SlideShare une entreprise Scribd logo
1  sur  21
Bernoulli

            1) Tenemos cartas que están enumeradas del 1 al 9

         ¿Cuál es la probabilidad de sacar la carta 9?

             ° La probabilidad de que obtengamos la carta 9.
                  P(x=1) = (1/9) 1 * (8/9) 0 = 1/9 = 0.111

           ° La probabilidad de que NO obtengamos la carta 9.
                   P(x=0) = (1/9)0 * (8/9)1 = 8/9 = 0.888




2) Una maestra enumera a sus alumnos del 1 al 16, para así poder darles un
premio, pero la maestra los seleccionará con los ojos cerrados, ¿Cual es la
            probabilidad de que salga el alumno numero 16?

        ° La probabilidad de que seleccione al alumno numero 16.
               P(x=1) = (1/16) 1 * (15/16) 0 = 1/16 = 0.0625

      ° La probabilidad de que NO seleccione al alumno numero 16.
                P(x=0) = (1/9)0 * (15/16)1 = 15/16 = 0.937
3) Hay una urna con 342 boletos, para ganar un automóvil, al momento de
sacar alguno de ellos ¿qué probabilidad hay para que pueda salir premiado el
                               boleto número 342?

             ° La probabilidad de que saque el boleto número 342.
               P(x=1) = (1/342) 1 * (341/342) 0 = 1/342 = 0.00292

        ° La probabilidad de que NO seleccione al alumno numero 342.
               P(x=0) = (1/342)0 * (341/342)1 = 341/342 = 0.99707




4) "Lanzar una moneda, probabilidad de conseguir que salga cruz". Se trata de
 un solo experimento, con dos resultados posibles: el éxito (p) se considerará
sacar cruz. Valdrá 0,5. El fracaso (q) que saliera cara, que vale (1 - p) = 1 - 0,5 =
                                         0,5.

La variable aleatoria X medirá "número de cruces que salen en un lanzamiento",
y sólo existirán dos resultados posibles: 0 (ninguna cruz, es decir, salir cara) y 1
                                     (una cruz).

 Por tanto, la v.a. X se distribuirá como una Bernoulli, ya que cumple todos los
                                     requisitos.

                        ° La probabilidad de obtener cruz.
                        P(x=1) = (0.5) 1 * (0.5) 0 = 0.5 = 0.5
                      ° La probabilidad de no obtener cruz.
                       P(x=0) = (0.5)0 * (0.5)1 = 0.5 = 0.5
Binomial
  1) Supongamos que se lanza un dado 50 veces y queremos la probabilidad
     de que el número 3 salga 20 veces. En este caso tenemos una X ~ B(50,
                     1/6) y la probabilidad sería P(X=20):




 2) La última novela de un autor ha tenido un gran éxito, hasta el
punto de que el 80% de los lectores ya la han leido. Un grupo de 4
                amigos son aficionados a la lectura:

1. ¿Cuál es la probabilidad de que en el grupo hayan leido la novela
                             2 personas?

                      B(4, 0.2) p = 0.8 q = 0.2




                       2.¿Y cómo máximo 2?
3) Un agente de seguros vende pólizas a cinco personas de la misma
  edad y que disfrutan de buena salud. Según las tablas actuales, la
probabilidad de que una persona en estas condiciones viva 30 años o
  más es 2/3. Hállese la probabilidad de que, transcurridos 30 años,
                                vivan:

                       1. Las cinco personas.

                     B(5, 2/3) p = 2/3 q = 1/3




                     2.Al menos tres personas.




                   3.Exactamente dos personas.




  4) Se lanza una moneda cuatro veces. Calcular la probabilidad de
                  que salgan más caras que cruces.

                      B(4, 0.5) p = 0.5q = 0.5
5) La probabilidad de que un hombre acierte en el blanco es 1/4. Si
dispara 10 veces ¿cuál es la probabilidad de que acierte exactamente
  en tres ocasiones? ¿Cuál es la probabilidad de que acierte por lo
                       menos en una ocasión?

                     B(10, 1/4) p = 1/4q = 3/4
Poisson
1) Si ya se conoce que solo el 3% de los alumnos de contabilidad son muy
   inteligentes ¿ Calcular la probabilidad de que si tomamos 100 alumnos
                  al azar 5 de ellos sean muy inteligentes

                                  • n= 100

                                  • P=0.03

                         •          =100*0.03=3

                                   • x=5




      2) La producción de televisores en Samsung trae asociada una
    probabilidad de defecto del 2%, si se toma un lote o muestra de 85
      televisores, obtener la probabilidad que existan 4 televisores con
                                    defectos.

                                  • n=85

                                  • P=0.02

                • P(x5)=(e^-17)(1.7^4)/4!=0.0635746


                                   • X=4

                              •        =1.7
3) El número de mensajes recibidos por el tablero computado de anuncios
       es una variable aleatoria de Poisson con una razón media de ocho
                                mensajes por hora.

a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora?
b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas?

a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora?
                             P(X=3)= e-8*
                   P(X=3)= 3.354626279x10-4 *

                P(X=3)= 3.354626279x10-4 * 273.0666667

                          P(X=3)= 0.09160366


b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas?
                           P(X=10)= e-12*
              P(X=10)= 6.144212353x10-6 *
               P(X=10)= 6.144212353x10-6 * 17062.76571
                       P(X=10)= 0.104837255


        4) Una jaula con 100 pericos 15 de ellos hablan ruso calcular la
       probabilidad de que si tomamos 20 al azar 3 de ellos hablan ruso

