات‬ • Inputs: – Design speed – Diameter constraints – EHP at design speed – Type and number of propellers (skew angle, blades, etc.). – Wake fraction (w) and thrust deduction (t) • Approach – Select number of blades based on frequency of excitation (similar designs). – Select area ratio based on cavitation limitations – The minimum area ratio allowed by cavitation or strength will have the best efficiency. – In general, larger diameter is better. – In general, lower RPM is better. – If machinery sets RPM, then seek the optimum diameter. 34
  • 35. ‫تزاست‬ ‫ضزیة‬ ‫طزیق‬ ‫اس‬ ‫ثاتت‬ ‫قطز‬ ‫تا‬ ‫طزاحی‬ Case 1: From the hull requirements we might have a required ship speed and resistance: – Select a blade number. – Select a minimum acceptable AE/A0. – Work with KT and J. – Form the ratio KT/J2 to eliminate the unknown n. – Optimize for maximum open water propeller efficiency. 35
  • 36. ‫سزي‬ ‫طزاحی‬ ‫ًوَدارّاي‬ ‫اس‬ ‫اي‬ ًَِ‫ًو‬B-Wageningen 36
  • 37. ‫گطتاٍر‬ ‫ضزیة‬ ‫طزیق‬ ‫اس‬ ‫ثاتت‬ ‫قطز‬ ‫تا‬ ‫طزاحی‬ Case 2: From the engine requirements we might have a delivered power and ship speed:  Select a blade number.  Select a minimum acceptable AE/A0.  Work with KQ and J.  Form the ratio KQ/J3 to eliminate the unknown n.  Optimize for maximum open water propeller efficiency. 37
  • 38. ‫تزاست‬ ‫ضزیة‬ ‫طزیق‬ ‫اس‬ ِ‫ت‬ ‫ثاتت‬ ‫دٍر‬ ‫تا‬ ‫طزاحی‬ Case 1: From the hull requirements we might have a required ship speed and resistance: • Select a blade number. • Select a minimum acceptable AE/A0. Iterations may be necessary since some cavitation criteria involve the diameter D. • Work with KT and J. • Form the ratio KT/J4 to eliminate the unknown D. • Optimize for maximum open water propeller efficiency. 38
  • 39. ‫گطتاٍر‬ ‫ضزیة‬ ‫طزیق‬ ‫اس‬ ِ‫ت‬ ‫ثاتت‬ ‫دٍر‬ ‫تا‬ ‫طزاحی‬ Case 2: From the engine requirements we might have a required ship speed and delivered power: • Select a blade number. • Select a minimum acceptable AE/A0. Iteration may be necessary since some cavitation criteria involve the diameter D. • Work with KQ and J. • Form the ratio KQ/J5 to eliminate the unknown D. • Optimize for maximum open water propeller efficiency. 39
  • 40. ‫سزٍیس‬ ‫حالت‬ ‫در‬ ‫هَتَر‬ ‫ًیاس‬ ‫هَرد‬ ‫قذرت‬ • To maintain contracted design speed on average over ship’s service life in actual sea conditions (referred to as “sustained speed” by USN), installed power must be greater than PS. • A service power allowance is added, expressed as fraction of PS. • USN determines sustained speed at 80% of maximum continuous installed power. • This covers added resistance due to sea waves. 21 February 2002 Propellers 40
  • 41. ‫جت‬ ‫ٍاتز‬     jet jet 2 2 21 jet2 Basic variables and assumptions: Ship speed , Resistance Water jet diameter . 100% efficient pumping system. Basic equations: , / 4 Power in: Power out: Pow Efficiency: V R D Q R Q V V V D Q V V RV            jet 2 21 jetjet2 er out 2 Power in Efficiency goes down as becomes smaller. Q V V V V V VQ V V V       41
  • 43. ‫شما‬ ‫توجه‬ ‫و‬ ‫حضور‬ ‫از‬ ‫تشکر‬ ‫با‬ 43