SlideShare une entreprise Scribd logo
1  sur  38
Télécharger pour lire hors ligne
SEASR: 

                 Meandre: !
        Semantic-Driven Data-Intensive !
            Flows in the Clouds 
         Xavier Llora, Bernie Acs, Loretta Auvil, Boris Capitanu, Michael Welge, David Goldberg




                           National Center for Supercomputing Applications!
                              University of Illinois at Urbana-Champaign
                                                                       


                               {xllora, acs1, lauvil, capitanu, mwelge, deg}@illinois.edu
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Yes, It is not a Typo 
SEASR: Design Goals
      •  Transparency
             –  From a single laptop to a HPC cluster
             –  Not bound to a particular computation fabric

             –  Allow heterogeneous development 

      •  Intuitive programming paradigm
             –  Modular Components, Flows, and Reusable

             –  Foster Collaboration and Sharing

      •  Open Source
      •  Service Orientated Architecture (SOA)
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Infrastructure
  •  SEASR/Meandre Infrastructure:
         –  Dataflow execution paradigm
         –  Semantic-web driven
         –  Web Oriented
         –  Supports publishing services
         –  Modular components
         –  Encapsulation and execution mechanism
         –  Promotes reuse, sharing, and collaboration


The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Data Driven Execution
      •  Execution Paradigms
             –  Conventional programs perform computational tasks by
                executing a sequence of instructions.
             –  Data driven execution revolves around the idea of
                applying transformation operations to a flow or stream
                of data when it is available. 

      •  Dataflow Approach
             –  May have zero to many inputs
             –  May have zero to many outputs
             –  Performs a logical operation when data is available
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Dataflow Example



                                                    Value1
                                                             Sum
                                                    Value2




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Dataflow Example
      •  Dataflow Addition Example 
             –  Logical Operation ‘+’
                                                      Value1
             –  Requires two inputs 
                                 Sum
             –  Produces one output
                  Value2

      •  When two inputs are available
             –  Logical operation can be preformed

             –  Sum is output

      •  When output is produced 
             –  Reset internal values

             –  Wait for two new input values to become available 
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: The Dataflow Component
     •  Data dictates component execution semantics

                Inputs                                                   Outputs




                                                    Component

                                                    P




                          Descriptor in RDF!               The component !
                          of its behavior
                 implementation
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Component Metadata
      •  Describes a component
      •  Separates: 
             –  Components semantics (black box)
             –  Components implementation

      •  Provides a unified framework:
             –  Basic building blocks or units (components)
             –  Complex tasks (flows)
             –  Standardized metadata

The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Semantic Web Concepts
      •  Relies on the usage of the resource description framework
         (RDF) which uses simple notation to express graph relations
         written usually as XML to provide a set of conventions and
         common means to exchange information
      •  Provides a common framework to share and reuse data
         across application, enterprise, and community boundaries
      •  Focuses on common formats for integration and combination
         of data drawn from diverse sources
      •  Pays special attention to the language used for recording how
         the data relates to real world objects
      •  Allows navigation to sets of data resources that are
         semantically connected.
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Metadata Ontologies
      •  Meandre's metadata relies on three ontologies: 
             –  The RDF ontology serves as a base for defining
                Meandre descriptors 
             –  The Dublin Core Elements ontology provides basic
                publishing and descriptive capabilities in the description
                of Meandre descriptors
             –  The Meandre ontology describes a set of relationships
                that model valid components, as understood by the
                Meandre execution engine architecture




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Components in RDF
 @prefix   meandre:    <http://www.meandre.org/ontology/> .
 @prefix   xsd:       <http://www.w3.org/2001/XMLSchema#> .
                                                                       Existing!
 @prefix   dc:        <http://purl.org/dc/elements/1.1/> .
                                                                       Standards
 @prefix   rdfs:      <http://www.w3.org/2000/01/rdf-schema#> .
 @prefix   rdf:       <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
 @prefix   :          <#> .

   <http://dita.ncsa.uiuc.edu/meandre/e2k/components/limited-iterations>
               meandre:name quot;Limited iterationsquot;^^xsd:string ;
               rdf:type meandre:executable_component ;
               dc:creator quot;Xavier Lloraquot;^^xsd:string ;
               dc:date quot;2007-11-17T00:32:35quot;^^xsd:date ;
               dc:description quot;Allows only a limited number of
         iterationsquot;^^xsd:string ;
               dc:format quot;java/classquot;^^xsd:string ;
               dc:rights quot;University of Illinois/NCSA Open Source
         Licensequot;^^xsd:string ;
               meandre:execution_context
       
 <http://norma.ncsa.uiuc.edu/public-dav/Meandre/demos/E2K/V1/resources/
         colt.jar> , 
       
 <http://norma.ncsa.uiuc.edu/public-dav/Meandre/demos/E2K/V1/resources/
         gacore.jar> ,                   

                  <http://dita.ncsa.uiuc.edu/meandre/e2k/components/limited-
The SEASR project and its Meandre infrastructure!
         iterations/implementation/> ,
are sponsored by The Andrew W. Mellon Foundation
                 
 <http://norma.ncsa.uiuc.edu/public-dav/Meandre/demos/E2K/V1/
         resources/gacore-meandre.jar> ,
                  <http://norma.ncsa.uiuc.edu/public-dav/Meandre/demos/E2K/V1/
Meandre: Components Types
      •  Components are the basic building block of any
         computational task. 