                                  • n=20

              • P=0.15     P (x=3)=(e^-8)(3^3)/3!=0.2240418

                                   • X=3
•        =3

5) La concentración de partículas en una suspensión es 2 por mL. Se agita por
completo la concentración, y posteriormente se extraen 3 mL. Sea X el número
                 de partículas que son retiradas. Determine.

a) P(X=5)
b) P(X≤2)
c) μX
d) σx
                               a) P(X=5)= e-6 *
                       P(X=5)= 2.478752177x10-3 *

                       P(X=5)= 2.478752177x10-3 * 64.8

                              P(X=5)= 0.160623141

                                   b) P(X≤2)
            P(X=0)= e-6 *                             P(X=1)= e-6 *
     P(X=0)= 2.478752177x10-3 *              P(X=1)= 2.478752177x10-3 *

   P(X=0)= 2.478752177x10-3 * 1                   P(X=1)= 2.478752177x10-3 * 6

        P(X=0)= 2.478752177x10-3                     P(X=1)= 0.014872513



      P(X=2)= e-6 *                      P(X≤2)= P(X=0)+P(X=1)+P(X=2)
 P(X=2)= 2.478752177x10-3 *               P(X≤2)= 2.478752177+0.014872513+
                                0.044617539
                        P(X=2)= 2.478752177x10-3 * 18
P(X=2)= 0.044617539                     P(X≤2)= 0.061968804

                           c) μX
                           μX= 6

                             d) σx
                            σx=
                      σx= 2.449489743
Normal
                    1) Determine el área bajo la curva normal

                           a) Ala derecha de z= -0.85.

                           b) Entre z = 0.40 y z = 1.30.

                           c) Entre z =0.30 y z = 0.90.

                       d) Desde z = - 1.50 hasta z =-0.45



Estos resultados se obtuvieron con las tablas anexas al final de los problemas

                          A – 1 – 0.1977 = 0.8023

                        B – 0.9032 – 0.6554 = 0.2478

                        C – 0.8159 – 0.3821 = 0.4338

                     D – 0.0668 + (1 – 0.3264) = 0.7404




2) Las puntuaciones de una prueba estandarizada se distribuyen normalmente
               con media de 480 y desviación estándar de 90.

          a) ¿Cuál es la proposición de puntuaciones mayores a 700?

              b) ¿Cuál es el 25º? ¿Percentil de las puntuaciones?

   c) Si la puntuación de alguien es de 600. ¿En qué percentil se encuentra?
d) ¿Qué proporción de las puntuaciones se encuentra entre 420 y 520?

                              µ = 480       σ = 90



      A - Z = (700-480)/90 = 2.44 el área a la derecha de Z es 0.0073

                 B – la puntuación de z en el 25 º percentil -0.67

               El 25 º percentil es entonces 480 - 0.67 (90) = 419.7

       C – z = (600-480)/90 = 1.33 el área a la derecha de z es 0.9082

              Por lo que una puntuación de 600 esta en el percentil 91

                          D - z = (420 - 480)/90 = - 0.67

                             Z = (520 – 480)/90 = 0.44

        El área entre z = - 0.67 y z = 0.44 es 0.6700 – 0.2514 = 0.4186




3) La resistencia de una aleación de aluminio se distribuye normalmente con
     media de 10 giga pascales (Gpa) desviación estándar de 1.4 Gpa.

     a) ¿Cuál es la probabilidad de que una muestra de esta aleación tenga
                              resistencia mayor a 12 GPa?

         b) Determine el primer cuartil de la resistencia de esta aleación.

         c)   Determine el 95º. Percentil de la resistencia de esta aleación.

                                  RESULTADOS

                                 µ = 10 σ = 1.4
A) z = (12 -10)/1.4 = 1.43 el área ala derecha de z = 1.43 es 1 – 0.9236 =
                                   0.0764

             B) la puntuación de z en el 25 º percentil es -0.67

          El 25 º percentil es entonces 10 - 0.67 (1.4) = 9.062 Gpa.

             C) la puntuación de z en el 95 º percentil es 1.645

         El 25 º percentil es entonces 10 + 1.645(1.4) = 12.303 Gpa.




4) La penicilina es producida por el hongo penicillium, que crece en un caldo,
 cuyo contenido de azúcar debe controlarse con cuidado. La concentración
optima e azúcar es de 4.9 mg/mL. Si la concentración excede los 6 mg/mL, el
          hongo muere y el proceso debe suspenderse todo el día.



         a) ¿Si la concentración de azúcar en tandas de caldo se distribuye
         normalmente con media 4.9 mg/mL y desviación estándar 0.6 mg/mL
                 en que proporción de días se suspenderá el proceso?

       b) El distribuidor ofrece vender caldo con una concentración de azúcar
              que se distribuye normalmente con medida de 5.2 mg/mL y
           desviación estándar de 0.4 mg/mL ¿este caldo surtirá efectos con
                          menos días de producción perdida?

                                     RESULTADOS

          A) (6 – 4.9)/0.6 =1.83                  1 – 0.9664 = 0.0336
B) Z = (6 – 5.2)/0.4 = 2.00      1 – 0.9772 = 0.0228

           Con este caldo el proceso se suspendería el 2.28% de los días




5) El volumen de las llantas llenadas por cierta maquina se distribuye
   con media de 12.05 onzas y desviación estándar de 0.03 onzas.

           a) ¿Qué proporción de latas contiene menos de 12 onzas?

b) La medida del proceso se puede ajustar utilizando calibración. ¿En que valor
  debe fijarse la media para que el 99% de las latas contenga 12 onzas o mas?

 c) Si la media del procesos sigue siendo de 12.05 onzas. ¿En que valor debe
     fijarse la media para que el 99% de las latas contenga 12 onzas o mas?



