SlideShare une entreprise Scribd logo
1  sur  24
Sensors, networks, and massive data
Michael W. Mahoney
Stanford University
May 2012
( For more info, see:
http:// cs.stanford.edu/people/mmahoney/
or Google on “Michael Mahoney”)
Lots of types of “sensors”
Examples:
• Physical/environmental: temperature, air quality, oil, etc.
• Consumer: RFID chips, SmartPhone, Store Video, etc.
• Health care: Patient Records, Images & Surgery Videos, etc.
• Financial: Transactions for regulations, HFT, etc.
• Internet/e-commerce: clicks, email, etc. for user modeling, etc.
• Astronomical/HEP: images, experiments, etc.
Common theme: easy to generate A LOT of data
Questions:
• What are similarities/differences i.t.o. funding drivers, customer
demands, questions of interest, time sensitivity, etc. about “sensing”
in these different applications?
• What can we learn from one area and apply to another area?
BIG data??? MASSIVE data????
NYT, Feb 11, 2012: “The Age of Big Data”
• “What is Big Data? A meme and a marketing term, for sure, but also
shorthand for advancing trends in technology that open the door to a new
approach to understanding the world and making decisions. …”
Why are big data big?
• Generate data at different places/times and different resolutions
• Factor of 10 more data is not just more data, but different data
BIG data??? MASSIVE data????
MASSIVE data:
• Internet, Customer Transactions, Astronomy/HEP = “Petascale”
• One Petabyte = watching 20 years of movies (HD) = listening to 20,000
years of MP3 (128 kbits/sec) = way too much to browse or comprehend
massive data:
• 105
people typed at 106
DNA SNPs; 106
or 109
node social network; etc.
In either case, main issues:
• Memory management issues, e.g., push computation to the data
• Hard to answer even basic questions about what data “looks like”
How do we view BIG data?
Algorithmic vs. Statistical Perspectives
Computer Scientists
• Data: are a record of everything that happened.
• Goal: process the data to find interesting patterns and associations.
• Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.
Statisticians (and Natural Scientists)
• Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.
• Goal: is to extract information about the world from noisy data.
• Methodology: Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.
Lambert (2000), Mahoney (2010)
Thinking about large-scale data
Data generation is modern version of microscope/telescope:
• See things couldn't see before: e.g., movement of people, clicks and
interests; tracking of packages; fine-scale measurements of temperature,
chemicals, etc.
• Those inventions ushered new scientific eras and new understanding of
the world and new technologies to do stuff
Easy things become hard and hard things become easy:
• Easier to see the other side of universe than bottom of ocean
• Means, sums, medians, correlations is easy with small data
Our ability to generate data far exceeds our
ability to extract insight from data.
Many challenges ...
• Tradeoffs between prediction & understanding
• Tradeoffs between computation & communication,
• Balancing heat dissipation & energy requirements
• Scalable, interactive, & inferential analytics
• Temporal constraints in real-time applications
• Understanding “structure” and “noise” at large-scale (*)
• Even meaningfully answering “What does the data look like?”
Micro-markets in sponsored search
10 million keywords
1.4MillionAdvertisers
Gambling
Sports
Sports
Gambling
Movies Media
Sport
videos
What is the CTR and
advertiser ROI of
sports gambling
keywords?
Goal: Find isolated markets/clusters (in an advertiser-bidded phrase bipartite graph)
with sufficient money/clicks with sufficient coherence.
Ques: Is this even possible?
What about sensors?
Vector space model - analogous to “bag-of-words” model for documents/terms.
• Each sensor is a “document,” a vector in a high-dimensional Euclidean space
• Each measurement is a “term”, describing the elements of that vector
• (Advertisers and bidded-phrases--and many other things--are also analogous.)
Can also define sensor-measurement graphs :
• Sensors are nodes, and edges are between sensors with similar measurements
m
documents
(sensors)
n terms (measurements)
A ij= frequency of j-th term in i-th
document (value of j-th measurement
at i-th sensor)
= =
Cluster-quality Score: Conductance
S
S’
11
 How cluster-like is a set of nodes?
Idea: balance “boundary” of cluster
with “volume” of cluster
 Need a natural intuitive measure:
Conductance (normalized cut)
φ(S) ≈ # edges cut / # edges inside
 Small φ(S) corresponds to better
clusters of nodes
Graph partitioning
A family of combinatorial optimization problems - want to
partition a graph’s nodes into two sets s.t.:
• Not much edge weight across the cut (cut quality)
• Both sides contain a lot of nodes
Standard formalizations of the bi-criterion are NP-hard!
