SlideShare une entreprise Scribd logo
1  sur  18
Télécharger pour lire hors ligne
TRIGONOMETRIA
A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações
trigonométricas num triângulo retângulo.
Num triângulo ABC, retângulo em A, indicaremos por Bˆ e por Cˆ as medidas dos ângulos
internos, respectivamente nos vértices B e C.
TEOREMA DE PITÁGORAS: Em todo triângulo retângulo, a soma dos quadrados das medidas
dos catetos é igual ao quadrado da medida da hipotenusa.
222
cba 
Definições:
1. Em todo triângulo retângulo, o seno de um ângulo agudo é a razão entre a medida do
cateto oposto a esse ângulo e a medida da hipotenusa.
a
b
hipotenusa
Bˆânguloaoopostocateto
Bˆsen 
a
c
hipotenusa
Cˆânguloaoopostocateto
Cˆsen 
2. Em todo triângulo retângulo, o cosseno de um ângulo agudo é a razão entre a medida do
cateto adjacente a esse ângulo e a medida da hipotenusa.
a
c
hipotenusa
Bˆânguloaoadjacentecateto
Bˆcos 
a
b
hipotenusa
Cˆânguloaoadjacentecateto
Cˆcos 
3. Em todo triângulo retângulo, a tangente de um ângulo agudo é a razão entre a medida dos
catetos oposto e adjacente a esse ângulo.
c
b
Bˆânguloaoadjacentecateto
Bˆânguloaoopostocateto
Bˆtg 
b
c
Cˆânguloaoadjacentecateto
Cˆânguloaoopostocateto
Cˆtg 
Observação:
Note que
Bˆcos
Bˆsen
a
c
a
b
c
b
Bˆtg  .
Em geral, utilizaremos
xcos
xsen
xtg  , para o ângulo x.
VALORES NOTÁVEIS
1) Considere o triângulo eqüilátero de medida de lado a.
2
1
a
2
a
)30(sen 
2
3
a
2
3a
)30cos( 
3
3
3
1
2
3a
2
a
)30(tg 
2
3
a
2
3a
)60(sen 
2
1
a
2
a
)60cos(  3
2
a
2
3a
)60(tg 
2) Considere o quadrado de medida de lado a.
2
2
2
1
2a
a
)45(sen 
2
2
2
1
2a
a
)45cos(  1
a
a
)45(tg 
Resumindo:
30o
45o
60o
Seno
2
1
2
2
2
3
Cosseno
2
3
2
2
2
1
Tangente
3
3 1 3
ARCOS DE CIRCUNFERÊNCIA
Dados dois pontos distintos A e B sobre uma circunferência, esta fica dividida em duas partes,
denominadas arcos, que indicaremos por ou .
As unidades usuais para arcos de circunferência são: grau e radiano.
MEDIDA DE ARCOS
Considere uma circunferência orientada, de centro O e raio unitário. Definimos:
GRAU: é o arco unitário correspondente a
360
1
da circunferência que contém o arco a ser
medido.
RADIANO: é um arco unitário cujo comprimento é igual ao raio da circunferência que contém o
arco a ser medido. ( o
radiano 571  )
As medidas de arcos de circunferências em graus e em radianos são diretamente proporcionais,
possibilitando a obtenção da equação de conversão de unidades, através de uma regra de três
simples, em que  é a medida em graus e  em radianos.
medida em graus medida em radianos
 
180 





180
CICLO TRIGONOMÉTRICO
Considere uma circunferência orientada, de centro O e raio unitário. Imagine um ponto A se
deslocando sobre a circunferência.
Existe uma diferença muito importante para se graduar uma reta e uma circunferência: enquanto
que na reta cada ponto corresponde a um único número real, na circunferência cada ponto
corresponde a uma infinidade de números reais e todos diferem de múltiplos inteiros de 2 .
A figura a seguir ilustra a graduação, em radianos, de uma circunferência de raio 1.
Ao marcarmos o ponto P na circunferência de raio 1, temos um triângulo retângulo
correspondente, de onde calculamos:
p
p
x
1
x
cos  ; p
p
y
y
sen 
1
; 122
 pp yx obtendo-se 122
 sencos
A figura acima mostra que no eixo x temos o valor do cosseno e no eixo y, temos o seno,
definindo o chamado ciclo trigonométrico.
Para os pontos A, B, C e D podemos obter os seguintes valores:
sen0 = yA = 0 cos0 =xA = 1
sen
2
 = yB = 1 cos
2
 =xB = 0
sen  = yC = 0 cos  =xC = -1
sen
2
3 = yD = 1 cos
2
3 =xD = 0
sen2 = yA = 0 cos2  =xA = 1
FUNÇÕES TRIGONOMÉTRICAS
Estudaremos as funções seno, cosseno, tangente, cotangente, secante e cossecante, nos ciclos
trigonométricos.
Veremos a periodicidade e os gráficos das funções seno cosseno e tangente.
O que é periodicidade?
Para que fique bem claro o que este termo quer dizer, vamos exemplificar com os dias da
semana, de 7 em 7 dias eles se repetem, chamamos este fato de periódico, e o período é 7.
Estas três funções que serão apresentadas são ditas funções periódicas.
Definição: Uma função f é periódica se existir um número real p > 0 tal que f(x+p) = f(x),
fDomx  . Neste caso, o menor valor de p que satisfaz tal condição é chamado período de f.
Observação: o gráfico de uma função periódica é caracterizado por ter seu “desenho” se
repetindo. Assim, para desenharmos a curva toda, basta desenharmos a parte correspondente a
um período e copiar à direita e à esquerda infinitas cópias da parte desenhada.
Vamos analisar a periodicidade destas três funções trigonométricas:
1) Seno
sen(x) = sen(x + 2 ) = sen(x + 4 ) =..... = sen(x + k2  ), k  Z.
Seno é função periódica de período 2 
2) Cosseno
cos(x) = cos(x + 2  ) = cos(x + 4  ) =..... = cos(x + k2  ), k  Z.
Cosseno é função periódica de período 2
3) Tangente
tg(x) = tg(x +  ) = tg(x+ 2 ) =..... = tg(x + k  ), k  Z.
Tangente é função periódica de período 
Generalizando: y = a sen(kx) e y = a cos(kx) p =
k
2
Generalizando: y = a tg(kx) p =
k

Exemplos:
1) Determine o período de cada função:
a). y = 3 sen(x) p = 2 
b) y = 3 sen(2x) p = 