                                  RESULTADOS

               A) (12 – 12.05)/0.03 = -1.67 la proporción es 0.0475



    B)   Z= -2.33 entonces -2.33=(12 - µ)/0.03 despejando µ = 12 .07 onzas



              C) – 2.33 = (12-12.05)/ σ despejando σ = 0.0215 onzas
Gamma
  1) El número de pacientes que llegan a la consulta de un médico sigue una
                                  distribución de
     Poisson de media 3 pacientes por hora. Calcular la probabilidad de que
       transcurra menos de una hora hasta la llegada del segundo paciente.
     Debe tenerse en cuenta que la variable aleatoria “tiempo que transcurre
                     hasta la llegada del segundo paciente”
                      sigue una distribución Gamma (6, 2).
                                     Solución:

               Cálculo de probabilidades. Distribuciones continuas

                                Gamma
                                  (a p)
                               a : Escala 60000
                               p : Forma 20000
                                Punto X 10000

                  Cola Izquierda Pr[X<=k]           0,9826
                   Cola Derecha Pr[X>=k]             0,0174
                    Media                           0,3333
                  Varianza                          0,0556
                   Moda                             0,1667

    La probabilidad de que transcurra menos de una hora hasta que llegue el
                           segundo paciente es 0,98.


2) Suponiendo que el tiempo de supervivencia, en años, de pacientes que son
    sometidos a una cierta intervención quirúrgica en un hospital sigue una
       distribución Gamma con parámetros a=0,81 y p=7,81, calcúlese:
1. El tiempo medio de supervivencia.
2. Los años a partir de los cuales la probabilidad de supervivencia es menor que
                                        0,1.

              Cálculo de probabilidades. Distribuciones continuas

                                 Gamma (a,p)
                            a : Escala   0,8100
                            p : Forma     7,8100

                    Cola Izquierda Pr [X<=k]      0,9000
                    Cola Derecha Pr [X>=k]        0,1000
                   Punto X                      14,2429
                   Media                         9,6420
                    Varianza                     11,9037
                   Moda                            8,4074
     El tiempo medio de supervivencia es de, aproximadamente, 10 años.




                            T- Student
1. Sea T ~ t(4,0.5)

                                   a)    Determinar




                                   b) Determinar




                                 c) Determinar P(T

                       P(T

= 1- e –(0.5)(1)        - e –(0.5)(1)        - e –(0.5)(1)    - e (0.5)(1)

                   =1- 0.60653 -0.30327 -0.075816 -0.012636

                                   =0.000175

                                d) Determinar P(T

                       P(T

 = e –(0.5)(3)         - e –(0.5)(3)        - e –(0.5)(3)    - e (0.5)(3)

                    =0.22313 + 0.33470+0.25102 +0.12551

                                        =0.9344
2) Sea T ~ Weibull(0.5,3)

                                 a)   Determinar




                                 b)   Determinar




                            c)   Determinar P(T

             P (T>5) =1-P(T 1) = 1 – e-




3)   En el articulo “Parameter Estimation with Only One Complete Failure
Observation”se modela la duracion en horas, de cierto tipo de cojinete con
       la distribucion de Weibull con parámetros



a) Determine la probabilidad de que un cojinete dure mas de 1000 horas
b) Determine la probabilidad de que un cojinete dure menos de 2000
                                   horas

           P(T<2000)= P(T



c) La función de riesgo se definio en el ejercicio 4 ¿Cuál es el riesgo en
                              T=2000 horas?

           h(t) =
4) La duración de un ventilador, en horas , que se usa en un sistema
     computacional tiene una distribución de Weibull con

        a) ¿Cuáles la probabilidad de que un ventilador dure mas de 10 000
                                           horas?

            P(T>10 000 ) =1 –(1-                                 =0.3679



       b) ¿Cuál es la probabilidad de que un ventilador dure menos de 5000
                                           horas?

                    P(t<5000) =P(T




 5) Un sistema consiste de dos componentes conectados en serie. El sistema
fallara cuando alguno de los componentes falle. Sea T el momento en el que el
 sistema falla. Sean X1 y X2 las duraciones de los dos componentes. Suponga
que X1 y X2 son independientes y que cada uno sigue una distribución Weibull
                                con             2

                            a) Determine P(

               P(

                                b)    Determine P(T 5)



                          P(T                        =0.8647
c) T Tiene una distribución de Weibull= si es Asi ¿Cuáles son sus
                           parametros?

              Si, T~ Weibull (2,

Contenu connexe

Tendances

Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpoleSolucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Miguel Leonardo Sánchez Fajardo
 
Ejercicios Resueltos: Probabilidades y Variables Aleatorias
Ejercicios Resueltos: Probabilidades y Variables AleatoriasEjercicios Resueltos: Probabilidades y Variables Aleatorias
Ejercicios Resueltos: Probabilidades y Variables Aleatorias
Javiera Huera (Temuco)
 
Normal 5 ejemplos
Normal  5 ejemplosNormal  5 ejemplos
Normal 5 ejemplos
karemlucero
 
Distribución de poisson ejercicio práctico-
Distribución de poisson  ejercicio práctico-Distribución de poisson  ejercicio práctico-
Distribución de poisson ejercicio práctico-
Jhonatan Arroyave Montoya
 
79276671 ejercicios-unidad-8
79276671 ejercicios-unidad-879276671 ejercicios-unidad-8
79276671 ejercicios-unidad-8
Cecy De León
 