Approximation algorithms:
• Spectral methods* - (compute eigenvectors)
• Local improvement - (important in practice)
• Multi-resolution - (important in practice)
• Flow-based methods* - (mincut-maxflow)
* comes with strong underlying theory to guide heuristics
Comparison of “spectral” versus “flow”
Spectral:
• Compute an eigenvector
• “Quadratic” worst-case bounds
• Worst-case achieved -- on “long
stringy” graphs
• Embeds you on a line (or Kn)
Flow:
• Compute a LP
• O(log n) worst-case bounds
• Worst-case achieved -- on
expanders
• Embeds you in L1
Two methods:
• Complementary strengths and weaknesses
• What we compute will depend on approximation
algorithm as well as objective function.
Analogy: What does a protein look like?
Experimental Procedure:
• Generate a bunch of output data by using
the unseen object to filter a known input
signal.
• Reconstruct the unseen object given the
output signal and what we know about the
artifactual properties of the input signal.
Three possible representations (all-atom;
backbone; and solvent-accessible
surface) of the three-dimensional
structure of the protein triose
phosphate isomerase.
Popular small networks
Zachary’s karate club Newman’s Network Science Meshes and RoadNet-CA
Large Social and Information Networks
Typical example of our findings
General relativity collaboration network
(pretty small: 4,158 nodes, 13,422 edges)
17Community size
Communityscore
Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008, 2010 & IM 2009)
Large Social and Information Networks
LiveJournal Epinions
Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of
whiskers), and black (randomly rewired network) for consistency and cross-validation.
Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008, 2010 & IM 2009)
Interpretation: “Whiskers” and the
“core” of large informatics graphs
• “Whiskers”
• maximal sub-graph detached
from network by removing a
single edge
• contains 40% of nodes and 20%
of edges
• “Core”
• the rest of the graph, i.e., the
2-edge-connected core
• Global minimum of NCPP is a whisker
• BUT, core itself has nested whisker-
core structure
Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008, 2010 & IM 2009)
Local “structure” and global “noise”
Many (most/all?) large informatics graphs (& massive data in general?)
• have local structure that is meaningfully geometric/low-dimensional
• does not have analogous meaningful global structure
Intuitive example:
• What does the graph of you and your
102
closest Facebook friends “look like”?
• What does the graph of you and your
105
closest Facebook friends “look like”?
Many lessons ...
This is problematic for MANY things people want to do:
• statistical analysis that relies on asymptotic limits
• recursive clustering algorithms
• analysts who want a few meaningful clusters
More data need not be better if you:
• don’t have control over the noise
• want “islands of insight” in the “sea of data”
How does this manifest itself in your “sensor” application?
• Needles in haystack; correlations; time series -- “scientific” apps
• Historically, CS & database apps did more summaries & aggregates
Big changes in the past ... and future
Consider the creation of:
• Modern Physics
• Computer Science
• Molecular Biology
These were driven by new measurement techniques and
technological advances, but they led to:
• big new (academic and applied) questions
• new perspectives on the world
• lots of downstream applications
We are in the middle of a similarly big shift!
• OR and Management Science
•Transistors and Microelectronics
• Biotechnology
Conclusions
HUGE range of “sensors” are generating A LOT of data:
• will lead to a very different world in many ways
Large-scale data are very different than small-scale data.
• Easy things become hard, and hard things become easy
• Types of questions that are meaningful to ask are different
• Structure, noise, etc. properties are often deeply counterintuitive
Different applications are driven by different considerations
• next-user-interaction, qualitative insight, failure modes, false
positives versus false negatives, time sensitivity, etc.
Algorithms can compute answers to known questions
• but algorithms can also be used as “experimental probes” of the data
to form questions!
MMDS Workshop on
“Algorithms for Modern Massive Data Sets”
(http://mmds.stanford.edu)
at Stanford University, July 10-13, 2012
Objectives:
- Address algorithmic, statistical, and mathematical challenges in modern statistical
data analysis.
- Explore novel techniques for modeling and analyzing massive, high-dimensional, and
nonlinearly-structured data.
- Bring together computer scientists, statisticians, mathematicians, and data analysis
practitioners to promote cross-fertilization of ideas.
Organizers: M. W. Mahoney, A. Shkolnik, G. Carlsson, and P. Drineas,
Registration is available now!