2
2
c). y = 2 sen(x/2) p = 

4
2/1
2
d) y = 3 cos(2x) p = 

2
2
e) y = cos(3x/5) p =
3
10
5/3
2 


2) Determine o período de cada função:
a). y = tg(2x) p =
2

b). y = 2 tg(x) p = 
a). y = tg(x/2) p = 

2
2/1
GRÁFICO DA FUNÇÃO SENO
y = sen x
Propriedades
a) Dom = 
b) Img = [-1, 1]
c) Período = 2
d) sen (-x) = - sen (x)
GRÁFICO DA FUNÇÃO COSSENO
y = cos x
Propriedades
a) Dom = 
b) Img = [-1, 1]
c) Período = 2
d) cos (-x) = cos (x)
GRÁFICO DA FUNÇÃO TANGENTE
y = tg x
Propriedades
a) Dom = }kx/x{  2
b) Img = 
c) Período = 
d) tg (-x) = -tg (x)
RELAÇÕES FUNDAMENTAIS
tg x =
xcos
senx
, para 

 k
2
x com Zk 
sen2
x + cos2
x = 1, para Rx 
cotg x =
senx
xcos
, para  kx com Zk  sec2
x = 1 + tg2
x, para 

 k
2
x com Zk 
sec x =
xcos
1
, para 

 k
2
x com Zk 
cossec2
x = 1 + cotg2
x, para  kx com Zk 
cossec x =
senx
1
, para  kx com Zk 
FÓRMULAS DE ADIÇÃO E SUBTRAÇÃO
Sendo “a” e “b” dois números reais.
sen(a + b) = sena.cosb + cosa.senb sen(a – b) = sena.cosb – cosa.senb
cos(a + b) = cosa.cosb - sena.senb cos(a – b) = cosa.cosb + sena.senb
tg(a + b) =
tgb.tga
tgbtga


1
tg(a - b) =
tgb.tga
tgbtga


1
Exemplos
1) Calcule
a) )15cos( 
Solução:
4
26
2
1
2
2
2
3
2
2
)30(sen)45(sen)30cos()45cos()3045cos()15cos(


 
b) )15(sen 
Solução:
4
26
2
1
2
2
2
3
2
2
)30cos()45(sen)30cos()45(sen)3045(sen)15(sen


 
b) )15(tg 
Solução:
 
 
  32
6
326
6
3612
39
3369
33
33323
33
33
33
33
33
33
3
33
3
33
3
3
11
3
3
1
)30(tg)45(tg1
)30(tg)45(tg
)3045(tg)15(tg
22
22

































FÓRMULAS DE MULTIPLICAÇÃO: ARCO DUPLO (2a)
A partir das fórmulas de adição e subtração, podemos obter as seguintes fórmulas de
multiplicação:
cos(2a) = cos(a+a) = cos a cos a – sen a sen a = cos2
a – sen2
a =
=cos2
a –(1- cos2
a ) = 2 cos2
a -1
sen(2a) = sen(a+a) = sen a cos a + sen a cos b = 2 sen a cos a
tg(2a) = tg (a+a) =
atg1
tga2
tga.tga1
tgatga
2




Ou seja,
cos 2a = asenacos 22  sen 2a = 2 sen a . cos a
cos 2a = 2 cos2
a – 1
tg 2a =
.atg1
tga2
2

cos 2a= 1 – 2 sen2
a
Exemplos
1) Sabendo que
3
1
)x(tg  , calcule tg(2x).
Solução
tg(2x) =
4
3
8
9
3
2
9
8
3
2
9
1
1
3
1
2
.xtg1
xtg2
2





2) Resolva a equação 1)x(sen3)x2cos(  .
Solução
02)x(sen3)x(sen2
1)x(sen3)x(sen)x(sen1
1)x(sen3)x(sen)x(cos
1)x(sen3)x2cos(
2
22
22




Resolvendo a equação de 2º grau em sen(x), temos:
25169)2(2432 
xexistenão2
4
53
ou
k2
6
5
xouk2
6
x
2
1
4
53
4
53
)x(sen











Conjunto solução:










 Zk,k2
6
5
xouk2
6
xRxS
FÓRMULAS DE BISSECÇÃO
As fórmulas de bissecção podem ser obtidas do seguinte modo:
2
)b2cos(1
bsen)b2cos(1bsen2bsen21)b2cos( 222 
 e, se considerarmos b=
2
a
,
obtemos
2
1
2
2 acosa
sen

 .
Seguindo essa idéia, temos
2
1
2
2 acosa
sen


2
1
2
2 acosa
cos


acos
acosa
tg



1
1
2
2
RELAÇÕES DE PROSTAFÉRESE
Fazendo





qba
pba
, ou seja,










2
qp
b
2
qp
a
e substituindo nas fórmulas de adição e subtração,
obtemos as relações de prostaférese dadas por
sen p + sen q =
2
qp
cos
2
qp
sen2




sen p - sen q =
2
qp
cos
2
qp
sen2




cos p + cos q =
2
qp
cos
2
qp
cos2




cos p - cos q =
2
qp
sen
2
qp
sen2




tg p + tg q =
)qcos().pcos(
)qp(sen 
tg p - tg q =
)qcos().pcos(
)qp(sen 
FUNÇÕES TRIGONOMÉTRICAS INVERSAS
Nosso problema agora é procurar, se existirem, valores de y para os quais sen y = x,
lembrando que 1x1  .
Dado x, o valor de y correspondente tal que sen y = x determina uma função. Mas, para que o
valor de x determinado seja único, teremos que usar a restrição
2
y
2



.
Para solucionarmos esta questão, temos que estudar as funções trigonométricas inversas.
1) Função arco-seno (arcsen)
A cada x  [–1,1] associa-se um único y 




 

2
,
2
tais que sen y = x.
Assim, definimos a função
arcsen : [–1,1] 




 

2
,
2
x )x(arcseny 
Exemplos
1) Calcule
a) y = arcsen(1/2)
Solução
y = arcsen(1/2)  sen y = 1/2 . Lembrando que y 




 

2
,
2
, temos y =  /6, ou seja,
62
1
arcsen







.
b) y = arcsen(0)
Solução
y = arcsen(0)  sen y = 0 . Lembrando que y 




 

2
,
2
, temos y = 0, ou seja,   00arcsen  .
c) y = arcsen(-1/2)
Solução
y = arcsen(-1/2)  sen y = -1/2 . Lembrando que y 




 

2
,
2
, temos y =  /6, ou seja,
62
1
arcsen







 .
d) y = arcsen(1)
Solução
y = arcsen(1)  sen y = 1 . Lembrando que y 




 

2
,
2
, temos y =  /2, ou seja,  
2
1arcsen

 .
2) Função arco-cosseno (arccos)
A cada x  [–1,1] associa-se um único y   ,0 tais que cos y = x.
Assim, definimos a função
arccos : [–1,1]   ,0
x )xarccos(y 
Exemplos
1) Calcule
a) y = arccos(1/2)
Solução
y = arccos(1/2)  cos y = 1/2 . Lembrando que y   ,0 , temos y =  /3, ou seja,
32
1
arccos







.
b) y = arccos(0)
Solução
y = arccos(0)  cos y = 0 . Lembrando que y   ,0 , temos y =  /2, ou seja,  
2
0arccos

 .
c) y = arccos(-1/2)
Solução
y = arccos(-1/2)  cos y = -1/2. Lembrando que y   ,0 temos y = 2 /3, ou seja,
3
2
2
1
arccos







 .
d) y = arccos(1)
Solução
y = arccos(1)  cos y = 1 . Lembrando que y   ,0 temos y =  , ou seja,   1arccos .
3) Função arco-tangente (arctg)
A cada x  [–1,1] associa-se um único y 




 

2
,
2
tais que tg y = x.
Assim, definimos a função
arcsen : [–1,1] 