Tendances (20)

Tarea 12 de probabilidad y estadística con respuestas
Tarea 12 de probabilidad y  estadística con respuestasTarea 12 de probabilidad y  estadística con respuestas
Tarea 12 de probabilidad y estadística con respuestas
 
Teorema del limite central
Teorema del limite centralTeorema del limite central
Teorema del limite central
 
Tarea 16 de probabilidad y estadistica con respuestas
Tarea 16 de probabilidad y estadistica  con respuestasTarea 16 de probabilidad y estadistica  con respuestas
Tarea 16 de probabilidad y estadistica con respuestas
 
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpoleSolucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
Solucionario libro: Probabilidad y estadística para ingenieros 6 ed - walpole
 
Ejercicios Resueltos: Probabilidades y Variables Aleatorias
Ejercicios Resueltos: Probabilidades y Variables AleatoriasEjercicios Resueltos: Probabilidades y Variables Aleatorias
Ejercicios Resueltos: Probabilidades y Variables Aleatorias
 
Normal 5 ejemplos
Normal  5 ejemplosNormal  5 ejemplos
Normal 5 ejemplos
 
Distribución de Probabilidad Discreta. Estadística, Douglas A. Lind, William ...
Distribución de Probabilidad Discreta. Estadística, Douglas A. Lind, William ...Distribución de Probabilidad Discreta. Estadística, Douglas A. Lind, William ...
Distribución de Probabilidad Discreta. Estadística, Douglas A. Lind, William ...
 
Tarea 10 de probabilidad y estadistica con respuesta
Tarea 10 de probabilidad y estadistica con respuestaTarea 10 de probabilidad y estadistica con respuesta
Tarea 10 de probabilidad y estadistica con respuesta
 
Distribución de poisson ejercicio práctico-
Distribución de poisson  ejercicio práctico-Distribución de poisson  ejercicio práctico-
Distribución de poisson ejercicio práctico-
 
Ejercicios unidad 3 mata
Ejercicios unidad 3 mataEjercicios unidad 3 mata
Ejercicios unidad 3 mata
 
Tarea 13 de probabilidad y estadística con respuesta
Tarea 13 de probabilidad y estadística con respuestaTarea 13 de probabilidad y estadística con respuesta
Tarea 13 de probabilidad y estadística con respuesta
 
Tarea 17 de probabilidad y estadistica con respuestas
Tarea 17 de probabilidad y estadistica con respuestasTarea 17 de probabilidad y estadistica con respuestas
Tarea 17 de probabilidad y estadistica con respuestas
 
Distribucion de bernoulli ejercicios
Distribucion de bernoulli  ejerciciosDistribucion de bernoulli  ejercicios
Distribucion de bernoulli ejercicios
 
Distrib.binomial
Distrib.binomialDistrib.binomial
Distrib.binomial
 
79276671 ejercicios-unidad-8
79276671 ejercicios-unidad-879276671 ejercicios-unidad-8
79276671 ejercicios-unidad-8
 
Estadística Probabilidades
Estadística ProbabilidadesEstadística Probabilidades
Estadística Probabilidades
 
TRABAJO DE DISTRIBUCCION DE PROBABILIDAD
TRABAJO DE DISTRIBUCCION DE PROBABILIDADTRABAJO DE DISTRIBUCCION DE PROBABILIDAD
TRABAJO DE DISTRIBUCCION DE PROBABILIDAD
 
T student 5 ejemplos beeto
T student 5 ejemplos beetoT student 5 ejemplos beeto
T student 5 ejemplos beeto
 
Estudio de los conceptos de la probabilidad
Estudio de los conceptos de la probabilidadEstudio de los conceptos de la probabilidad
Estudio de los conceptos de la probabilidad
 
Trabajo probabilidad
Trabajo probabilidadTrabajo probabilidad
Trabajo probabilidad
 

Similaire à Ejemplos de distribuciones de probabilidad

Similaire à Ejemplos de distribuciones de probabilidad (20)

Ejemplos de distribuciones de probabilidad
Ejemplos de distribuciones de probabilidadEjemplos de distribuciones de probabilidad
Ejemplos de distribuciones de probabilidad
 
Ejemplos de distribuciones de probabilidad
Ejemplos de distribuciones de probabilidadEjemplos de distribuciones de probabilidad
Ejemplos de distribuciones de probabilidad
 
Distrubución binomial
Distrubución binomialDistrubución binomial
Distrubución binomial
 
Ejemplos de distribuciones
Ejemplos de distribucionesEjemplos de distribuciones
Ejemplos de distribuciones
 
Trabajo final
Trabajo finalTrabajo final
Trabajo final
 
Normal
NormalNormal
Normal
 
Ejemplos de distribuciones
Ejemplos de distribucionesEjemplos de distribuciones
Ejemplos de distribuciones
 
Trabajo3 unidad2
Trabajo3 unidad2Trabajo3 unidad2
Trabajo3 unidad2
 
Ejercicios de distribución binomial, hipergeométrica y de poisson pablo peraz...
Ejercicios de distribución binomial, hipergeométrica y de poisson pablo peraz...Ejercicios de distribución binomial, hipergeométrica y de poisson pablo peraz...
Ejercicios de distribución binomial, hipergeométrica y de poisson pablo peraz...
 