      •  There are two kinds of Meandre components: 
             –  Executable components 

                    •  Perform computational tasks that require no human
                       interactions during runtime

                    •  Processes are initialized during flow startup and are fired when
                       in accordance to the policies defined for it. 

             –  Control components

                    •  Used to pause dataflow during user interaction cycles

                    •  WebUI may be a HTML Form, Applet, or Other user interface 
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Component Assemblies
      •  Defined by connecting outputs from one component to the
         inputs of another.
             –  Cyclical connections are supported 

             –  Components may have 
                    •  Zero to many inputs

                    •  Zero to many output

                    •  Properties that control runtime behavior 

      •  Described using RDF 
             –  Enables storage, reuse, and sharing like components

             –  Allows discovery and dynamic execution

The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Flow (Complex Tasks)
     •  A flow is a collection of connected components


                      Read
                                                        Merge
               P

                                                    P



                                                                    Show
                       Get
                                                                P
               P

                                                        Do
                                                    P




                                           Dataflow execution
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Create, Publish, & Share
      •  “Components” and “Flows” have RDF descriptors
             –  Easily shared, fosters sharing, & reuse

             –  Allow machines to read and interpret
             –  Independent of the implementations

             –  Combine different implementation & platforms

                    –  Components: Java, Python, Lisp, Web Services

                    –  Execution: On a Laptop or a High Performance Cluster 

      •  A “Location” is RDF descriptor of one to many
         components, one to many flows, and their
         implementations 

The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Repository & Locations
      •  Each location represents a set components/flows
      •  Users can
             –  Combine different locations together

             –  Create components

             –  Assemble flows

             –  Share components and flows

      •  Repositories Help 
             –  Administrate complex environments

             –  Organize components and flows


The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Metadata Properties
      •  Components and Flows share properties such as
         component name, creator, creation date, description, tags,
         and rights.
      •  Components specific metadata to describe the
         components' behavior, it’s location, type of
         implementation, firing policy, runnable, format, resource
         location, and execution context
      •  Flow specific metadata describes the directed graph of
         components, components instances, connectors,
         connector instance data port source, connector, instance
         data port target, connector instance source, connector
         instance target, instance name

The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
A Little more on the Nuts & Bolts!



  Programming Paradigm
  • What does Meandre Execution Engine Do?

  • What are the possible Component Scenarios

  • Relationship between Engine and Components

  • Data Driven Flow Creation (Workbench/Zigzag)
Meandre Server Prepares a Flow
•  The Meandre Server prepares Data Intensive Flow by reading the
   RDF Descriptors component plumping
   –  Executable Components and the connection the between them are
      prepared by constructing a Queue mechanism which is use to aggregate
      data available events. 
      •  Meandre provides each component an executing thread for processing.
      •  Meandre manages logic queue represent by component connections in a flow
      •  Meandre activates component for initialization, data events, and termination
      •  Meandre provides components with access to runtime resources.



                       Context A         Queue             Context B
Meandre Sever Relationship to Component

                            Meandre Server
                             Infrastructure                Input
&
Ouput
Data

 Defines
Firing.Policy
                                     Ports
that
require
a

                                                            logical
queue
to
be

    ALL
or
ANY

                         Component RDF Descriptor defines: managed
by
server




   Meandre

Server
                 Component
                 Meandre

Server




                               Pull Inputs


                                Component

                                         Push Outputs
Meandre Server Flows & Connectors
Flows are made up of “One or More” components
                                                    Flows may contain connectors that
with “None to Many” connectors that are described
                                                       are cyclical over one or more
to the Mendre Server for management
                                                                components


              Flows must contain at minimum one
             component with NO Inputs to cause
                  an Execute call to be made.
                 *Outputs are Always Optional.