 

2
,
2
x )x(arctgy 
Exemplos
1) Calcule
a) y = arctg(1)
Solução
y = arctg(1)  tg y = 1 . Lembrando que y 




 

2
,
2
, temos y =  /4, ou seja,  
4
1arctg

 .
b) y = arcsen( 3 )
Solução
y = arctg( 3 )  tg y = 3 . Lembrando que y 




 

2
,
2
, temos y =  /3, ou seja,
  3
3arctg

 .
c) y = arctg(-1)
Solução
y = arctg(-1)  tg y = -1 . Lembrando que y 




 

2
,
2
, temos y =  /4, ou seja,  
4
1arctg

 .
EXERCÍCIOS SOBRE TRIGONOMETRIA
1) Em cada um dos casos, calcule o seno, o cosseno, a tangente do ângulo agudo assinalado:
2) Um barco deveria sair do porto da cidade A e ir até o porto da cidade B em uma linha reta, (no
sentido norte-sul). Entretanto, uma correnteza fez com que o barco sofresse um desvio de na
direção leste. Ultrapassando o trecho de correnteza o capitão necessitou efetuar uma correção no
rumo no barco de 45º para a esquerda, de tal forma que ao reencontrar a rota original é possível
traçar um triângulo retângulo.
(norte) A
5 milhas
(leste)
(sul) B
3) A lua é satélite natural da Terra e faz uma revolução em torno do sol em aproximadamente 28
dias.
a) De quantos radianos é o movimento da lua em um dia?
b) Qual a distância percorrida pela lua em uma revolução completa? (adote a distância da terra à
lua de 385.000km).
4) Reduza os arcos à primeira volta, represente-os graficamente e calcule o valor de seu seno,
cosseno e tangente.
a)1470º b) –1020º c)
4
25
d)
2
5

5) Determine o valor de
(a) sen 1620º (b) sen (-990º)
6) Sendo sen a = 1/2 e cos b = -1/2, sabendo que a e b são arcos do 2º quadrante, calcule:
a) sen (a+b) b) cos(a-b) c) tg (a+b)
Se o barco percorreu 5 milhas na direção
leste, quanto ele teve que andar para
retornar á rota original?
7) Resolva a expressão matemática
a) x = sen (/6)- cos (2/3)-3*sen()
b) y = tg(/4)+2*sen(5/6) – [sen (/3)-cos(/6)]
8) (MACK) O valor se sen 55º.cos35º+sen35º.cos55º é:
a) –1 b) -0,5 c) zero d)0,5 e) 1,0
9) Simplifique as expressões:
a) )x5(sen)x9(sen  b) sen (x-900º) + cos (x-540º)
10) Construa o gráfico (dois períodos completos) das seguintes funções, explicitando o domínio, a
imagem e o período:
a) y = 4 sen x b) y=1 - sen x c) y = 2 sen x/4
11) Calcule :
a) sen (9/4) e cos (9/4)
b) sen (-2/3) e sen (-2/3)
c) sen 8 e cos8
12. Encontre os valores do ângulo no intervalo [0, 2) que satisfaça as equações:
a) sen =1; cos=-1; tg =1; sec=1;
b) sen =0; cos=0; tg=0; sec=0;
c) sen = -1/2; cos= 1/2; tg= -1; sec=2.
13. Determine o período das funções:
a) y = sen (8) b) z= 4 sen (8)
c) x = cos (4/7) d) p=3 cos(/4+/2)
14. Simplifique a expressão 







 cos
2
sen)sen()sen( .
15. Sabendo-se que sen  = -1/3, calcule:
a) sen (  - ) b) sen (  + ) c) cos (/2 - )
16. Usando as fórmulas de adição, calcule:
a) sen (+/2) b) cos75º c) cos (5/6), (sugestão 5/6 = /2+/3)
17. Mostre que  cossen22sen .
18. Mostre que
2
2cos
2
1
cos2 
 .
RESPOSTAS DOS EXERCÍCIOS DO CÁLCULO ZERO - TRIGONOMETRIA
1) a)
2
1
tg,
5
52
cos,
5
5
sen  b)
4
3
tg,
5
4
cos,
5
3
sen 
2) 5 2
3) a) /14 rad b) 770.000  km
4) a) 1470º equivale a 30º portando sen 30º = ½; cos 30º = 3 /2 e tg 30º = 3 /3
b) – 920 º equivale a 60º portando sen 60º = 3 /2 , cos 60º =1/2 e tg 60º = 3
c) 25/4 equivale a /4 portando sen /4 = 2 /2 , cos /4 = 2 /2 e tg /4 = 1
d) -5/2 equivale a 3/2 portando sen 3/2 = -1 , cos 3/2 = 0 e tg 3/2 = indefinida
5) a) zero b) 1
6) a) 1 b) 3 /2 c)indefinido
7) a) -1 b) 2
8) e
9) a) 2 sen x b) -sen x - cos x
10) a) Dom =  , Im = [-4, 4], p=2 b) ) Dom =  , Im = [0, 1], p=2
c) Dom =  , Im = [-2, 2], p=8
11) a) 2 /2 e 2 /2 b) - 3 /2 e -1/2 c) 0 e 1
12) a) /2, , /4 e 5/4, 0
b) 0 e , /2 e 3/2, 0 e , /2 e 3/2
c) 7/6 e 11/6, /3 e 5/3, 3/4 e 7/4, /3 e 5/3
13) a) /4 b) /4 c) 7/2 d) 8
14) –2sen
15) a) – 1/3 b) 1/3 c) -1/2
16) a) - 3 /2 b)   4/26  c) - 3 /2

Contenu connexe

Tendances

Lírica camoniana
Lírica camoniana Lírica camoniana
Lírica camoniana Sara Afonso
 
Transportes aéreos- Geografia A
Transportes aéreos- Geografia ATransportes aéreos- Geografia A
Transportes aéreos- Geografia AAna Catarina
 
1.Sistemas de Classificação
1.Sistemas de Classificação1.Sistemas de Classificação
1.Sistemas de Classificaçãoguestbd7d9
 
Sermão de santo antónio aos peixes
Sermão de santo antónio aos peixesSermão de santo antónio aos peixes
Sermão de santo antónio aos peixesRaquel Tavares
 
Experiência de griffith e avery
Experiência de griffith e averyExperiência de griffith e avery
Experiência de griffith e averyCecilferreira
 
Bio 12 genética - hereditariedade ligada ao sexo (daltonismo)
Bio 12   genética - hereditariedade ligada ao sexo (daltonismo)Bio 12   genética - hereditariedade ligada ao sexo (daltonismo)
Bio 12 genética - hereditariedade ligada ao sexo (daltonismo)Nuno Correia
 
Violência vs Espírito Desportivo
Violência vs Espírito DesportivoViolência vs Espírito Desportivo
Violência vs Espírito DesportivoJoão Duarte
 
Como fazer um trabalho em word
Como fazer um trabalho em wordComo fazer um trabalho em word
Como fazer um trabalho em wordAnaGomes40
 