Distribuciones de probabilidad con ejemplos
Distribuciones de probabilidad con ejemplosDistribuciones de probabilidad con ejemplos
Distribuciones de probabilidad con ejemplos
 
Unidad dos punto n°3
Unidad dos punto n°3Unidad dos punto n°3
Unidad dos punto n°3
 
distribuciones
distribuciones distribuciones
distribuciones
 
EJEMPLOS DE CADA DISTRIBUCIÓN
EJEMPLOS DE CADA DISTRIBUCIÓN EJEMPLOS DE CADA DISTRIBUCIÓN
EJEMPLOS DE CADA DISTRIBUCIÓN
 
Trabajo de estadística
Trabajo de estadísticaTrabajo de estadística
Trabajo de estadística
 
Trabajo de estadística
Trabajo de estadísticaTrabajo de estadística
Trabajo de estadística
 
5 ejemplos de las distribuciones
5 ejemplos de las distribuciones5 ejemplos de las distribuciones
5 ejemplos de las distribuciones
 
Distribucion de probabilidad binomal
Distribucion de probabilidad binomalDistribucion de probabilidad binomal
Distribucion de probabilidad binomal
 
trabajo de estadistca
trabajo de estadistcatrabajo de estadistca
trabajo de estadistca
 
Labo 2
Labo   2Labo   2
Labo 2
 
Laboratorio 2
Laboratorio 2Laboratorio 2
Laboratorio 2
 

Plus de Laksmi Rodriguez

Capacidad y habilidad del proceso control estadístico
Capacidad y habilidad del proceso   control estadísticoCapacidad y habilidad del proceso   control estadístico
Capacidad y habilidad del proceso control estadístico
Laksmi Rodriguez
 
Check list control estadístico
Check list   control estadísticoCheck list   control estadístico
Check list control estadístico
Laksmi Rodriguez
 
Check list control estadístico
Check list   control estadísticoCheck list   control estadístico
Check list control estadístico
Laksmi Rodriguez
 
Check list control estadístico
Check list   control estadísticoCheck list   control estadístico
Check list control estadístico
Laksmi Rodriguez
 
Material de apoyo para el video control estadístico del proceso
Material de apoyo para el video   control estadístico del procesoMaterial de apoyo para el video   control estadístico del proceso
Material de apoyo para el video control estadístico del proceso
Laksmi Rodriguez
 
Material de apoyo para el video control estadístico del proceso
Material de apoyo para el video   control estadístico del procesoMaterial de apoyo para el video   control estadístico del proceso
Material de apoyo para el video control estadístico del proceso
Laksmi Rodriguez
 
Guión de video control estadístico del proceso
Guión de video   control estadístico del procesoGuión de video   control estadístico del proceso
Guión de video control estadístico del proceso
Laksmi Rodriguez
 
50 palabras no entendidas de la lectura de barbaros a burócratas
50 palabras no entendidas de la lectura   de barbaros a burócratas50 palabras no entendidas de la lectura   de barbaros a burócratas
50 palabras no entendidas de la lectura de barbaros a burócratas
Laksmi Rodriguez
 
Resumen de barbaros a burócratas
Resumen   de barbaros a burócratasResumen   de barbaros a burócratas
Resumen de barbaros a burócratas
Laksmi Rodriguez
 
50 palabras no entendidas de la lectura de barbaros a burócratas
50 palabras no entendidas de la lectura   de barbaros a burócratas50 palabras no entendidas de la lectura   de barbaros a burócratas
50 palabras no entendidas de la lectura de barbaros a burócratas
Laksmi Rodriguez
 
Reseña de barbaros a burócratas
Reseña   de barbaros a burócratasReseña   de barbaros a burócratas
Reseña de barbaros a burócratas
Laksmi Rodriguez
 
Reseña “de barbaros a burócratas”
Reseña “de barbaros a burócratas”Reseña “de barbaros a burócratas”
Reseña “de barbaros a burócratas”
Laksmi Rodriguez
 
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Laksmi Rodriguez
 
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Laksmi Rodriguez
 
Intervalos de confianza, unidad 3
Intervalos de confianza, unidad 3Intervalos de confianza, unidad 3
Intervalos de confianza, unidad 3
Laksmi Rodriguez
 
Prueba de hipótesis, unidad 3
Prueba de hipótesis, unidad 3Prueba de hipótesis, unidad 3
Prueba de hipótesis, unidad 3
Laksmi Rodriguez
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidad
Laksmi Rodriguez
 
Tabla de frecuencias e histograma
Tabla de frecuencias e histogramaTabla de frecuencias e histograma
Tabla de frecuencias e histograma
Laksmi Rodriguez
 
Tabla de Frecuencias e Histograma
Tabla de Frecuencias e HistogramaTabla de Frecuencias e Histograma
Tabla de Frecuencias e Histograma
Laksmi Rodriguez
 

Plus de Laksmi Rodriguez (20)

Capacidad y habilidad del proceso control estadístico
Capacidad y habilidad del proceso   control estadísticoCapacidad y habilidad del proceso   control estadístico
Capacidad y habilidad del proceso control estadístico
 
Check list control estadístico
Check list   control estadísticoCheck list   control estadístico
Check list control estadístico
 
Check list control estadístico
Check list   control estadísticoCheck list   control estadístico
Check list control estadístico
 
Check list control estadístico
Check list   control estadísticoCheck list   control estadístico
Check list control estadístico
 
Material de apoyo para el video control estadístico del proceso
Material de apoyo para el video   control estadístico del procesoMaterial de apoyo para el video   control estadístico del proceso
Material de apoyo para el video control estadístico del proceso
 
Material de apoyo para el video control estadístico del proceso
Material de apoyo para el video   control estadístico del procesoMaterial de apoyo para el video   control estadístico del proceso
Material de apoyo para el video control estadístico del proceso
 