Contenu connexe

Similaire à Sensors1(1)

Chapter 1. Introduction
Chapter 1. IntroductionChapter 1. Introduction
Chapter 1. Introduction
butest
 
Ralph schroeder and eric meyer
Ralph schroeder and eric meyerRalph schroeder and eric meyer
Ralph schroeder and eric meyer
oiisdp
 
ESWC SS 2012 - Friday Keynote Marko Grobelnik: Big Data Tutorial
ESWC SS 2012 - Friday Keynote Marko Grobelnik: Big Data TutorialESWC SS 2012 - Friday Keynote Marko Grobelnik: Big Data Tutorial
ESWC SS 2012 - Friday Keynote Marko Grobelnik: Big Data Tutorial
eswcsummerschool
 

Similaire à Sensors1(1) (20)

Introduction to Data Mining
Introduction to Data MiningIntroduction to Data Mining
Introduction to Data Mining
 
DBMS
DBMSDBMS
DBMS
 
Data Science-1 (1).ppt
Data Science-1 (1).pptData Science-1 (1).ppt
Data Science-1 (1).ppt
 
Data Science: Origins, Methods, Challenges and the future?
Data Science: Origins, Methods, Challenges and the future?Data Science: Origins, Methods, Challenges and the future?
Data Science: Origins, Methods, Challenges and the future?
 
MESUR: Making sense and use of usage data
MESUR: Making sense and use of usage dataMESUR: Making sense and use of usage data
MESUR: Making sense and use of usage data
 
In search of lost knowledge: joining the dots with Linked Data
In search of lost knowledge: joining the dots with Linked DataIn search of lost knowledge: joining the dots with Linked Data
In search of lost knowledge: joining the dots with Linked Data
 
Chapter 1. Introduction
Chapter 1. IntroductionChapter 1. Introduction
Chapter 1. Introduction
 
10 problems 06
10 problems 0610 problems 06
10 problems 06
 
Semantic Sensor Networks and Linked Stream Data
Semantic Sensor Networks and Linked Stream DataSemantic Sensor Networks and Linked Stream Data
Semantic Sensor Networks and Linked Stream Data
 
Ralph schroeder and eric meyer
Ralph schroeder and eric meyerRalph schroeder and eric meyer
Ralph schroeder and eric meyer
 
ESWC SS 2012 - Friday Keynote Marko Grobelnik: Big Data Tutorial
ESWC SS 2012 - Friday Keynote Marko Grobelnik: Big Data TutorialESWC SS 2012 - Friday Keynote Marko Grobelnik: Big Data Tutorial
ESWC SS 2012 - Friday Keynote Marko Grobelnik: Big Data Tutorial
 
Network Science: Theory, Modeling and Applications
Network Science: Theory, Modeling and ApplicationsNetwork Science: Theory, Modeling and Applications
Network Science: Theory, Modeling and Applications
 
02 Network Data Collection
02 Network Data Collection02 Network Data Collection
02 Network Data Collection
 
02 Network Data Collection (2016)
02 Network Data Collection (2016)02 Network Data Collection (2016)
02 Network Data Collection (2016)
 
Share and analyze geonomic data at scale by Andy Petrella and Xavier Tordoir
Share and analyze geonomic data at scale by Andy Petrella and Xavier TordoirShare and analyze geonomic data at scale by Andy Petrella and Xavier Tordoir
Share and analyze geonomic data at scale by Andy Petrella and Xavier Tordoir
 
unit 1 DATA MINING.ppt
unit 1 DATA MINING.pptunit 1 DATA MINING.ppt
unit 1 DATA MINING.ppt
 
Ngsp
NgspNgsp
Ngsp
 
CLIR Fellows - Science Data - 14_0730
CLIR Fellows - Science Data - 14_0730CLIR Fellows - Science Data - 14_0730
CLIR Fellows - Science Data - 14_0730
 
Keynote on 2015 Yale Day of Data
Keynote on 2015 Yale Day of Data Keynote on 2015 Yale Day of Data
Keynote on 2015 Yale Day of Data
 
Data Science definition
Data Science definitionData Science definition
Data Science definition
 

Dernier

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Dernier (20)

Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 

Sensors1(1)