Os Lusíadas de Luís de Camões
Os Lusíadas de Luís de CamõesOs Lusíadas de Luís de Camões
Os Lusíadas de Luís de CamõesGijasilvelitz 2
 
Proposição
ProposiçãoProposição
ProposiçãoLurdes
 
Mecanismos De Defesa NãO EspecíFicos (ApresentaçãO Nr. 3)
Mecanismos De Defesa NãO EspecíFicos  (ApresentaçãO Nr. 3)Mecanismos De Defesa NãO EspecíFicos  (ApresentaçãO Nr. 3)
Mecanismos De Defesa NãO EspecíFicos (ApresentaçãO Nr. 3)Nuno Correia
 
Teoria da justiça rawls
Teoria da justiça rawlsTeoria da justiça rawls
Teoria da justiça rawlsFilazambuja
 
Teste Biologia e Geologia 11º ano
Teste Biologia e Geologia 11º anoTeste Biologia e Geologia 11º ano
Teste Biologia e Geologia 11º anoJosé Luís Alves
 
Biologia - Relatório da Extração de DNA do Kiwi (11º Ano)
Biologia - Relatório da Extração de DNA do Kiwi (11º Ano)Biologia - Relatório da Extração de DNA do Kiwi (11º Ano)
Biologia - Relatório da Extração de DNA do Kiwi (11º Ano)Mountain Expedition
 

Tendances (20)

Lírica camoniana
Lírica camoniana Lírica camoniana
Lírica camoniana
 
Transportes aéreos- Geografia A
Transportes aéreos- Geografia ATransportes aéreos- Geografia A
Transportes aéreos- Geografia A
 
Exercicios de exame bio11
Exercicios de exame bio11Exercicios de exame bio11
Exercicios de exame bio11
 
1.Sistemas de Classificação
1.Sistemas de Classificação1.Sistemas de Classificação
1.Sistemas de Classificação
 
Sermão de santo antónio aos peixes
Sermão de santo antónio aos peixesSermão de santo antónio aos peixes
Sermão de santo antónio aos peixes
 
Experiência de griffith e avery
Experiência de griffith e averyExperiência de griffith e avery
Experiência de griffith e avery
 
Bio 12 genética - hereditariedade ligada ao sexo (daltonismo)
Bio 12   genética - hereditariedade ligada ao sexo (daltonismo)Bio 12   genética - hereditariedade ligada ao sexo (daltonismo)
Bio 12 genética - hereditariedade ligada ao sexo (daltonismo)
 
Violência vs Espírito Desportivo
Violência vs Espírito DesportivoViolência vs Espírito Desportivo
Violência vs Espírito Desportivo
 
T1 bg11 21_22_v1.docx
T1 bg11 21_22_v1.docxT1 bg11 21_22_v1.docx
T1 bg11 21_22_v1.docx
 
Relaçoes Bioticas
Relaçoes BioticasRelaçoes Bioticas
Relaçoes Bioticas
 
Como fazer um trabalho em word
Como fazer um trabalho em wordComo fazer um trabalho em word
Como fazer um trabalho em word
 
Os Lusíadas de Luís de Camões
Os Lusíadas de Luís de CamõesOs Lusíadas de Luís de Camões
Os Lusíadas de Luís de Camões
 
Frei Luís de Souza - 2ª A - 2011
Frei Luís de Souza  -  2ª A - 2011Frei Luís de Souza  -  2ª A - 2011
Frei Luís de Souza - 2ª A - 2011
 
Proposição
ProposiçãoProposição
Proposição
 
Mecanismos De Defesa NãO EspecíFicos (ApresentaçãO Nr. 3)
Mecanismos De Defesa NãO EspecíFicos  (ApresentaçãO Nr. 3)Mecanismos De Defesa NãO EspecíFicos  (ApresentaçãO Nr. 3)
Mecanismos De Defesa NãO EspecíFicos (ApresentaçãO Nr. 3)
 
ENGENHARIA GENÉTICA
ENGENHARIA GENÉTICAENGENHARIA GENÉTICA
ENGENHARIA GENÉTICA
 
Teoria da justiça rawls
Teoria da justiça rawlsTeoria da justiça rawls
Teoria da justiça rawls
 
BG11_T1a_2021_CC.pdf
BG11_T1a_2021_CC.pdfBG11_T1a_2021_CC.pdf
BG11_T1a_2021_CC.pdf
 
Teste Biologia e Geologia 11º ano
Teste Biologia e Geologia 11º anoTeste Biologia e Geologia 11º ano
Teste Biologia e Geologia 11º ano
 
Biologia - Relatório da Extração de DNA do Kiwi (11º Ano)
Biologia - Relatório da Extração de DNA do Kiwi (11º Ano)Biologia - Relatório da Extração de DNA do Kiwi (11º Ano)
Biologia - Relatório da Extração de DNA do Kiwi (11º Ano)
 

Similaire à Trigonometria Relações

Funções trigonométricas
Funções trigonométricasFunções trigonométricas
Funções trigonométricasCarlos Campani
 
1 ano trigonometria no triângulo retângulo - 2008
1 ano   trigonometria no triângulo retângulo - 20081 ano   trigonometria no triângulo retângulo - 2008
1 ano trigonometria no triângulo retângulo - 2008Erick Fernandes
 
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdfAula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdfRafaelVictorMorenoPo
 
Base trigonometria 001
Base trigonometria  001Base trigonometria  001
Base trigonometria 001trigono_metria
 
Trigonometria ponteiros relogio
Trigonometria ponteiros relogioTrigonometria ponteiros relogio
Trigonometria ponteiros relogiotrigono_metria
 
Função trigonometrica
Função trigonometricaFunção trigonometrica
Função trigonometricamyri2000
 
Ciclo trigonometrico
Ciclo trigonometricoCiclo trigonometrico
Ciclo trigonometricoISJ
 
Preparação exame nacional matemática 9.º ano - Parte III
Preparação exame nacional matemática 9.º ano - Parte IIIPreparação exame nacional matemática 9.º ano - Parte III
Preparação exame nacional matemática 9.º ano - Parte IIIMaths Tutoring
 
RAZÕES TRIGONOMÉTRICAS NA CIRCUNFERÊNCIAxxxxxxx.pdf
RAZÕES TRIGONOMÉTRICAS NA CIRCUNFERÊNCIAxxxxxxx.pdfRAZÕES TRIGONOMÉTRICAS NA CIRCUNFERÊNCIAxxxxxxx.pdf
RAZÕES TRIGONOMÉTRICAS NA CIRCUNFERÊNCIAxxxxxxx.pdfRoseildoNunesDACruz1
 
Aula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
Aula 7 - Funções Logarítmicas, Exponenciais e TrigonometricasAula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
Aula 7 - Funções Logarítmicas, Exponenciais e TrigonometricasTurma1NC
 
Função trigonometrica
Função trigonometricaFunção trigonometrica
Função trigonometricamyri2000
 
Formulas mat
Formulas matFormulas mat
Formulas matSmssbr
 

Similaire à Trigonometria Relações (20)

trigonometria
trigonometriatrigonometria
trigonometria
 
Funções trigonométricas
Funções trigonométricasFunções trigonométricas
Funções trigonométricas
 