                                                      Flow components may have
                                                      multiple connectors assigned
                                                          to any input data port
 Flows can have any number of components with
     “None to Many” Inputs data port s
     “None to Many” Output data ports
Meandre: Programming Paradigm 

      •  The programming paradigm creates complex
         tasks by linking together a bunch of specialized
         components. Meandre's publishing mechanism
         allows components developed by third parties to
         be assembled in a new flow. 
      •  There are two ways to develop flows : 
             –  Meandre’s Workbench visual programming tool
             –  Meandre’s ZigZag scripting language




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Workbench Existing Flow

  Components




    Flows




     Locations




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: ZigZag Script Language
      •  ZigZag is a simple language for describing data-
         intensive flows
             –  Modeled on Python for simplicity. 
             –  ZigZag is declarative language for expressing the
                directed graphs that describe flows. 

      •  Command-line tools allow ZigZag files to compile
         and execute.
             –  A compiler is provided to transform a ZigZag program
                (.zz) into Meandre archive unit (.mau). 
             –  Mau(s) can then be executed by a Meandre engine. 
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: ZigZag Script Language
      •  As an example the Flow Diagram
             –  The flow below pushes two strings that get concatenated and
                printed to the console




             –  




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: ZigZag Script Language
   •  ZigZag code that represents example flow:
                         #
                         # Imports the three required components and creates the component aliases
                         #
                         import <http://localhost:1714/public/services/demo_repository.rdf>
                         alias <http://test.org/component/push_string> as PUSH
                         alias <http://test.org/component/concatenate-strings> as CONCAT
                         alias <http://test.org/component/print-object> as PRINT
                         #
                         # Creates four instances for the flow
                         #
                         push_hello, push_world, concat, print = PUSH(), PUSH(), CONCAT(), PRINT()
                         #
                         # Sets up the properties of the instances
                         #
                         push_hello.message, push_world.message = quot;Hello quot;, quot;world!quot;
                         #
                         # Describes the data-intensive flow
                         #
                         @phres, @pwres = push_hello(), push_world()
                         @cres = concat( string_one: phres.string; string_two: pwres.string )
                         print( object: cres.concatenated_string )
                         #




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: ZigZag Script Language
   •  Automatic Parallelization 
          –  Multiple instances of a component could be run in parallel to boost
             throughput.

          –  Specialized operator available in ZigZag Scripting to cause multiple
             instances of a given component to used
                  •  Consider a simple flow example show in the diagram



                  •  The dataflow declaration would look like
                          #
                          # Describes the data-intensive flow
                          #
                          @pu = push()
                          @pt = pass( string:pu.string )
                          print( object:pt.string )
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: ZigZag Script Language
   •  Automatic Parallelization 
          –  Adding the operator [+AUTO] to middle component
                       # Describes the data-intensive flow
                       #
                       @pu = push()
                       @pt = pass( string:pu.string ) [+AUTO]
                       print( object:pt.string )

          –  [+AUTO] tells the ZigZag compiler to parallelize the “pass
             component instance” by the number of cores available on
             system.
          –  [+AUTO] may also be written [+N] where N is an numeric
             value to use for example [+10]. 


The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: ZigZag Script Language
   •  Automatic Parallelization 
          –  Adding the operator [+4] would result in a directed grap


              # Describes the data-intensive flow   # Describes the data-intensive flow
              #                                     #
              @pu = push()                          @pu = push()
              @pt = pass( string:pu.string ) [+4]   @pt = pass( string:pu.string ) [+4!]
              print( object:pt.string )             print( object:pt.string )




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Flows to MAU
      •  Flows can be executed using their RDF
         descriptors
      •  Flows can be compiled into MAU
      •  MAU is:
             –  Self-contained representation
             –  Ready for execution
             –  Portable
             –  The base of flow execution in grid environments


The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: The Architecture
      •  The design of the Meandre architecture follows
         three directives: 
             –  provide a robust and transparent scalable solution from
                a laptop to large-scale clusters
             –  create an unified solution for batch and interactive tasks
             –  encourage reusing and sharing components

      •  To ensure such goals, the designed architecture
         relies on four stacked layers and builds on top of
         service-oriented architectures (SOA)

The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre: Basic Single Server




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre MDX: Cloud Computing
      •  Servers can be 
             –  instantiated on demand
             –  disposed when done or on demand

      •  A cluster is formed by at least one server
      •  The Meandre Distributed Exchange (MDX)
             –  Orchestrates operational integrity by managing cluster
                configuration and membership using a shared database
                resource.



The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre MDX: The Picture
      MDX
Backbone





The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre MDX: The Architecture
      •  Virtualization infrastructure
             –  Provide a uniform access to the underlying execution environment.
                It relies on virtualization of machines and the usage of Java for
                hardware abstraction.

      •  IO standardization
             –  A unified layer provides access to shared data stores, distributed
                file-system, specialized metadata stores, and access to other
                service-oriented architecture gateways.