  • 1. Sensors, networks, and massive data Michael W. Mahoney Stanford University May 2012 ( For more info, see: http:// cs.stanford.edu/people/mmahoney/ or Google on “Michael Mahoney”)
  • 2. Lots of types of “sensors” Examples: • Physical/environmental: temperature, air quality, oil, etc. • Consumer: RFID chips, SmartPhone, Store Video, etc. • Health care: Patient Records, Images & Surgery Videos, etc. • Financial: Transactions for regulations, HFT, etc. • Internet/e-commerce: clicks, email, etc. for user modeling, etc. • Astronomical/HEP: images, experiments, etc. Common theme: easy to generate A LOT of data Questions: • What are similarities/differences i.t.o. funding drivers, customer demands, questions of interest, time sensitivity, etc. about “sensing” in these different applications? • What can we learn from one area and apply to another area?
  • 3. BIG data??? MASSIVE data???? NYT, Feb 11, 2012: “The Age of Big Data” • “What is Big Data? A meme and a marketing term, for sure, but also shorthand for advancing trends in technology that open the door to a new approach to understanding the world and making decisions. …” Why are big data big? • Generate data at different places/times and different resolutions • Factor of 10 more data is not just more data, but different data
  • 4. BIG data??? MASSIVE data???? MASSIVE data: • Internet, Customer Transactions, Astronomy/HEP = “Petascale” • One Petabyte = watching 20 years of movies (HD) = listening to 20,000 years of MP3 (128 kbits/sec) = way too much to browse or comprehend massive data: • 105 people typed at 106 DNA SNPs; 106 or 109 node social network; etc. In either case, main issues: • Memory management issues, e.g., push computation to the data • Hard to answer even basic questions about what data “looks like”
  • 5. How do we view BIG data?
  • 6. Algorithmic vs. Statistical Perspectives Computer Scientists • Data: are a record of everything that happened. • Goal: process the data to find interesting patterns and associations. • Methodology: Develop approximation algorithms under different models of data access since the goal is typically computationally hard. Statisticians (and Natural Scientists) • Data: are a particular random instantiation of an underlying process describing unobserved patterns in the world. • Goal: is to extract information about the world from noisy data. • Methodology: Make inferences (perhaps about unseen events) by positing a model that describes the random variability of the data around the deterministic model. Lambert (2000), Mahoney (2010)
  • 7. Thinking about large-scale data Data generation is modern version of microscope/telescope: • See things couldn't see before: e.g., movement of people, clicks and interests; tracking of packages; fine-scale measurements of temperature, chemicals, etc. • Those inventions ushered new scientific eras and new understanding of the world and new technologies to do stuff Easy things become hard and hard things become easy: • Easier to see the other side of universe than bottom of ocean • Means, sums, medians, correlations is easy with small data Our ability to generate data far exceeds our ability to extract insight from data.
  • 8. Many challenges ... • Tradeoffs between prediction & understanding • Tradeoffs between computation & communication, • Balancing heat dissipation & energy requirements • Scalable, interactive, & inferential analytics • Temporal constraints in real-time applications • Understanding “structure” and “noise” at large-scale (*) • Even meaningfully answering “What does the data look like?”
  • 9. Micro-markets in sponsored search 10 million keywords 1.4MillionAdvertisers Gambling Sports Sports Gambling Movies Media Sport videos What is the CTR and advertiser ROI of sports gambling keywords? Goal: Find isolated markets/clusters (in an advertiser-bidded phrase bipartite graph) with sufficient money/clicks with sufficient coherence. Ques: Is this even possible?
  • 10. What about sensors? Vector space model - analogous to “bag-of-words” model for documents/terms. • Each sensor is a “document,” a vector in a high-dimensional Euclidean space • Each measurement is a “term”, describing the elements of that vector • (Advertisers and bidded-phrases--and many other things--are also analogous.) Can also define sensor-measurement graphs : • Sensors are nodes, and edges are between sensors with similar measurements m documents (sensors) n terms (measurements) A ij= frequency of j-th term in i-th document (value of j-th measurement at i-th sensor) = =
  • 11. Cluster-quality Score: Conductance S S’ 11  How cluster-like is a set of nodes? Idea: balance “boundary” of cluster with “volume” of cluster  Need a natural intuitive measure: Conductance (normalized cut) φ(S) ≈ # edges cut / # edges inside  Small φ(S) corresponds to better clusters of nodes