Guión de video control estadístico del proceso
Guión de video   control estadístico del procesoGuión de video   control estadístico del proceso
Guión de video control estadístico del proceso
 
50 palabras no entendidas de la lectura de barbaros a burócratas
50 palabras no entendidas de la lectura   de barbaros a burócratas50 palabras no entendidas de la lectura   de barbaros a burócratas
50 palabras no entendidas de la lectura de barbaros a burócratas
 
Resumen de barbaros a burócratas
Resumen   de barbaros a burócratasResumen   de barbaros a burócratas
Resumen de barbaros a burócratas
 
50 palabras no entendidas de la lectura de barbaros a burócratas
50 palabras no entendidas de la lectura   de barbaros a burócratas50 palabras no entendidas de la lectura   de barbaros a burócratas
50 palabras no entendidas de la lectura de barbaros a burócratas
 
Reseña de barbaros a burócratas
Reseña   de barbaros a burócratasReseña   de barbaros a burócratas
Reseña de barbaros a burócratas
 
Reseña “de barbaros a burócratas”
Reseña “de barbaros a burócratas”Reseña “de barbaros a burócratas”
Reseña “de barbaros a burócratas”
 
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
 
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
Qué cosas importantes crees que deberías aprender y no estás aprendiendo para...
 
Intervalos de confianza, unidad 3
Intervalos de confianza, unidad 3Intervalos de confianza, unidad 3
Intervalos de confianza, unidad 3
 
Prueba de hipótesis, unidad 3
Prueba de hipótesis, unidad 3Prueba de hipótesis, unidad 3
Prueba de hipótesis, unidad 3
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidad
 
Tabla de frecuencias e histograma
Tabla de frecuencias e histogramaTabla de frecuencias e histograma
Tabla de frecuencias e histograma
 
Blog
BlogBlog
Blog
 
Tabla de Frecuencias e Histograma
Tabla de Frecuencias e HistogramaTabla de Frecuencias e Histograma
Tabla de Frecuencias e Histograma
 