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
Meandre MDX: The Architecture
      •  Data-intensive flow infrastructure
             –  Provide the basic Meandre execution engine for data-intensive
                flows, component repositories and discovery mechanisms,
                extensible plugins and web user interfaces (webUIs).

      •  Interaction layer
             –  Can provide self-contained applications via webUIs, create plugins
                for third-party services, interact with the embedding application
                that relies on the Meandre engine, or provide services to the cloud.




The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation
SEASR: 

                 Meandre: !
        Semantic-Driven Data-Intensive !
            Flows in the Clouds 
         Xavier Llora, Bernie Acs, Loretta Auvil, Boris Capitanu, Michael Welge, David Goldberg




                           National Center for Supercomputing Applications!
                              University of Illinois at Urbana-Champaign
                                                                       


                               {xllora, acs1, lauvil, capitanu, mwelge, deg}@illinois.edu
The SEASR project and its Meandre infrastructure!
are sponsored by The Andrew W. Mellon Foundation

Contenu connexe

En vedette

Text Mining Wksp Auvil
Text Mining Wksp AuvilText Mining Wksp Auvil
Text Mining Wksp AuvilLoretta Auvil
 
Text Mining and SEASR
Text Mining and SEASRText Mining and SEASR
Text Mining and SEASRLoretta Auvil
 
SEASR-Meandre Architecture Ws Jan 2009
SEASR-Meandre Architecture Ws Jan 2009SEASR-Meandre Architecture Ws Jan 2009
SEASR-Meandre Architecture Ws Jan 2009Loretta Auvil
 

En vedette (6)

Text Mining Wksp Auvil
Text Mining Wksp AuvilText Mining Wksp Auvil
Text Mining Wksp Auvil
 
SEASR and UIMA
SEASR and UIMASEASR and UIMA
SEASR and UIMA
 
SEASR Installation
SEASR InstallationSEASR Installation
SEASR Installation
 
Text Mining and SEASR
Text Mining and SEASRText Mining and SEASR
Text Mining and SEASR
 
SEASR Community Hub
SEASR Community HubSEASR Community Hub
SEASR Community Hub
 
SEASR-Meandre Architecture Ws Jan 2009
SEASR-Meandre Architecture Ws Jan 2009SEASR-Meandre Architecture Ws Jan 2009
SEASR-Meandre Architecture Ws Jan 2009
 

Similaire à Meandre Architecture Ws Apr 2009

Meandre: Semantic-Driven Data-Intensive Flows in the Clouds
Meandre: Semantic-Driven Data-Intensive Flows in the CloudsMeandre: Semantic-Driven Data-Intensive Flows in the Clouds
Meandre: Semantic-Driven Data-Intensive Flows in the CloudsXavier Llorà
 
Applications of the REST Principle
Applications of the REST PrincipleApplications of the REST Principle
Applications of the REST Principleelliando dias
 
Ruby on Rails 101 - Presentation Slides for a Five Day Introductory Course
Ruby on Rails 101 - Presentation Slides for a Five Day Introductory CourseRuby on Rails 101 - Presentation Slides for a Five Day Introductory Course
Ruby on Rails 101 - Presentation Slides for a Five Day Introductory Coursepeter_marklund
 
Services Oriented Infrastructure in a Web2.0 World
Services Oriented Infrastructure in a Web2.0 WorldServices Oriented Infrastructure in a Web2.0 World
Services Oriented Infrastructure in a Web2.0 WorldLexumo
 
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...eswcsummerschool
 
API's, Freebase, and the Collaborative Semantic web
API's, Freebase, and the Collaborative Semantic webAPI's, Freebase, and the Collaborative Semantic web
API's, Freebase, and the Collaborative Semantic webDan Delany
 
Caspar Preservation Methodology Steve Renkin
Caspar Preservation Methodology Steve RenkinCaspar Preservation Methodology Steve Renkin
Caspar Preservation Methodology Steve RenkinDigitalPreservationEurope
 
Some news about the SW
Some news about the SWSome news about the SW
Some news about the SWIvan Herman
 
Rails Conf Europe 2007 Notes
Rails Conf  Europe 2007  NotesRails Conf  Europe 2007  Notes
Rails Conf Europe 2007 NotesRoss Lawley
 
Bringing Wireless Sensing to its full potential
Bringing Wireless Sensing to its full potentialBringing Wireless Sensing to its full potential
Bringing Wireless Sensing to its full potentialAdrian Hornsby
 
Introduction to NetGuardians' Big Data Software Stack
Introduction to NetGuardians' Big Data Software StackIntroduction to NetGuardians' Big Data Software Stack
Introduction to NetGuardians' Big Data Software StackJérôme Kehrli
 