  • 12. Graph partitioning A family of combinatorial optimization problems - want to partition a graph’s nodes into two sets s.t.: • Not much edge weight across the cut (cut quality) • Both sides contain a lot of nodes Standard formalizations of the bi-criterion are NP-hard! Approximation algorithms: • Spectral methods* - (compute eigenvectors) • Local improvement - (important in practice) • Multi-resolution - (important in practice) • Flow-based methods* - (mincut-maxflow) * comes with strong underlying theory to guide heuristics
  • 13. Comparison of “spectral” versus “flow” Spectral: • Compute an eigenvector • “Quadratic” worst-case bounds • Worst-case achieved -- on “long stringy” graphs • Embeds you on a line (or Kn) Flow: • Compute a LP • O(log n) worst-case bounds • Worst-case achieved -- on expanders • Embeds you in L1 Two methods: • Complementary strengths and weaknesses • What we compute will depend on approximation algorithm as well as objective function.
  • 14. Analogy: What does a protein look like? Experimental Procedure: • Generate a bunch of output data by using the unseen object to filter a known input signal. • Reconstruct the unseen object given the output signal and what we know about the artifactual properties of the input signal. Three possible representations (all-atom; backbone; and solvent-accessible surface) of the three-dimensional structure of the protein triose phosphate isomerase.
  • 15. Popular small networks Zachary’s karate club Newman’s Network Science Meshes and RoadNet-CA
  • 16. Large Social and Information Networks
  • 17. Typical example of our findings General relativity collaboration network (pretty small: 4,158 nodes, 13,422 edges) 17Community size Communityscore Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008, 2010 & IM 2009)
  • 18. Large Social and Information Networks LiveJournal Epinions Focus on the red curves (local spectral algorithm) - blue (Metis+Flow), green (Bag of whiskers), and black (randomly rewired network) for consistency and cross-validation. Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008, 2010 & IM 2009)
  • 19. Interpretation: “Whiskers” and the “core” of large informatics graphs • “Whiskers” • maximal sub-graph detached from network by removing a single edge • contains 40% of nodes and 20% of edges • “Core” • the rest of the graph, i.e., the 2-edge-connected core • Global minimum of NCPP is a whisker • BUT, core itself has nested whisker- core structure Leskovec, Lang, Dasgupta, and Mahoney (WWW 2008, 2010 & IM 2009)
  • 20. Local “structure” and global “noise” Many (most/all?) large informatics graphs (& massive data in general?) • have local structure that is meaningfully geometric/low-dimensional • does not have analogous meaningful global structure Intuitive example: • What does the graph of you and your 102 closest Facebook friends “look like”? • What does the graph of you and your 105 closest Facebook friends “look like”?
  • 21. Many lessons ... This is problematic for MANY things people want to do: • statistical analysis that relies on asymptotic limits • recursive clustering algorithms • analysts who want a few meaningful clusters More data need not be better if you: • don’t have control over the noise • want “islands of insight” in the “sea of data” How does this manifest itself in your “sensor” application? • Needles in haystack; correlations; time series -- “scientific” apps • Historically, CS & database apps did more summaries & aggregates
  • 22. Big changes in the past ... and future Consider the creation of: • Modern Physics • Computer Science • Molecular Biology These were driven by new measurement techniques and technological advances, but they led to: • big new (academic and applied) questions • new perspectives on the world • lots of downstream applications We are in the middle of a similarly big shift! • OR and Management Science •Transistors and Microelectronics • Biotechnology
  • 23. Conclusions HUGE range of “sensors” are generating A LOT of data: • will lead to a very different world in many ways Large-scale data are very different than small-scale data. • Easy things become hard, and hard things become easy • Types of questions that are meaningful to ask are different • Structure, noise, etc. properties are often deeply counterintuitive Different applications are driven by different considerations • next-user-interaction, qualitative insight, failure modes, false positives versus false negatives, time sensitivity, etc. Algorithms can compute answers to known questions • but algorithms can also be used as “experimental probes” of the data to form questions!
  • 24. MMDS Workshop on “Algorithms for Modern Massive Data Sets” (http://mmds.stanford.edu) at Stanford University, July 10-13, 2012 Objectives: - Address algorithmic, statistical, and mathematical challenges in modern statistical data analysis. - Explore novel techniques for modeling and analyzing massive, high-dimensional, and nonlinearly-structured data. - Bring together computer scientists, statisticians, mathematicians, and data analysis practitioners to promote cross-fertilization of ideas. Organizers: M. W. Mahoney, A. Shkolnik, G. Carlsson, and P. Drineas, Registration is available now!