Ejemplos de distribuciones de probabilidad

  • 1.
  • 2. Bernoulli 1) Tenemos cartas que están enumeradas del 1 al 9 ¿Cuál es la probabilidad de sacar la carta 9? ° La probabilidad de que obtengamos la carta 9. P(x=1) = (1/9) 1 * (8/9) 0 = 1/9 = 0.111 ° La probabilidad de que NO obtengamos la carta 9. P(x=0) = (1/9)0 * (8/9)1 = 8/9 = 0.888 2) Una maestra enumera a sus alumnos del 1 al 16, para así poder darles un premio, pero la maestra los seleccionará con los ojos cerrados, ¿Cual es la probabilidad de que salga el alumno numero 16? ° La probabilidad de que seleccione al alumno numero 16. P(x=1) = (1/16) 1 * (15/16) 0 = 1/16 = 0.0625 ° La probabilidad de que NO seleccione al alumno numero 16. P(x=0) = (1/9)0 * (15/16)1 = 15/16 = 0.937
  • 3. 3) Hay una urna con 342 boletos, para ganar un automóvil, al momento de sacar alguno de ellos ¿qué probabilidad hay para que pueda salir premiado el boleto número 342? ° La probabilidad de que saque el boleto número 342. P(x=1) = (1/342) 1 * (341/342) 0 = 1/342 = 0.00292 ° La probabilidad de que NO seleccione al alumno numero 342. P(x=0) = (1/342)0 * (341/342)1 = 341/342 = 0.99707 4) "Lanzar una moneda, probabilidad de conseguir que salga cruz". Se trata de un solo experimento, con dos resultados posibles: el éxito (p) se considerará sacar cruz. Valdrá 0,5. El fracaso (q) que saliera cara, que vale (1 - p) = 1 - 0,5 = 0,5. La variable aleatoria X medirá "número de cruces que salen en un lanzamiento", y sólo existirán dos resultados posibles: 0 (ninguna cruz, es decir, salir cara) y 1 (una cruz). Por tanto, la v.a. X se distribuirá como una Bernoulli, ya que cumple todos los requisitos. ° La probabilidad de obtener cruz. P(x=1) = (0.5) 1 * (0.5) 0 = 0.5 = 0.5 ° La probabilidad de no obtener cruz. P(x=0) = (0.5)0 * (0.5)1 = 0.5 = 0.5
  • 4. Binomial 1) Supongamos que se lanza un dado 50 veces y queremos la probabilidad de que el número 3 salga 20 veces. En este caso tenemos una X ~ B(50, 1/6) y la probabilidad sería P(X=20): 2) La última novela de un autor ha tenido un gran éxito, hasta el punto de que el 80% de los lectores ya la han leido. Un grupo de 4 amigos son aficionados a la lectura: 1. ¿Cuál es la probabilidad de que en el grupo hayan leido la novela 2 personas? B(4, 0.2) p = 0.8 q = 0.2 2.¿Y cómo máximo 2?
  • 5. 3) Un agente de seguros vende pólizas a cinco personas de la misma edad y que disfrutan de buena salud. Según las tablas actuales, la probabilidad de que una persona en estas condiciones viva 30 años o más es 2/3. Hállese la probabilidad de que, transcurridos 30 años, vivan: 1. Las cinco personas. B(5, 2/3) p = 2/3 q = 1/3 2.Al menos tres personas. 3.Exactamente dos personas. 4) Se lanza una moneda cuatro veces. Calcular la probabilidad de que salgan más caras que cruces. B(4, 0.5) p = 0.5q = 0.5
  • 6. 5) La probabilidad de que un hombre acierte en el blanco es 1/4. Si dispara 10 veces ¿cuál es la probabilidad de que acierte exactamente en tres ocasiones? ¿Cuál es la probabilidad de que acierte por lo menos en una ocasión? B(10, 1/4) p = 1/4q = 3/4
  • 7. Poisson 1) Si ya se conoce que solo el 3% de los alumnos de contabilidad son muy inteligentes ¿ Calcular la probabilidad de que si tomamos 100 alumnos al azar 5 de ellos sean muy inteligentes • n= 100 • P=0.03 • =100*0.03=3 • x=5 2) La producción de televisores en Samsung trae asociada una probabilidad de defecto del 2%, si se toma un lote o muestra de 85 televisores, obtener la probabilidad que existan 4 televisores con defectos. • n=85 • P=0.02 • P(x5)=(e^-17)(1.7^4)/4!=0.0635746 • X=4 • =1.7
  • 8. 3) El número de mensajes recibidos por el tablero computado de anuncios es una variable aleatoria de Poisson con una razón media de ocho mensajes por hora. a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora? b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas? a) ¿Cuál es la probabilidad de que se reciban cinco mensajes en una hora? P(X=3)= e-8* P(X=3)= 3.354626279x10-4 * P(X=3)= 3.354626279x10-4 * 273.0666667 P(X=3)= 0.09160366 b) ¿Cuál es la probabilidad de que se reciban diez mensajes en 1.5 horas? P(X=10)= e-12* P(X=10)= 6.144212353x10-6 * P(X=10)= 6.144212353x10-6 * 17062.76571 P(X=10)= 0.104837255 4) Una jaula con 100 pericos 15 de ellos hablan ruso calcular la probabilidad de que si tomamos 20 al azar 3 de ellos hablan ruso • n=20 • P=0.15 P (x=3)=(e^-8)(3^3)/3!=0.2240418 • X=3
  • 9. =3 5) La concentración de partículas en una suspensión es 2 por mL. Se agita por completo la concentración, y posteriormente se extraen 3 mL. Sea X el número de partículas que son retiradas. Determine. a) P(X=5) b) P(X≤2) c) μX d) σx a) P(X=5)= e-6 * P(X=5)= 2.478752177x10-3 * P(X=5)= 2.478752177x10-3 * 64.8 P(X=5)= 0.160623141 b) P(X≤2) P(X=0)= e-6 * P(X=1)= e-6 * P(X=0)= 2.478752177x10-3 * P(X=1)= 2.478752177x10-3 * P(X=0)= 2.478752177x10-3 * 1 P(X=1)= 2.478752177x10-3 * 6 P(X=0)= 2.478752177x10-3 P(X=1)= 0.014872513 P(X=2)= e-6 * P(X≤2)= P(X=0)+P(X=1)+P(X=2) P(X=2)= 2.478752177x10-3 * P(X≤2)= 2.478752177+0.014872513+ 0.044617539 P(X=2)= 2.478752177x10-3 * 18
  • 10. P(X=2)= 0.044617539 P(X≤2)= 0.061968804 c) μX μX= 6 d) σx σx= σx= 2.449489743
  • 11. Normal 1) Determine el área bajo la curva normal a) Ala derecha de z= -0.85. b) Entre z = 0.40 y z = 1.30. c) Entre z =0.30 y z = 0.90. d) Desde z = - 1.50 hasta z =-0.45 Estos resultados se obtuvieron con las tablas anexas al final de los problemas A – 1 – 0.1977 = 0.8023 B – 0.9032 – 0.6554 = 0.2478 C – 0.8159 – 0.3821 = 0.4338 D – 0.0668 + (1 – 0.3264) = 0.7404 2) Las puntuaciones de una prueba estandarizada se distribuyen normalmente con media de 480 y desviación estándar de 90. a) ¿Cuál es la proposición de puntuaciones mayores a 700? b) ¿Cuál es el 25º? ¿Percentil de las puntuaciones? c) Si la puntuación de alguien es de 600. ¿En qué percentil se encuentra?