1 ano trigonometria no triângulo retângulo - 2008
1 ano   trigonometria no triângulo retângulo - 20081 ano   trigonometria no triângulo retângulo - 2008
1 ano trigonometria no triângulo retângulo - 2008
 
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdfAula-05_-_Trigonometria-no-triangulo-retangulo.pdf
Aula-05_-_Trigonometria-no-triangulo-retangulo.pdf
 
Base trigonometria 001
Base trigonometria  001Base trigonometria  001
Base trigonometria 001
 
Geometria analítica2
Geometria analítica2Geometria analítica2
Geometria analítica2
 
Geometria analítica2
Geometria analítica2Geometria analítica2
Geometria analítica2
 
Integral de linha
Integral de linhaIntegral de linha
Integral de linha
 
Trigonometria ponteiros relogio
Trigonometria ponteiros relogioTrigonometria ponteiros relogio
Trigonometria ponteiros relogio
 
Função trigonometrica
Função trigonometricaFunção trigonometrica
Função trigonometrica
 
Ciclo trigonometrico
Ciclo trigonometricoCiclo trigonometrico
Ciclo trigonometrico
 
Preparação exame nacional matemática 9.º ano - Parte III
Preparação exame nacional matemática 9.º ano - Parte IIIPreparação exame nacional matemática 9.º ano - Parte III
Preparação exame nacional matemática 9.º ano - Parte III
 
RAZÕES TRIGONOMÉTRICAS NA CIRCUNFERÊNCIAxxxxxxx.pdf
RAZÕES TRIGONOMÉTRICAS NA CIRCUNFERÊNCIAxxxxxxx.pdfRAZÕES TRIGONOMÉTRICAS NA CIRCUNFERÊNCIAxxxxxxx.pdf
RAZÕES TRIGONOMÉTRICAS NA CIRCUNFERÊNCIAxxxxxxx.pdf
 
Aula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
Aula 7 - Funções Logarítmicas, Exponenciais e TrigonometricasAula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
Aula 7 - Funções Logarítmicas, Exponenciais e Trigonometricas
 
Funções do 1º grau
Funções do 1º grauFunções do 1º grau
Funções do 1º grau
 
3º Ano FunçãO
3º Ano  FunçãO3º Ano  FunçãO
3º Ano FunçãO
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Função trigonometrica
Função trigonometricaFunção trigonometrica
Função trigonometrica
 
Ciclo trigo
Ciclo trigoCiclo trigo
Ciclo trigo
 
Formulas mat
Formulas matFormulas mat
Formulas mat
 

Dernier

DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...IsabelPereira2010
 
planejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdfplanejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdfmaurocesarpaesalmeid
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfHELENO FAVACHO
 
Araribá slides 9ano.pdf para os alunos do medio
Araribá slides 9ano.pdf para os alunos do medioAraribá slides 9ano.pdf para os alunos do medio
Araribá slides 9ano.pdf para os alunos do medioDomingasMariaRomao
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)ElliotFerreira
 
CRUZADINHA - Leitura e escrita dos números
CRUZADINHA   -   Leitura e escrita dos números CRUZADINHA   -   Leitura e escrita dos números
CRUZADINHA - Leitura e escrita dos números Mary Alvarenga
 
Discurso Direto, Indireto e Indireto Livre.pptx
Discurso Direto, Indireto e Indireto Livre.pptxDiscurso Direto, Indireto e Indireto Livre.pptx
Discurso Direto, Indireto e Indireto Livre.pptxferreirapriscilla84
 
AULA DE CARIOLOGIA TSB introdução tudo sobre
AULA DE CARIOLOGIA TSB introdução tudo sobreAULA DE CARIOLOGIA TSB introdução tudo sobre
AULA DE CARIOLOGIA TSB introdução tudo sobremaryalouhannedelimao
 
apostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médioapostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médiorosenilrucks
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Ilda Bicacro
 
INTERVENÇÃO PARÁ - Formação de Professor
INTERVENÇÃO PARÁ - Formação de ProfessorINTERVENÇÃO PARÁ - Formação de Professor
INTERVENÇÃO PARÁ - Formação de ProfessorEdvanirCosta
 
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfLeloIurk1
 
ATIVIDADE - CHARGE.pptxDFGHJKLÇ~ÇLJHUFTDRSEDFGJHKLÇ
ATIVIDADE - CHARGE.pptxDFGHJKLÇ~ÇLJHUFTDRSEDFGJHKLÇATIVIDADE - CHARGE.pptxDFGHJKLÇ~ÇLJHUFTDRSEDFGJHKLÇ
ATIVIDADE - CHARGE.pptxDFGHJKLÇ~ÇLJHUFTDRSEDFGJHKLÇJaineCarolaineLima
 
Slides Lição 5, Betel, Ordenança para uma vida de vigilância e oração, 2Tr24....
Slides Lição 5, Betel, Ordenança para uma vida de vigilância e oração, 2Tr24....Slides Lição 5, Betel, Ordenança para uma vida de vigilância e oração, 2Tr24....
Slides Lição 5, Betel, Ordenança para uma vida de vigilância e oração, 2Tr24....LuizHenriquedeAlmeid6
 
3-Livro-Festa-no-céu-Angela-Lago.pdf-·-versão-1.pdf
3-Livro-Festa-no-céu-Angela-Lago.pdf-·-versão-1.pdf3-Livro-Festa-no-céu-Angela-Lago.pdf-·-versão-1.pdf
3-Livro-Festa-no-céu-Angela-Lago.pdf-·-versão-1.pdfBlendaLima1
 
Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesFabianeMartins35
 
Historia da Arte europeia e não só. .pdf
Historia da Arte europeia e não só. .pdfHistoria da Arte europeia e não só. .pdf
Historia da Arte europeia e não só. .pdfEmanuel Pio
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2Maria Teresa Thomaz
 
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfPROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfHELENO FAVACHO
 

Dernier (20)

DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
planejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdfplanejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdf
 
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdfProjeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
Projeto de Extensão - ENGENHARIA DE SOFTWARE - BACHARELADO.pdf
 
Araribá slides 9ano.pdf para os alunos do medio
Araribá slides 9ano.pdf para os alunos do medioAraribá slides 9ano.pdf para os alunos do medio
Araribá slides 9ano.pdf para os alunos do medio
 
Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)Análise poema país de abril (Mauel alegre)
Análise poema país de abril (Mauel alegre)
 
CRUZADINHA - Leitura e escrita dos números
CRUZADINHA   -   Leitura e escrita dos números CRUZADINHA   -   Leitura e escrita dos números
CRUZADINHA - Leitura e escrita dos números
 
Discurso Direto, Indireto e Indireto Livre.pptx
Discurso Direto, Indireto e Indireto Livre.pptxDiscurso Direto, Indireto e Indireto Livre.pptx
Discurso Direto, Indireto e Indireto Livre.pptx
 
AULA DE CARIOLOGIA TSB introdução tudo sobre
AULA DE CARIOLOGIA TSB introdução tudo sobreAULA DE CARIOLOGIA TSB introdução tudo sobre
AULA DE CARIOLOGIA TSB introdução tudo sobre
 
apostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médioapostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médio
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"
 