Asynchronous Javascript and Rich Internet Aplications
Asynchronous Javascript and Rich Internet AplicationsAsynchronous Javascript and Rich Internet Aplications
Asynchronous Javascript and Rich Internet AplicationsSubramanyan Murali
 
Web 2 0 Data Visualization With Jsf
Web 2 0 Data Visualization With JsfWeb 2 0 Data Visualization With Jsf
Web 2 0 Data Visualization With Jsfrajivmordani
 
Application Architecture Trends
Application Architecture TrendsApplication Architecture Trends
Application Architecture TrendsSrini Penchikala
 

Similaire à Meandre Architecture Ws Apr 2009 (20)

SEASR eScience 2008
SEASR eScience 2008SEASR eScience 2008
SEASR eScience 2008
 
Meandre: Semantic-Driven Data-Intensive Flows in the Clouds
Meandre: Semantic-Driven Data-Intensive Flows in the CloudsMeandre: Semantic-Driven Data-Intensive Flows in the Clouds
Meandre: Semantic-Driven Data-Intensive Flows in the Clouds
 
SEASR Overview
SEASR OverviewSEASR Overview
SEASR Overview
 
Applications of the REST Principle
Applications of the REST PrincipleApplications of the REST Principle
Applications of the REST Principle
 
Ruby on Rails 101 - Presentation Slides for a Five Day Introductory Course
Ruby on Rails 101 - Presentation Slides for a Five Day Introductory CourseRuby on Rails 101 - Presentation Slides for a Five Day Introductory Course
Ruby on Rails 101 - Presentation Slides for a Five Day Introductory Course
 
Services Oriented Infrastructure in a Web2.0 World
Services Oriented Infrastructure in a Web2.0 WorldServices Oriented Infrastructure in a Web2.0 World
Services Oriented Infrastructure in a Web2.0 World
 
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
 
API's, Freebase, and the Collaborative Semantic web
API's, Freebase, and the Collaborative Semantic webAPI's, Freebase, and the Collaborative Semantic web
API's, Freebase, and the Collaborative Semantic web
 
Caspar Preservation Methodology Steve Renkin
Caspar Preservation Methodology Steve RenkinCaspar Preservation Methodology Steve Renkin
Caspar Preservation Methodology Steve Renkin
 
Some news about the SW
Some news about the SWSome news about the SW
Some news about the SW
 
Nuxeo JavaOne 2007
Nuxeo JavaOne 2007Nuxeo JavaOne 2007
Nuxeo JavaOne 2007
 
Linked Data Tutorial
Linked Data TutorialLinked Data Tutorial
Linked Data Tutorial
 
Os Haase
Os HaaseOs Haase
Os Haase
 
Rails Conf Europe 2007 Notes
Rails Conf  Europe 2007  NotesRails Conf  Europe 2007  Notes
Rails Conf Europe 2007 Notes
 
Bringing Wireless Sensing to its full potential
Bringing Wireless Sensing to its full potentialBringing Wireless Sensing to its full potential
Bringing Wireless Sensing to its full potential
 
Rest Vs Soap Yawn2289
Rest Vs Soap Yawn2289Rest Vs Soap Yawn2289
Rest Vs Soap Yawn2289
 
Introduction to NetGuardians' Big Data Software Stack
Introduction to NetGuardians' Big Data Software StackIntroduction to NetGuardians' Big Data Software Stack
Introduction to NetGuardians' Big Data Software Stack
 
Asynchronous Javascript and Rich Internet Aplications
Asynchronous Javascript and Rich Internet AplicationsAsynchronous Javascript and Rich Internet Aplications
Asynchronous Javascript and Rich Internet Aplications
 
Web 2 0 Data Visualization With Jsf
Web 2 0 Data Visualization With JsfWeb 2 0 Data Visualization With Jsf
Web 2 0 Data Visualization With Jsf
 
Application Architecture Trends
Application Architecture TrendsApplication Architecture Trends
Application Architecture Trends
 

Plus de Loretta Auvil

Fedora App Slide 2009 Hastac
Fedora App Slide 2009 HastacFedora App Slide 2009 Hastac
Fedora App Slide 2009 HastacLoretta Auvil
 
Meandre Workbench Ws Jan 2009
Meandre Workbench Ws Jan 2009Meandre Workbench Ws Jan 2009
Meandre Workbench Ws Jan 2009Loretta Auvil
 
ICHASS Workshop Seasr
ICHASS Workshop SeasrICHASS Workshop Seasr
ICHASS Workshop SeasrLoretta Auvil
 
ICHASS Workshop Text Mining
ICHASS Workshop Text MiningICHASS Workshop Text Mining
ICHASS Workshop Text MiningLoretta Auvil
 

Plus de Loretta Auvil (8)

Fedora App Slide 2009 Hastac
Fedora App Slide 2009 HastacFedora App Slide 2009 Hastac
Fedora App Slide 2009 Hastac
 