  • 12. d) ¿Qué proporción de las puntuaciones se encuentra entre 420 y 520? µ = 480 σ = 90 A - Z = (700-480)/90 = 2.44 el área a la derecha de Z es 0.0073 B – la puntuación de z en el 25 º percentil -0.67 El 25 º percentil es entonces 480 - 0.67 (90) = 419.7 C – z = (600-480)/90 = 1.33 el área a la derecha de z es 0.9082 Por lo que una puntuación de 600 esta en el percentil 91 D - z = (420 - 480)/90 = - 0.67 Z = (520 – 480)/90 = 0.44 El área entre z = - 0.67 y z = 0.44 es 0.6700 – 0.2514 = 0.4186 3) La resistencia de una aleación de aluminio se distribuye normalmente con media de 10 giga pascales (Gpa) desviación estándar de 1.4 Gpa. a) ¿Cuál es la probabilidad de que una muestra de esta aleación tenga resistencia mayor a 12 GPa? b) Determine el primer cuartil de la resistencia de esta aleación. c) Determine el 95º. Percentil de la resistencia de esta aleación. RESULTADOS µ = 10 σ = 1.4
  • 13. A) z = (12 -10)/1.4 = 1.43 el área ala derecha de z = 1.43 es 1 – 0.9236 = 0.0764 B) la puntuación de z en el 25 º percentil es -0.67 El 25 º percentil es entonces 10 - 0.67 (1.4) = 9.062 Gpa. C) la puntuación de z en el 95 º percentil es 1.645 El 25 º percentil es entonces 10 + 1.645(1.4) = 12.303 Gpa. 4) La penicilina es producida por el hongo penicillium, que crece en un caldo, cuyo contenido de azúcar debe controlarse con cuidado. La concentración optima e azúcar es de 4.9 mg/mL. Si la concentración excede los 6 mg/mL, el hongo muere y el proceso debe suspenderse todo el día. a) ¿Si la concentración de azúcar en tandas de caldo se distribuye normalmente con media 4.9 mg/mL y desviación estándar 0.6 mg/mL en que proporción de días se suspenderá el proceso? b) El distribuidor ofrece vender caldo con una concentración de azúcar que se distribuye normalmente con medida de 5.2 mg/mL y desviación estándar de 0.4 mg/mL ¿este caldo surtirá efectos con menos días de producción perdida? RESULTADOS A) (6 – 4.9)/0.6 =1.83 1 – 0.9664 = 0.0336
  • 14. B) Z = (6 – 5.2)/0.4 = 2.00 1 – 0.9772 = 0.0228 Con este caldo el proceso se suspendería el 2.28% de los días 5) El volumen de las llantas llenadas por cierta maquina se distribuye con media de 12.05 onzas y desviación estándar de 0.03 onzas. a) ¿Qué proporción de latas contiene menos de 12 onzas? b) La medida del proceso se puede ajustar utilizando calibración. ¿En que valor debe fijarse la media para que el 99% de las latas contenga 12 onzas o mas? c) Si la media del procesos sigue siendo de 12.05 onzas. ¿En que valor debe fijarse la media para que el 99% de las latas contenga 12 onzas o mas? RESULTADOS A) (12 – 12.05)/0.03 = -1.67 la proporción es 0.0475 B) Z= -2.33 entonces -2.33=(12 - µ)/0.03 despejando µ = 12 .07 onzas C) – 2.33 = (12-12.05)/ σ despejando σ = 0.0215 onzas
  • 15. Gamma 1) El número de pacientes que llegan a la consulta de un médico sigue una distribución de Poisson de media 3 pacientes por hora. Calcular la probabilidad de que transcurra menos de una hora hasta la llegada del segundo paciente. Debe tenerse en cuenta que la variable aleatoria “tiempo que transcurre hasta la llegada del segundo paciente” sigue una distribución Gamma (6, 2). Solución: Cálculo de probabilidades. Distribuciones continuas Gamma (a p) a : Escala 60000 p : Forma 20000 Punto X 10000 Cola Izquierda Pr[X<=k] 0,9826 Cola Derecha Pr[X>=k] 0,0174 Media 0,3333 Varianza 0,0556 Moda 0,1667 La probabilidad de que transcurra menos de una hora hasta que llegue el segundo paciente es 0,98. 2) Suponiendo que el tiempo de supervivencia, en años, de pacientes que son sometidos a una cierta intervención quirúrgica en un hospital sigue una distribución Gamma con parámetros a=0,81 y p=7,81, calcúlese:
  • 16. 1. El tiempo medio de supervivencia. 2. Los años a partir de los cuales la probabilidad de supervivencia es menor que 0,1. Cálculo de probabilidades. Distribuciones continuas Gamma (a,p) a : Escala 0,8100 p : Forma 7,8100 Cola Izquierda Pr [X<=k] 0,9000 Cola Derecha Pr [X>=k] 0,1000 Punto X 14,2429 Media 9,6420 Varianza 11,9037 Moda 8,4074 El tiempo medio de supervivencia es de, aproximadamente, 10 años. T- Student
  • 17. 1. Sea T ~ t(4,0.5) a) Determinar b) Determinar c) Determinar P(T P(T = 1- e –(0.5)(1) - e –(0.5)(1) - e –(0.5)(1) - e (0.5)(1) =1- 0.60653 -0.30327 -0.075816 -0.012636 =0.000175 d) Determinar P(T P(T = e –(0.5)(3) - e –(0.5)(3) - e –(0.5)(3) - e (0.5)(3) =0.22313 + 0.33470+0.25102 +0.12551 =0.9344
  • 18. 2) Sea T ~ Weibull(0.5,3) a) Determinar b) Determinar c) Determinar P(T P (T>5) =1-P(T 1) = 1 – e- 3) En el articulo “Parameter Estimation with Only One Complete Failure Observation”se modela la duracion en horas, de cierto tipo de cojinete con la distribucion de Weibull con parámetros a) Determine la probabilidad de que un cojinete dure mas de 1000 horas
  • 19. b) Determine la probabilidad de que un cojinete dure menos de 2000 horas P(T<2000)= P(T c) La función de riesgo se definio en el ejercicio 4 ¿Cuál es el riesgo en T=2000 horas? h(t) =
  • 20. 4) La duración de un ventilador, en horas , que se usa en un sistema computacional tiene una distribución de Weibull con a) ¿Cuáles la probabilidad de que un ventilador dure mas de 10 000 horas? P(T>10 000 ) =1 –(1- =0.3679 b) ¿Cuál es la probabilidad de que un ventilador dure menos de 5000 horas? P(t<5000) =P(T 5) Un sistema consiste de dos componentes conectados en serie. El sistema fallara cuando alguno de los componentes falle. Sea T el momento en el que el sistema falla. Sean X1 y X2 las duraciones de los dos componentes. Suponga que X1 y X2 son independientes y que cada uno sigue una distribución Weibull con 2 a) Determine P( P( b) Determine P(T 5) P(T =0.8647
  • 21. c) T Tiene una distribución de Weibull= si es Asi ¿Cuáles son sus parametros? Si, T~ Weibull (2,