INTERVENÇÃO PARÁ - Formação de Professor
INTERVENÇÃO PARÁ - Formação de ProfessorINTERVENÇÃO PARÁ - Formação de Professor
INTERVENÇÃO PARÁ - Formação de Professor
 
Aula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIXAula sobre o Imperialismo Europeu no século XIX
Aula sobre o Imperialismo Europeu no século XIX
 
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
 
ATIVIDADE - CHARGE.pptxDFGHJKLÇ~ÇLJHUFTDRSEDFGJHKLÇ
ATIVIDADE - CHARGE.pptxDFGHJKLÇ~ÇLJHUFTDRSEDFGJHKLÇATIVIDADE - CHARGE.pptxDFGHJKLÇ~ÇLJHUFTDRSEDFGJHKLÇ
ATIVIDADE - CHARGE.pptxDFGHJKLÇ~ÇLJHUFTDRSEDFGJHKLÇ
 
Slides Lição 5, Betel, Ordenança para uma vida de vigilância e oração, 2Tr24....
Slides Lição 5, Betel, Ordenança para uma vida de vigilância e oração, 2Tr24....Slides Lição 5, Betel, Ordenança para uma vida de vigilância e oração, 2Tr24....
Slides Lição 5, Betel, Ordenança para uma vida de vigilância e oração, 2Tr24....
 
3-Livro-Festa-no-céu-Angela-Lago.pdf-·-versão-1.pdf
3-Livro-Festa-no-céu-Angela-Lago.pdf-·-versão-1.pdf3-Livro-Festa-no-céu-Angela-Lago.pdf-·-versão-1.pdf
3-Livro-Festa-no-céu-Angela-Lago.pdf-·-versão-1.pdf
 
Revolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividadesRevolução russa e mexicana. Slides explicativos e atividades
Revolução russa e mexicana. Slides explicativos e atividades
 
Historia da Arte europeia e não só. .pdf
Historia da Arte europeia e não só. .pdfHistoria da Arte europeia e não só. .pdf
Historia da Arte europeia e não só. .pdf
 
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2Estudar, para quê?  Ciência, para quê? Parte 1 e Parte 2
Estudar, para quê? Ciência, para quê? Parte 1 e Parte 2
 
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdfPROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
PROJETO DE EXTENSÃO - EDUCAÇÃO FÍSICA BACHARELADO.pdf
 