SEASR Overview
SEASR OverviewSEASR Overview
SEASR Overview
 
SEASR Text
SEASR TextSEASR Text
SEASR Text
 
SEASR-Fedora App
SEASR-Fedora AppSEASR-Fedora App
SEASR-Fedora App
 
Meandre Workbench Ws Jan 2009
Meandre Workbench Ws Jan 2009Meandre Workbench Ws Jan 2009
Meandre Workbench Ws Jan 2009
 
ICHASS Workshop Lab
ICHASS Workshop LabICHASS Workshop Lab
ICHASS Workshop Lab
 
ICHASS Workshop Seasr
ICHASS Workshop SeasrICHASS Workshop Seasr
ICHASS Workshop Seasr
 
ICHASS Workshop Text Mining
ICHASS Workshop Text MiningICHASS Workshop Text Mining
ICHASS Workshop Text Mining
 

Dernier

Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 

Dernier (20)

Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 

Meandre Architecture Ws Apr 2009

  • 1. SEASR: Meandre: ! Semantic-Driven Data-Intensive ! Flows in the Clouds Xavier Llora, Bernie Acs, Loretta Auvil, Boris Capitanu, Michael Welge, David Goldberg National Center for Supercomputing Applications! University of Illinois at Urbana-Champaign {xllora, acs1, lauvil, capitanu, mwelge, deg}@illinois.edu The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 2. Yes, It is not a Typo 
  • 3. SEASR: Design Goals •  Transparency –  From a single laptop to a HPC cluster –  Not bound to a particular computation fabric –  Allow heterogeneous development •  Intuitive programming paradigm –  Modular Components, Flows, and Reusable –  Foster Collaboration and Sharing •  Open Source •  Service Orientated Architecture (SOA) The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 4. Meandre: Infrastructure •  SEASR/Meandre Infrastructure: –  Dataflow execution paradigm –  Semantic-web driven –  Web Oriented –  Supports publishing services –  Modular components –  Encapsulation and execution mechanism –  Promotes reuse, sharing, and collaboration The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 5. Meandre: Data Driven Execution •  Execution Paradigms –  Conventional programs perform computational tasks by executing a sequence of instructions. –  Data driven execution revolves around the idea of applying transformation operations to a flow or stream of data when it is available. •  Dataflow Approach –  May have zero to many inputs –  May have zero to many outputs –  Performs a logical operation when data is available The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 6. Meandre: Dataflow Example Value1 Sum Value2 The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 7. Meandre: Dataflow Example •  Dataflow Addition Example –  Logical Operation ‘+’ Value1 –  Requires two inputs Sum –  Produces one output Value2 •  When two inputs are available –  Logical operation can be preformed –  Sum is output •  When output is produced –  Reset internal values –  Wait for two new input values to become available The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 8. Meandre: The Dataflow Component •  Data dictates component execution semantics Inputs Outputs Component P Descriptor in RDF! The component ! of its behavior implementation The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 9. Meandre: Component Metadata •  Describes a component •  Separates: –  Components semantics (black box) –  Components implementation •  Provides a unified framework: –  Basic building blocks or units (components) –  Complex tasks (flows) –  Standardized metadata The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 10. Meandre: Semantic Web Concepts •  Relies on the usage of the resource description framework (RDF) which uses simple notation to express graph relations written usually as XML to provide a set of conventions and common means to exchange information •  Provides a common framework to share and reuse data across application, enterprise, and community boundaries •  Focuses on common formats for integration and combination of data drawn from diverse sources •  Pays special attention to the language used for recording how the data relates to real world objects •  Allows navigation to sets of data resources that are semantically connected. The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 11. Meandre: Metadata Ontologies •  Meandre's metadata relies on three ontologies: –  The RDF ontology serves as a base for defining Meandre descriptors –  The Dublin Core Elements ontology provides basic publishing and descriptive capabilities in the description of Meandre descriptors –  The Meandre ontology describes a set of relationships that model valid components, as understood by the Meandre execution engine architecture The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 12. Meandre: Components in RDF @prefix meandre: <http://www.meandre.org/ontology/> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . Existing! @prefix dc: <http://purl.org/dc/elements/1.1/> . Standards @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix : <#> . <http://dita.ncsa.uiuc.edu/meandre/e2k/components/limited-iterations> meandre:name quot;Limited iterationsquot;^^xsd:string ; rdf:type meandre:executable_component ; dc:creator quot;Xavier Lloraquot;^^xsd:string ; dc:date quot;2007-11-17T00:32:35quot;^^xsd:date ; dc:description quot;Allows only a limited number of iterationsquot;^^xsd:string ; dc:format quot;java/classquot;^^xsd:string ; dc:rights quot;University of Illinois/NCSA Open Source Licensequot;^^xsd:string ; meandre:execution_context <http://norma.ncsa.uiuc.edu/public-dav/Meandre/demos/E2K/V1/resources/ colt.jar> , <http://norma.ncsa.uiuc.edu/public-dav/Meandre/demos/E2K/V1/resources/ gacore.jar> , <http://dita.ncsa.uiuc.edu/meandre/e2k/components/limited- The SEASR project and its Meandre infrastructure! iterations/implementation/> , are sponsored by The Andrew W. Mellon Foundation <http://norma.ncsa.uiuc.edu/public-dav/Meandre/demos/E2K/V1/ resources/gacore-meandre.jar> , <http://norma.ncsa.uiuc.edu/public-dav/Meandre/demos/E2K/V1/
  • 13. Meandre: Components Types •  Components are the basic building block of any computational task. •  There are two kinds of Meandre components: –  Executable components •  Perform computational tasks that require no human interactions during runtime •  Processes are initialized during flow startup and are fired when in accordance to the policies defined for it. –  Control components •  Used to pause dataflow during user interaction cycles •  WebUI may be a HTML Form, Applet, or Other user interface The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 14. Meandre: Component Assemblies •  Defined by connecting outputs from one component to the inputs of another. –  Cyclical connections are supported –  Components may have •  Zero to many inputs •  Zero to many output •  Properties that control runtime behavior •  Described using RDF –  Enables storage, reuse, and sharing like components –  Allows discovery and dynamic execution The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 15. Meandre: Flow (Complex Tasks) •  A flow is a collection of connected components Read Merge P P Show Get P P Do P Dataflow execution The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 16. Meandre: Create, Publish, & Share •  “Components” and “Flows” have RDF descriptors –  Easily shared, fosters sharing, & reuse –  Allow machines to read and interpret –  Independent of the implementations –  Combine different implementation & platforms –  Components: Java, Python, Lisp, Web Services –  Execution: On a Laptop or a High Performance Cluster •  A “Location” is RDF descriptor of one to many components, one to many flows, and their implementations The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 17. Meandre: Repository & Locations •  Each location represents a set components/flows •  Users can –  Combine different locations together –  Create components –  Assemble flows –  Share components and flows •  Repositories Help –  Administrate complex environments –  Organize components and flows The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 18. Meandre: Metadata Properties •  Components and Flows share properties such as component name, creator, creation date, description, tags, and rights. •  Components specific metadata to describe the components' behavior, it’s location, type of implementation, firing policy, runnable, format, resource location, and execution context •  Flow specific metadata describes the directed graph of components, components instances, connectors, connector instance data port source, connector, instance data port target, connector instance source, connector instance target, instance name The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 19. A Little more on the Nuts & Bolts! Programming Paradigm • What does Meandre Execution Engine Do? • What are the possible Component Scenarios • Relationship between Engine and Components • Data Driven Flow Creation (Workbench/Zigzag)
  • 20. Meandre Server Prepares a Flow •  The Meandre Server prepares Data Intensive Flow by reading the RDF Descriptors component plumping –  Executable Components and the connection the between them are prepared by constructing a Queue mechanism which is use to aggregate data available events. •  Meandre provides each component an executing thread for processing. •  Meandre manages logic queue represent by component connections in a flow •  Meandre activates component for initialization, data events, and termination •  Meandre provides components with access to runtime resources. Context A Queue Context B
  • 21. Meandre Sever Relationship to Component Meandre Server Infrastructure Input
&
Ouput
Data
 Defines
Firing.Policy
 Ports
that
require
a
 logical
queue
to
be
 ALL
or
ANY
 Component RDF Descriptor defines: managed
by
server
 Meandre

