Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

การหาความสัมพันธ์เชิงฟังก์ชันของข้อมูลโดยใช้ Ms excel

2 222 vues

Publié le

การหาความสัมพันธ์เชิงฟังก์ชันของข้อมูลโดยใช้ Ms excel

Publié dans : Formation
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

การหาความสัมพันธ์เชิงฟังก์ชันของข้อมูลโดยใช้ Ms excel

  1. 1. การหาความสัมพันธ์เชิงฟังก์ชันของข้อมูลโดยใช้ MS Excel กรณีเป็นฟังก์ชันกาลังสอง (พาราโบลา) นฤพนธ์ สายเสมา ครูคณิตศาสตร์ โรงเรียนสุรวิทยาคาร จังหวัดสุรินทร์ ความรู้พื้นฐาน รูปสมการทั่วไป คือ Y = a + bX + cX2 โดยที่ a, b และ c เป็นค่าคงตัว โดยสามารถหาได้จาก สมการปกติ ดังนี้   n i iy 1 = an +   n i ixb 1 +   n i ixc 1 2 …(1)   n i iiyx 1 =   n i ixa 1 +   n i ixb 1 2 +   n i ixc 1 3 …(2)   n i ii yx 1 2 =   n i ixa 1 2 +   n i ixb 1 3 +   n i ixc 1 4 …(3) จะเห็นว่า ถ้าข้อมูลมีปริมาณมาก และเป็นจานวนที่ยากต่อการคานวณ จะทาให้เสียเวลามากใน การจัดกระทาข้อมูล และระบบสมการที่มี 3 ตัวแปร บางกรณีต้องอาศัยเมทริกซ์ช่วยในการคานวณ ดังนั้น เราอาจจะใช้เทคโนโลยีช่วยในการแก้ปัญหาดังกล่าว โดยในที่นี่จะใช้โปรแกรมสาเร็จรูปไมโครซอฟต์เอ็ก เซลช่วยในการคานวณ ซึ่งมีขั้นตอนดังนี้ ตัวอย่าง จากการศึกษาความสัมพันธ์ระหว่างอายุ (ปี) ของโคนม และปริมาณอาหาร (กิโลกรัม) ที่ใช้ใน การเลี้ยงต่อสัปดาห์ ปรากฏข้อมูลดังนี้ อายุ (ปี) : X 1.2 1.8 3.1 4.9 5.7 7.1 8.6 9.8 ปริมาณอาหารต่อสัปดาห์ (กก.) : Y 4.5 5.9 7 7.8 7.2 6.8 4.5 2.7 1. บันทึกข้อมูลลงใน MS Excel 2. เลือกข้อมูลในตารางในข้อ 1 เขียนแผนภาพการกระจายของข้อมูล โดยใช้เมนู insert 3. คานวณค่าที่จาเป็นสาหรับการคานวณ คือ   n i ix 1 ,   n i iy 1 ,   n i iiyx 1 ,   n i ix 1 2 ,   n i ii yx 1 2 ,   n i ix 1 3 ,   n i ix 1 4
  2. 2. 4. แทนค่าลงในสมการปกติ an +   n i ixb 1 +   n i ixc 1 2 =   n i iy 1 8 + 42.2 + 291.2 = 46.4   n i ixa 1 +   n i ixb 1 2 +   n i ixc 1 3 =   n i iiyx 1 42.2 + 291.2 + 2275.352 = 230.42   n i ixa 1 2 +   n i ixb 1 3 +   n i ixc 1 4 =   n i ii yx 1 2 291.2 + 2275.352 + 18971.9348 = 1448.988 โดยให้แสดงในรูปเมทริกซ์ ได้ดังนี้ 5. อาศัยความสัมพันธ์ของเมทริกซ์ เมื่อ A เป็นเมทริกซ์สัมประสิทธิ์, X เป็นเมทริกซ์ตัวแปร และ B เป็นเมทริกซ์ค่าคงตัว นั่นคือ AX = B ซึ่งจะหาเมทริกซ์ X ได้จาก X = A– 1B โดยหาอินเวอร์สของ เมทริกซ์ A ได้จากคาสั่ง =MINVERSE(array) โดยเลือกพื้นที่ที่จะวางค่าให้มีขนาด 3 x 3 พิมพ์ คาสั่ง เลือกข้อมูลที่จะคานวณ จากนั้นกด Ctrl + Shift + Enter จะได้ 6. หาผลคูณของ A-1B โดยโดยเลือกพื้นที่ที่จะวางค่าให้มีขนาด 3 x 1 ใช้คาสั่ง =mmult(array1, array2) Ctrl + Shift + Enter จะได้ 7. นาค่า a, b และ c ที่ได้ไปแทนค่าในสมการทั่วไปและนาไปใช้ในการคานวณ * * ** *** ***** ******** ************

×