Trigonometria Relações

  • 1. TRIGONOMETRIA A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. Num triângulo ABC, retângulo em A, indicaremos por Bˆ e por Cˆ as medidas dos ângulos internos, respectivamente nos vértices B e C. TEOREMA DE PITÁGORAS: Em todo triângulo retângulo, a soma dos quadrados das medidas dos catetos é igual ao quadrado da medida da hipotenusa. 222 cba  Definições: 1. Em todo triângulo retângulo, o seno de um ângulo agudo é a razão entre a medida do cateto oposto a esse ângulo e a medida da hipotenusa. a b hipotenusa Bˆânguloaoopostocateto Bˆsen  a c hipotenusa Cˆânguloaoopostocateto Cˆsen  2. Em todo triângulo retângulo, o cosseno de um ângulo agudo é a razão entre a medida do cateto adjacente a esse ângulo e a medida da hipotenusa. a c hipotenusa Bˆânguloaoadjacentecateto Bˆcos  a b hipotenusa Cˆânguloaoadjacentecateto Cˆcos 
  • 2. 3. Em todo triângulo retângulo, a tangente de um ângulo agudo é a razão entre a medida dos catetos oposto e adjacente a esse ângulo. c b Bˆânguloaoadjacentecateto Bˆânguloaoopostocateto Bˆtg  b c Cˆânguloaoadjacentecateto Cˆânguloaoopostocateto Cˆtg  Observação: Note que Bˆcos Bˆsen a c a b c b Bˆtg  . Em geral, utilizaremos xcos xsen xtg  , para o ângulo x. VALORES NOTÁVEIS 1) Considere o triângulo eqüilátero de medida de lado a. 2 1 a 2 a )30(sen  2 3 a 2 3a )30cos(  3 3 3 1 2 3a 2 a )30(tg  2 3 a 2 3a )60(sen  2 1 a 2 a )60cos(  3 2 a 2 3a )60(tg 
  • 3. 2) Considere o quadrado de medida de lado a. 2 2 2 1 2a a )45(sen  2 2 2 1 2a a )45cos(  1 a a )45(tg  Resumindo: 30o 45o 60o Seno 2 1 2 2 2 3 Cosseno 2 3 2 2 2 1 Tangente 3 3 1 3 ARCOS DE CIRCUNFERÊNCIA Dados dois pontos distintos A e B sobre uma circunferência, esta fica dividida em duas partes, denominadas arcos, que indicaremos por ou . As unidades usuais para arcos de circunferência são: grau e radiano.
  • 4. MEDIDA DE ARCOS Considere uma circunferência orientada, de centro O e raio unitário. Definimos: GRAU: é o arco unitário correspondente a 360 1 da circunferência que contém o arco a ser medido. RADIANO: é um arco unitário cujo comprimento é igual ao raio da circunferência que contém o arco a ser medido. ( o radiano 571  ) As medidas de arcos de circunferências em graus e em radianos são diretamente proporcionais, possibilitando a obtenção da equação de conversão de unidades, através de uma regra de três simples, em que  é a medida em graus e  em radianos. medida em graus medida em radianos   180       180 CICLO TRIGONOMÉTRICO Considere uma circunferência orientada, de centro O e raio unitário. Imagine um ponto A se deslocando sobre a circunferência. Existe uma diferença muito importante para se graduar uma reta e uma circunferência: enquanto que na reta cada ponto corresponde a um único número real, na circunferência cada ponto corresponde a uma infinidade de números reais e todos diferem de múltiplos inteiros de 2 .
  • 5. A figura a seguir ilustra a graduação, em radianos, de uma circunferência de raio 1. Ao marcarmos o ponto P na circunferência de raio 1, temos um triângulo retângulo correspondente, de onde calculamos: p p x 1 x cos  ; p p y y sen  1 ; 122  pp yx obtendo-se 122  sencos A figura acima mostra que no eixo x temos o valor do cosseno e no eixo y, temos o seno, definindo o chamado ciclo trigonométrico.
  • 6. Para os pontos A, B, C e D podemos obter os seguintes valores: sen0 = yA = 0 cos0 =xA = 1 sen 2  = yB = 1 cos 2  =xB = 0 sen  = yC = 0 cos  =xC = -1 sen 2 3 = yD = 1 cos 2 3 =xD = 0 sen2 = yA = 0 cos2  =xA = 1 FUNÇÕES TRIGONOMÉTRICAS Estudaremos as funções seno, cosseno, tangente, cotangente, secante e cossecante, nos ciclos trigonométricos. Veremos a periodicidade e os gráficos das funções seno cosseno e tangente. O que é periodicidade? Para que fique bem claro o que este termo quer dizer, vamos exemplificar com os dias da semana, de 7 em 7 dias eles se repetem, chamamos este fato de periódico, e o período é 7. Estas três funções que serão apresentadas são ditas funções periódicas. Definição: Uma função f é periódica se existir um número real p > 0 tal que f(x+p) = f(x), fDomx  . Neste caso, o menor valor de p que satisfaz tal condição é chamado período de f.
  • 7. Observação: o gráfico de uma função periódica é caracterizado por ter seu “desenho” se repetindo. Assim, para desenharmos a curva toda, basta desenharmos a parte correspondente a um período e copiar à direita e à esquerda infinitas cópias da parte desenhada. Vamos analisar a periodicidade destas três funções trigonométricas: 1) Seno sen(x) = sen(x + 2 ) = sen(x + 4 ) =..... = sen(x + k2  ), k  Z. Seno é função periódica de período 2  2) Cosseno cos(x) = cos(x + 2  ) = cos(x + 4  ) =..... = cos(x + k2  ), k  Z. Cosseno é função periódica de período 2 3) Tangente tg(x) = tg(x +  ) = tg(x+ 2 ) =..... = tg(x + k  ), k  Z. Tangente é função periódica de período  Generalizando: y = a sen(kx) e y = a cos(kx) p = k 2 Generalizando: y = a tg(kx) p = k  Exemplos: 1) Determine o período de cada função: a). y = 3 sen(x) p = 2  b) y = 3 sen(2x) p =   2 2 c). y = 2 sen(x/2) p =   4 2/1 2 d) y = 3 cos(2x) p =   2 2 e) y = cos(3x/5) p = 3 10 5/3 2    2) Determine o período de cada função: a). y = tg(2x) p = 2  b). y = 2 tg(x) p =  a). y = tg(x/2) p =   2 2/1
  • 8. GRÁFICO DA FUNÇÃO SENO y = sen x Propriedades a) Dom =  b) Img = [-1, 1] c) Período = 2 d) sen (-x) = - sen (x) GRÁFICO DA FUNÇÃO COSSENO y = cos x Propriedades a) Dom =  b) Img = [-1, 1] c) Período = 2 d) cos (-x) = cos (x) GRÁFICO DA FUNÇÃO TANGENTE y = tg x Propriedades a) Dom = }kx/x{  2 b) Img =  c) Período =  d) tg (-x) = -tg (x) RELAÇÕES FUNDAMENTAIS tg x = xcos senx , para    k 2 x com Zk  sen2 x + cos2 x = 1, para Rx  cotg x = senx xcos , para  kx com Zk  sec2 x = 1 + tg2 x, para    k 2 x com Zk  sec x = xcos 1 , para    k 2 x com Zk  cossec2 x = 1 + cotg2 x, para  kx com Zk  cossec x = senx 1 , para  kx com Zk 
  • 9. FÓRMULAS DE ADIÇÃO E SUBTRAÇÃO Sendo “a” e “b” dois números reais. sen(a + b) = sena.cosb + cosa.senb sen(a – b) = sena.cosb – cosa.senb cos(a + b) = cosa.cosb - sena.senb cos(a – b) = cosa.cosb + sena.senb tg(a + b) = tgb.tga tgbtga   1 tg(a - b) = tgb.tga tgbtga   1 Exemplos 1) Calcule a) )15cos(  Solução: 4 26 2 1 2 2 2 3 2 2 )30(sen)45(sen)30cos()45cos()3045cos()15cos(     b) )15(sen  Solução: 4 26 2 1 2 2 2 3 2 2 )30cos()45(sen)30cos()45(sen)3045(sen)15(sen     b) )15(tg  Solução:       32 6 326 6 3612 39 3369 33 33323 33 33 33 33 33 33 3 33 3 33 3 3 11 3 3 1 )30(tg)45(tg1 )30(tg)45(tg )3045(tg)15(tg 22 22                                 