Server
 Component
 Meandre

Server
 Pull Inputs Component
 Push Outputs
  • 22. Meandre Server Flows & Connectors Flows are made up of “One or More” components Flows may contain connectors that with “None to Many” connectors that are described are cyclical over one or more to the Mendre Server for management components Flows must contain at minimum one component with NO Inputs to cause an Execute call to be made. *Outputs are Always Optional. Flow components may have multiple connectors assigned to any input data port Flows can have any number of components with  “None to Many” Inputs data port s  “None to Many” Output data ports
  • 23. Meandre: Programming Paradigm •  The programming paradigm creates complex tasks by linking together a bunch of specialized components. Meandre's publishing mechanism allows components developed by third parties to be assembled in a new flow. •  There are two ways to develop flows : –  Meandre’s Workbench visual programming tool –  Meandre’s ZigZag scripting language The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 24. Meandre: Workbench Existing Flow Components Flows Locations The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 25. Meandre: ZigZag Script Language •  ZigZag is a simple language for describing data- intensive flows –  Modeled on Python for simplicity. –  ZigZag is declarative language for expressing the directed graphs that describe flows. •  Command-line tools allow ZigZag files to compile and execute. –  A compiler is provided to transform a ZigZag program (.zz) into Meandre archive unit (.mau). –  Mau(s) can then be executed by a Meandre engine. The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 26. Meandre: ZigZag Script Language •  As an example the Flow Diagram –  The flow below pushes two strings that get concatenated and printed to the console –  The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 27. Meandre: ZigZag Script Language •  ZigZag code that represents example flow: # # Imports the three required components and creates the component aliases # import <http://localhost:1714/public/services/demo_repository.rdf> alias <http://test.org/component/push_string> as PUSH alias <http://test.org/component/concatenate-strings> as CONCAT alias <http://test.org/component/print-object> as PRINT # # Creates four instances for the flow # push_hello, push_world, concat, print = PUSH(), PUSH(), CONCAT(), PRINT() # # Sets up the properties of the instances # push_hello.message, push_world.message = quot;Hello quot;, quot;world!quot; # # Describes the data-intensive flow # @phres, @pwres = push_hello(), push_world() @cres = concat( string_one: phres.string; string_two: pwres.string ) print( object: cres.concatenated_string ) # The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 28. Meandre: ZigZag Script Language •  Automatic Parallelization –  Multiple instances of a component could be run in parallel to boost throughput. –  Specialized operator available in ZigZag Scripting to cause multiple instances of a given component to used •  Consider a simple flow example show in the diagram •  The dataflow declaration would look like # # Describes the data-intensive flow # @pu = push() @pt = pass( string:pu.string ) print( object:pt.string ) The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 29. Meandre: ZigZag Script Language •  Automatic Parallelization –  Adding the operator [+AUTO] to middle component # Describes the data-intensive flow # @pu = push() @pt = pass( string:pu.string ) [+AUTO] print( object:pt.string ) –  [+AUTO] tells the ZigZag compiler to parallelize the “pass component instance” by the number of cores available on system. –  [+AUTO] may also be written [+N] where N is an numeric value to use for example [+10]. The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 30. Meandre: ZigZag Script Language •  Automatic Parallelization –  Adding the operator [+4] would result in a directed grap # Describes the data-intensive flow # Describes the data-intensive flow # # @pu = push() @pu = push() @pt = pass( string:pu.string ) [+4] @pt = pass( string:pu.string ) [+4!] print( object:pt.string ) print( object:pt.string ) The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 31. Meandre: Flows to MAU •  Flows can be executed using their RDF descriptors •  Flows can be compiled into MAU •  MAU is: –  Self-contained representation –  Ready for execution –  Portable –  The base of flow execution in grid environments The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 32. Meandre: The Architecture •  The design of the Meandre architecture follows three directives: –  provide a robust and transparent scalable solution from a laptop to large-scale clusters –  create an unified solution for batch and interactive tasks –  encourage reusing and sharing components •  To ensure such goals, the designed architecture relies on four stacked layers and builds on top of service-oriented architectures (SOA) The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 33. Meandre: Basic Single Server The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 34. Meandre MDX: Cloud Computing •  Servers can be –  instantiated on demand –  disposed when done or on demand •  A cluster is formed by at least one server •  The Meandre Distributed Exchange (MDX) –  Orchestrates operational integrity by managing cluster configuration and membership using a shared database resource. The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 35. Meandre MDX: The Picture MDX
Backbone
 The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 36. Meandre MDX: The Architecture •  Virtualization infrastructure –  Provide a uniform access to the underlying execution environment. It relies on virtualization of machines and the usage of Java for hardware abstraction. •  IO standardization –  A unified layer provides access to shared data stores, distributed file-system, specialized metadata stores, and access to other service-oriented architecture gateways. The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 37. Meandre MDX: The Architecture •  Data-intensive flow infrastructure –  Provide the basic Meandre execution engine for data-intensive flows, component repositories and discovery mechanisms, extensible plugins and web user interfaces (webUIs). •  Interaction layer –  Can provide self-contained applications via webUIs, create plugins for third-party services, interact with the embedding application that relies on the Meandre engine, or provide services to the cloud. The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation
  • 38. SEASR: Meandre: ! Semantic-Driven Data-Intensive ! Flows in the Clouds Xavier Llora, Bernie Acs, Loretta Auvil, Boris Capitanu, Michael Welge, David Goldberg National Center for Supercomputing Applications! University of Illinois at Urbana-Champaign {xllora, acs1, lauvil, capitanu, mwelge, deg}@illinois.edu The SEASR project and its Meandre infrastructure! are sponsored by The Andrew W. Mellon Foundation