  • 10. FÓRMULAS DE MULTIPLICAÇÃO: ARCO DUPLO (2a) A partir das fórmulas de adição e subtração, podemos obter as seguintes fórmulas de multiplicação: cos(2a) = cos(a+a) = cos a cos a – sen a sen a = cos2 a – sen2 a = =cos2 a –(1- cos2 a ) = 2 cos2 a -1 sen(2a) = sen(a+a) = sen a cos a + sen a cos b = 2 sen a cos a tg(2a) = tg (a+a) = atg1 tga2 tga.tga1 tgatga 2     Ou seja, cos 2a = asenacos 22  sen 2a = 2 sen a . cos a cos 2a = 2 cos2 a – 1 tg 2a = .atg1 tga2 2  cos 2a= 1 – 2 sen2 a Exemplos 1) Sabendo que 3 1 )x(tg  , calcule tg(2x). Solução tg(2x) = 4 3 8 9 3 2 9 8 3 2 9 1 1 3 1 2 .xtg1 xtg2 2      2) Resolva a equação 1)x(sen3)x2cos(  . Solução 02)x(sen3)x(sen2 1)x(sen3)x(sen)x(sen1 1)x(sen3)x(sen)x(cos 1)x(sen3)x2cos( 2 22 22     Resolvendo a equação de 2º grau em sen(x), temos: 25169)2(2432 
  • 11. xexistenão2 4 53 ou k2 6 5 xouk2 6 x 2 1 4 53 4 53 )x(sen            Conjunto solução:            Zk,k2 6 5 xouk2 6 xRxS FÓRMULAS DE BISSECÇÃO As fórmulas de bissecção podem ser obtidas do seguinte modo: 2 )b2cos(1 bsen)b2cos(1bsen2bsen21)b2cos( 222   e, se considerarmos b= 2 a , obtemos 2 1 2 2 acosa sen   . Seguindo essa idéia, temos 2 1 2 2 acosa sen   2 1 2 2 acosa cos   acos acosa tg    1 1 2 2 RELAÇÕES DE PROSTAFÉRESE Fazendo      qba pba , ou seja,           2 qp b 2 qp a e substituindo nas fórmulas de adição e subtração, obtemos as relações de prostaférese dadas por sen p + sen q = 2 qp cos 2 qp sen2     sen p - sen q = 2 qp cos 2 qp sen2    
  • 12. cos p + cos q = 2 qp cos 2 qp cos2     cos p - cos q = 2 qp sen 2 qp sen2     tg p + tg q = )qcos().pcos( )qp(sen  tg p - tg q = )qcos().pcos( )qp(sen  FUNÇÕES TRIGONOMÉTRICAS INVERSAS Nosso problema agora é procurar, se existirem, valores de y para os quais sen y = x, lembrando que 1x1  . Dado x, o valor de y correspondente tal que sen y = x determina uma função. Mas, para que o valor de x determinado seja único, teremos que usar a restrição 2 y 2    . Para solucionarmos esta questão, temos que estudar as funções trigonométricas inversas. 1) Função arco-seno (arcsen) A cada x  [–1,1] associa-se um único y         2 , 2 tais que sen y = x. Assim, definimos a função arcsen : [–1,1]         2 , 2 x )x(arcseny 
  • 13. Exemplos 1) Calcule a) y = arcsen(1/2) Solução y = arcsen(1/2)  sen y = 1/2 . Lembrando que y         2 , 2 , temos y =  /6, ou seja, 62 1 arcsen        . b) y = arcsen(0) Solução y = arcsen(0)  sen y = 0 . Lembrando que y         2 , 2 , temos y = 0, ou seja,   00arcsen  . c) y = arcsen(-1/2) Solução y = arcsen(-1/2)  sen y = -1/2 . Lembrando que y         2 , 2 , temos y =  /6, ou seja, 62 1 arcsen         . d) y = arcsen(1) Solução y = arcsen(1)  sen y = 1 . Lembrando que y         2 , 2 , temos y =  /2, ou seja,   2 1arcsen   .
  • 14. 2) Função arco-cosseno (arccos) A cada x  [–1,1] associa-se um único y   ,0 tais que cos y = x. Assim, definimos a função arccos : [–1,1]   ,0 x )xarccos(y  Exemplos 1) Calcule a) y = arccos(1/2) Solução y = arccos(1/2)  cos y = 1/2 . Lembrando que y   ,0 , temos y =  /3, ou seja, 32 1 arccos        . b) y = arccos(0) Solução y = arccos(0)  cos y = 0 . Lembrando que y   ,0 , temos y =  /2, ou seja,   2 0arccos   . c) y = arccos(-1/2) Solução y = arccos(-1/2)  cos y = -1/2. Lembrando que y   ,0 temos y = 2 /3, ou seja, 3 2 2 1 arccos         . d) y = arccos(1) Solução y = arccos(1)  cos y = 1 . Lembrando que y   ,0 temos y =  , ou seja,   1arccos .
  • 15. 3) Função arco-tangente (arctg) A cada x  [–1,1] associa-se um único y         2 , 2 tais que tg y = x. Assim, definimos a função arcsen : [–1,1]         2 , 2 x )x(arctgy  Exemplos 1) Calcule a) y = arctg(1) Solução y = arctg(1)  tg y = 1 . Lembrando que y         2 , 2 , temos y =  /4, ou seja,   4 1arctg   . b) y = arcsen( 3 ) Solução y = arctg( 3 )  tg y = 3 . Lembrando que y         2 , 2 , temos y =  /3, ou seja,   3 3arctg   . c) y = arctg(-1) Solução y = arctg(-1)  tg y = -1 . Lembrando que y         2 , 2 , temos y =  /4, ou seja,   4 1arctg   .
  • 16. EXERCÍCIOS SOBRE TRIGONOMETRIA 1) Em cada um dos casos, calcule o seno, o cosseno, a tangente do ângulo agudo assinalado: 2) Um barco deveria sair do porto da cidade A e ir até o porto da cidade B em uma linha reta, (no sentido norte-sul). Entretanto, uma correnteza fez com que o barco sofresse um desvio de na direção leste. Ultrapassando o trecho de correnteza o capitão necessitou efetuar uma correção no rumo no barco de 45º para a esquerda, de tal forma que ao reencontrar a rota original é possível traçar um triângulo retângulo. (norte) A 5 milhas (leste) (sul) B 3) A lua é satélite natural da Terra e faz uma revolução em torno do sol em aproximadamente 28 dias. a) De quantos radianos é o movimento da lua em um dia? b) Qual a distância percorrida pela lua em uma revolução completa? (adote a distância da terra à lua de 385.000km). 4) Reduza os arcos à primeira volta, represente-os graficamente e calcule o valor de seu seno, cosseno e tangente. a)1470º b) –1020º c) 4 25 d) 2 5  5) Determine o valor de (a) sen 1620º (b) sen (-990º) 6) Sendo sen a = 1/2 e cos b = -1/2, sabendo que a e b são arcos do 2º quadrante, calcule: a) sen (a+b) b) cos(a-b) c) tg (a+b) Se o barco percorreu 5 milhas na direção leste, quanto ele teve que andar para retornar á rota original?
  • 17. 7) Resolva a expressão matemática a) x = sen (/6)- cos (2/3)-3*sen() b) y = tg(/4)+2*sen(5/6) – [sen (/3)-cos(/6)] 8) (MACK) O valor se sen 55º.cos35º+sen35º.cos55º é: a) –1 b) -0,5 c) zero d)0,5 e) 1,0 9) Simplifique as expressões: a) )x5(sen)x9(sen  b) sen (x-900º) + cos (x-540º) 10) Construa o gráfico (dois períodos completos) das seguintes funções, explicitando o domínio, a imagem e o período: a) y = 4 sen x b) y=1 - sen x c) y = 2 sen x/4 11) Calcule : a) sen (9/4) e cos (9/4) b) sen (-2/3) e sen (-2/3) c) sen 8 e cos8 12. Encontre os valores do ângulo no intervalo [0, 2) que satisfaça as equações: a) sen =1; cos=-1; tg =1; sec=1; b) sen =0; cos=0; tg=0; sec=0; c) sen = -1/2; cos= 1/2; tg= -1; sec=2. 13. Determine o período das funções: a) y = sen (8) b) z= 4 sen (8) c) x = cos (4/7) d) p=3 cos(/4+/2) 14. Simplifique a expressão          cos 2 sen)sen()sen( . 15. Sabendo-se que sen  = -1/3, calcule: a) sen (  - ) b) sen (  + ) c) cos (/2 - ) 16. Usando as fórmulas de adição, calcule: a) sen (+/2) b) cos75º c) cos (5/6), (sugestão 5/6 = /2+/3) 17. Mostre que  cossen22sen . 18. Mostre que 2 2cos 2 1 cos2   .
  • 18. RESPOSTAS DOS EXERCÍCIOS DO CÁLCULO ZERO - TRIGONOMETRIA 1) a) 2 1 tg, 5 52 cos, 5 5 sen  b) 4 3 tg, 5 4 cos, 5 3 sen  2) 5 2 3) a) /14 rad b) 770.000  km 4) a) 1470º equivale a 30º portando sen 30º = ½; cos 30º = 3 /2 e tg 30º = 3 /3 b) – 920 º equivale a 60º portando sen 60º = 3 /2 , cos 60º =1/2 e tg 60º = 3 c) 25/4 equivale a /4 portando sen /4 = 2 /2 , cos /4 = 2 /2 e tg /4 = 1 d) -5/2 equivale a 3/2 portando sen 3/2 = -1 , cos 3/2 = 0 e tg 3/2 = indefinida 5) a) zero b) 1 6) a) 1 b) 3 /2 c)indefinido 7) a) -1 b) 2 8) e 9) a) 2 sen x b) -sen x - cos x 10) a) Dom =  , Im = [-4, 4], p=2 b) ) Dom =  , Im = [0, 1], p=2 c) Dom =  , Im = [-2, 2], p=8 11) a) 2 /2 e 2 /2 b) - 3 /2 e -1/2 c) 0 e 1 12) a) /2, , /4 e 5/4, 0 b) 0 e , /2 e 3/2, 0 e , /2 e 3/2 c) 7/6 e 11/6, /3 e 5/3, 3/4 e 7/4, /3 e 5/3 13) a) /4 b) /4 c) 7/2 d) 8 14) –2sen 15) a) – 1/3 b) 1/3 c) -1/2 16) a) - 3 /2 b)   4/26  c) - 3 /2